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Abstract

We introduce a randomized procedure that, given an m×n matrix A and a positive integer k, approximates A with a matrix Z of
rank k. The algorithm relies on applying a structured l ×m random matrix R to each column of A, where l is an integer near to, but
greater than, k. The structure of R allows us to apply it to an arbitrary m × 1 vector at a cost proportional to m log(l); the resulting
procedure can construct a rank-k approximation Z from the entries of A at a cost proportional to mn log(k) + l2(m + n). We prove
several bounds on the accuracy of the algorithm; one such bound guarantees that the spectral norm ‖A − Z‖ of the discrepancy
between A and Z is of the same order as

√
max{m,n} times the (k + 1)st greatest singular value σk+1 of A, with small probability

of large deviations.
In contrast, the classical pivoted “QR” decomposition algorithms (such as Gram–Schmidt or Householder) require at least kmn

floating-point operations in order to compute a similarly accurate rank-k approximation. In practice, the algorithm of this paper runs
faster than the classical algorithms, even when k is quite small or large. Furthermore, the algorithm operates reliably independently
of the structure of the matrix A, can access each column of A independently and at most twice, and parallelizes naturally. Thus,
the algorithm provides an efficient, reliable means for computing several of the greatest singular values and corresponding singular
vectors of A. The results are illustrated via several numerical examples.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The construction of low-rank approximations to matrices is very important in many applications of numerical com-
putation. Such approximations help to characterize the structure of linear operators, and to facilitate rapid calculations
involving them. One classical form of these approximations is the singular value decomposition (SVD), which is
known in the statistical literature as the principal component analysis (PCA). Another classical form is the approx-
imation obtained via subset selection; we will refer to the matrix representation obtained via subset selection as an
interpolative decomposition. These two types of matrix approximations are defined as follows.
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An approximation to an SVD of a complex m × n matrix A consists of nonnegative real numbers σ1, σ2, . . . ,

σk−1, σk known as singular values, orthonormal complex m × 1 column vectors u(1), u(2), . . . , u(k−1), u(k) known
as left singular vectors, and orthonormal complex n × 1 column vectors v(1), v(2), . . . , v(k−1), v(k) known as right
singular vectors, such that∥∥∥∥∥A −

k∑
j=1

u(j)σj

(
v(j)

)∗
∥∥∥∥∥ � δ, (1)

where k, m, and n are positive integers with k � m and k � n, δ is a positive real number specifying the precision
of the approximation, and, for any matrix B , ‖B‖ denotes the spectral (l2-operator) norm of B , that is, ‖B‖ is the
greatest singular value of B . An approximation to an SVD of A is often written in the equivalent form

A ≈ UΣV ∗, (2)

where U is a complex m × k matrix whose columns are orthonormal, V is a complex n × k matrix whose columns
are orthonormal, and Σ is a real diagonal k × k matrix whose entries are all nonnegative. See, for example, [15] for a
more detailed discussion of SVDs.

An interpolative decomposition of a complex m×n matrix A consists of a complex m×k matrix B whose columns
constitute a subset of the columns of A, and a complex k × n matrix P , such that

1. some subset of the columns of P makes up the k × k identity matrix,
2. no entry of P has an absolute value greater than 2, and
3. A = BP .

See, for example, [5,9,12–14,19], or Sections 4 and 5 of [4] for a discussion of interpolative decompositions.
The present article introduces an algorithm for the computation of a low-rank approximation of either type to

an arbitrary matrix. The algorithm is generally at least as efficient as pivoted Gram–Schmidt and the other classical
pivoted “QR” decomposition algorithms, and often substantially more efficient. In order to construct a nearly optimal
rank-k approximation to a complex n×n matrix, any of the standard schemes (such as Gram–Schmidt or Householder)
requires at least

kn2 (3)

floating-point operations (see, for example, Chapter 5 in [8]). In contrast, the algorithm of Section 5.2 of the present
paper requires

O
(
n2 log(k) + nl2) (4)

floating-point operations, where l is an integer near to, but greater than, k.
In practice, the scheme of the present article is more efficient than pivoted “QR” decomposition algorithms when-

ever l < n and k is not extremely small (see Section 6 below). Furthermore, the scheme of the present paper requires
less storage whenever the input matrix is to be preserved, applies naturally to matrices whose entries are to be eval-
uated on-the-fly, rather than stored in memory, and parallelizes trivially. Thus, the algorithm described below would
seem to be preferable to the classical algorithms for the construction of low-rank approximations to medium- and
large-scale dense matrices, or (more or less equivalently) for the computation of a few of the greatest singular values
of matrices and their corresponding singular vectors.

Unlike the classical algorithms, the scheme of the present paper is a randomized one, and fails with a small proba-
bility. However, one can determine rapidly whether the algorithm has succeeded, using a verification scheme such as
that described in Section 3.4. If the algorithm were to fail, then one could run the algorithm again with an independent
realization of the random variables involved, in effect boosting the probability of success at a reasonable additional
expected cost. In fact, the randomized algorithm succeeded during every trial reported in the numerical experiments
of Section 6, obviating the need to run the algorithm again.

The algorithm of [14] is similar to the algorithm of the present paper. The core steps of both algorithms involve
the rapid computation of the product of a random matrix and the matrix to be approximated. The algorithm of [14]
assumes that the matrix to be approximated (and its transpose) can be applied rapidly to arbitrary vectors, thus enabling
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the rapid computation of the product of the matrix to be approximated (or its transpose) and any matrix. In contrast,
the algorithm of the present paper utilizes a random matrix R which can be applied rapidly to arbitrary vectors, thus
enabling the rapid computation of the product of R and any matrix.

The matrix R employed in the present paper consists of several uniformly randomly selected rows of the product of
a discrete Fourier transform matrix and a random diagonal matrix. The fast Fourier transform and similar algorithms
allow the rapid application of R to arbitrary vectors (see, for example, [15] for a discussion of the fast Fourier
transform algorithm and its applications). The idea of using a random matrix with such structure has been introduced
in [1]. The idea of using such a matrix in numerical linear algebra (specifically, for the purpose of computing a
solution in the least-squares sense to an overdetermined system of linear-algebraic equations) has been introduced
in [16], utilizing both [1] and [7].

It should be observed that there is nothing magical about our choice of the matrix R. In our experience, several
other constructions work just as well; for example, the Fourier transform utilized in the present paper can be replaced
with the Walsh–Hadamard transform (see [1] or [21]). We are investigating several possible alternatives (see [2]). We
gave preliminary versions of the present paper in [20] and [21]. For simplicity, we discuss here only complex matrices;
our preliminary report [21] discusses an early version of the algorithm tailored for real matrices.

The present paper has the following structure: Section 2 sets the notation. Section 3 collects together various
known facts which later sections utilize. Section 4 provides the principal lemmas which Section 5 uses to construct
algorithms. Section 5 describes the algorithm of the present paper, providing details about its accuracy and computa-
tional costs. Section 6 illustrates the performance of the algorithm via several numerical examples. Section 7 draws
several conclusions and proposes directions for further work.

2. Notation

In this section, we set notational conventions employed throughout the present paper.
We denote an identity matrix by 1, and a matrix whose entries are all zeros by 0. For any matrix A, we define the

norm ‖A‖ of A to be the spectral (l2-operator) norm of A, that is, ‖A‖ is the greatest singular value of A. For any
matrix A, we define A∗ to be the adjoint of A. For any complex number z, we define z to be the conjugate of z. We
use i = √−1 and e = exp(1). For any nonnegative integers n and m, we define l = (n mod m) to be the integer l

such that n − l is a multiple of m and 0 � l � m − 1, that is, n mod m is the remainder after integer division of n

by m. We use P to take the probability of an event, and E to take the expectation of a random variable. We abbreviate
“independent, identically distributed” to “i.i.d.”

For any positive integer m, we define the unnormalized discrete Fourier transform F (m) to be the complex m × m

matrix with the entry(
F (m)

)
j,k

= e−2πi(j−1)(k−1)/m (5)

for j, k = 1,2, . . . ,m − 1,m; if the size m is clear from the context, then we omit the superscript in F (m), denoting
the unnormalized discrete Fourier transform by simply F .

We will frequently utilize the following subsampled randomized Fourier transform. For any positive integers l and
m with l < m, we define the l × m SRFT to be the complex l × m random matrix

R = SFD. (6)

In (6), S is the l × m matrix whose entries are all zeros, aside from a single 1 in column sj of row j for j = 1,2, . . . ,

l − 1, l, where s1, s2, . . . , sl−1, sl are i.i.d. integer random variables, each distributed uniformly over {1,2, . . . ,

m − 1,m}. Moreover, F is the m × m unnormalized discrete Fourier transform, and D is the diagonal m × m matrix
whose diagonal entries d1, d2, . . . , dm−1, dm are i.i.d. complex random variables, each distributed uniformly over the
unit circle. We call R an “SRFT” for lack of a better term.

3. Preliminaries

In this section, we summarize various facts from linear algebra, and describe efficient algorithms for computing
an arbitrary subset of the outputs of a discrete Fourier transform, as well as for identifying matrices whose spectral
norms are larger than desired.
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3.1. General facts from linear algebra

In this subsection, we summarize various general facts from linear algebra.
The following lemma states that, for any m × n matrix A whose rank is k, there exist an m × k matrix B whose

columns constitute a subset of the columns of A, and a k × n matrix P , such that

1. some subset of the columns of P makes up the k × k identity matrix,
2. P is not too large, and
3. BP = A.

Moreover, the lemma provides an analogous approximation BP to A when the exact rank of A is not k, but the
(k+1)st singular value of A is nevertheless small. The lemma is a reformulation of Theorem 3.2 in [13] and Theorem 3
in [5].

Lemma 3.1. Suppose that m and n are positive integers, and A is a complex m × n matrix.
Then, for any positive integer k with k � m and k � n, there exist a complex k × n matrix P , and a complex m × k

matrix B whose columns constitute a subset of the columns of A, such that

1. some subset of the columns of P makes up the k × k identity matrix,
2. no entry of P has an absolute value greater than 1,
3. ‖P ‖ �

√
k(n − k) + 1,

4. the least (that is, the kth greatest) singular value of P is at least 1,
5. BP = A when k = m or k = n, and
6. ‖BP − A‖ �

√
k(n − k) + 1σk+1 when k < m and k < n, where σk+1 is the (k + 1)st greatest singular value

of A.

Remark 3.2. Properties 1, 2, 3, and 4 in Lemma 3.1 ensure that the interpolative decomposition BP of A is nu-
merically stable. Also, Property 3 follows directly from Properties 1 and 2, and Property 4 follows directly from
Property 1.

Observation 3.3. Existing algorithms for computing the matrices B and P in Lemma 3.1 are computationally expen-
sive. We use an algorithm to produce B and P which satisfy somewhat weaker conditions than those in Lemma 3.1.
We compute B and P such that

1. some subset of the columns of P makes up the k × k identity matrix,
2. no entry of P has an absolute value greater than 2,
3. ‖P ‖ �

√
4k(n − k) + 1,

4. the least (that is, the kth greatest) singular value of P is at least 1,
5. BP = A when k = m or k = n, and
6. ‖BP − A‖ �

√
4k(n − k) + 1σk+1 when k < m and k < n, where σk+1 is the (k + 1)st greatest singular value

of A.

For any positive real number ε, the algorithm can identify the least k such that ‖BP − A‖ ≈ ε. Furthermore, there
exists a real number C such that the algorithm computes both B and P using at most Ckmn log(n) floating-point
operations and Cmn floating-point words of memory. The algorithm is based upon the Cramer rule and the ability
to obtain the minimal-norm (or at least roughly minimal-norm) solutions to linear-algebraic systems of equations
(see [5,10,13]).

The following lemma provides an approximation QZ to an n × l matrix Y via an n × k matrix Q whose columns
are orthonormal, and a k × l matrix Z.
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Lemma 3.4. Suppose that k, l, and n are positive integers with k < l � n, and Y is a complex n × l matrix. Then,
there exist a complex n × k matrix Q whose columns are orthonormal, and a complex k × l matrix Z, such that

‖QZ − Y‖ � ηk+1, (7)

where ηk+1 is the (k + 1)st greatest singular value of Y .

Proof. We start by forming an SVD of Y ,

Y = UΣV ∗, (8)

where U is a complex n × l matrix whose columns are orthonormal, V is a complex l × l matrix whose columns are
orthonormal, and Σ is a real diagonal l × l matrix whose entries are all nonnegative, such that

Σj,j = ηj (9)

for j = 1,2, . . . , l − 1, l, where Σj,j is the entry in row j and column j of Σ , and ηj is the j th greatest singular value
of Y . We define Q to be the leftmost n × k block of U , and P to be the rightmost n × (l − k) block of U , so that

U = (Q|P). (10)

We define Z to be the uppermost k × l block of ΣV ∗, and X to be the lowermost (l − k) × l block of ΣV ∗, so that

ΣV ∗ =
(

Z

X

)
. (11)

Combining (8)–(11) and the fact that the columns of U are orthonormal, as are the columns of V , yields (7). �
Observation 3.5. In order to compute the matrices Q and Z in (7) from the matrix Y , we can construct (8), and then
form Q and Z according to (10) and (11). (See, for example, Chapter 8 in [8] for details concerning the computation
of the SVD.)

The following technical lemma will be needed in Section 4; Lemma 6 of [14] provides a proof.

Lemma 3.6. Suppose that k and l are positive integers with k � l. Suppose further that G is a complex l × k matrix
such that G∗G is invertible.

Then,∥∥(G∗G)−1G∗∥∥ = 1

σk

, (12)

where σk is the least (that is, the kth greatest) singular value of G.

3.2. More specialized facts from linear algebra

In this subsection, we summarize various facts from linear algebra that are useful specifically for the randomized
approximation of matrices.

The following lemma states that the product BP of matrices B and P is a good approximation to a matrix A,
provided that there exists a matrix R such that

1. the columns of B constitute a subset of the columns of A,
2. ‖P ‖ is not too large,
3. RBP is a good approximation to RA, and
4. there exists a matrix T such that ‖T ‖ is not too large, and T RA is a good approximation to A.

Lemma 3.7. Suppose that k, l, m, and n are positive integers with k � n. Suppose further that A is a complex m × n

matrix, B is a complex m × k matrix whose columns constitute a subset of the columns of A, P is a complex k × n

matrix, T is a complex m × l matrix, and R is a complex l × m matrix.
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Then,

‖BP − A‖ � ‖T RA − A‖(‖P ‖ + 1
) + ‖T ‖‖RBP − RA‖. (13)

Proof. We observe that

‖BP − A‖ � ‖BP − T RBP ‖ + ‖T RBP − T RA‖ + ‖T RA − A‖, (14)

‖BP − T RBP ‖ � ‖B − T RB‖‖P ‖, (15)

and

‖T RBP − T RA‖ � ‖T ‖‖RBP − RA‖. (16)

Since the columns of B constitute a subset of the columns of A, it follows that the columns of B − T RB constitute a
subset of the columns of A − T RA, and therefore,

‖B − T RB‖ � ‖A − T RA‖. (17)

Combining (14)–(17) yields (13). �
Remark 3.8. Since the columns of B constitute a subset of the columns of A in Lemma 3.7, it follows that the columns
of RB constitute a subset of the columns of RA. Conversely, whenever a matrix Z is formed by gathering distinct
columns of Y = RA together into Z, then clearly Z = RB for some matrix B whose columns constitute a subset of
the columns of A.

The following lemma states that the product AQQ∗ of matrices A, Q, and Q∗ is a good approximation to a
matrix A, provided that there exist matrices R and Z such that

1. the columns of Q are orthonormal,
2. QZ is a good approximation to (RA)∗, and
3. there exists a matrix T such that ‖T ‖ is not too large, and T RA is a good approximation to A.

Lemma 17 of [14] provides a proof for the following lemma.

Lemma 3.9. Suppose that k, l, m, and n are positive integers with k � n. Suppose further that A is a complex m × n

matrix, Q is a complex n × k matrix whose columns are orthonormal, Z is a complex k × l matrix, T is a complex
m × l matrix, and R is a complex l × m matrix.

Then,

‖AQQ∗ − A‖ � 2‖T RA − A‖ + 2‖T ‖∥∥QZ − (RA)∗
∥∥. (18)

The following lemma provides an efficient means of computing an SVD of a complex m × n matrix A, given a
complex m × k matrix B and a complex k × n matrix P such that A = BP and k is much less than both m and n.
If, in addition, ‖B‖ � ‖A‖ and P is well conditioned, then the scheme described by the lemma is numerically stable.
Clearly, if B and P arise from an interpolative decomposition, then indeed ‖B‖ � ‖A‖ and P is well conditioned,
and so the scheme described by the lemma is numerically stable.

Lemma 3.10. Suppose that k, m, and n are positive integers with k � m and k � n. Suppose further that A is a
complex m × n matrix, B is a complex m × k matrix, and P is a complex k × n matrix, such that

A = BP. (19)

Suppose in addition that L is a complex k×k matrix, and Q is a complex n×k matrix whose columns are orthonormal,
such that

P = LQ∗. (20)
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Suppose finally that C is a complex m× k matrix, U is a complex m× k matrix whose columns are orthonormal, Σ is
a real k × k matrix, and W is a complex k × k matrix whose columns are orthonormal, such that

C = BL (21)

and

C = UΣW ∗. (22)

Then,

A = UΣV ∗, (23)

where V is the complex n × k matrix given by the formula

V = QW. (24)

Moreover, the columns of V are orthonormal (as are the columns of U), and

‖L‖ = ‖P ‖. (25)

Proof. Combining (19)–(22) and (24) yields (23). Combining (24) and the facts that W is unitary and that the columns
of Q are orthonormal yields that the columns of V are orthonormal. Combining (20) and the fact that the columns of
Q are orthonormal yields (25). �
Remark 3.11. The matrices L and Q in (20) can be computed from P as follows. Using the algorithms described, for
example, in Chapter 5 of [8], we construct an upper triangular complex k × k matrix R, and a complex n× k matrix Q

whose columns are orthonormal, such that

P ∗ = QR. (26)

We thus obtain Q. We then define L to be the adjoint of R, that is,

L = R∗. (27)

3.3. An accelerated fast Fourier transform

In this subsection, we describe an efficient algorithm for computing an arbitrary subset of the outputs of a discrete
Fourier transform, based on the fast Fourier transform (see, for example, [15] for a discussion of the fast Fourier
transform algorithm and its applications). The algorithm requires O(n log(l)) floating-point operations in order to
compute l samples of the discrete Fourier transform of a vector of length n. [18] discusses an extremely similar
algorithm.

The following lemma is easily verified by identifying the summation indices k, k1, and k2 via the equation k =
m(k1 − 1) + k2.

Lemma 3.12. Suppose that l, m, and n are positive integers with n = l · m, and v is a complex n × 1 column vector.
Then,

n∑
k=1

e−2πi(j−1)(k−1)/nvk =
m∑

k2=1

e−2πi(j1−1)(k2−1)/m · e−2πi(j2−1)(k2−1)/n

·
l∑

k1=1

e−2πi(j2−1)(k1−1)/ lvm(k1−1)+k2 (28)

for j1 = 1,2, . . . ,m − 1,m and j2 = 1,2, . . . , l − 1, l, where j = l(j1 − 1) + j2.

Suppose that l, m, and n are positive integers with n = l · m, and v and z are complex n × 1 column vectors, such
that z = F (n)v, where F (n) is the n × n unnormalized discrete Fourier transform. Then, it follows from (28) that the
following procedure computes z from v:
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1. Viewing the vector v as an l×m matrix V stored in row-major order, form the product W of the l× l unnormalized
discrete Fourier transform F (l) and V , so that

W = F (l)V . (29)

2. Multiply the entry in row j and column k of W by e−2πi(j−1)(k−1)/n for j = 1,2, . . . , l−1, l and k = 1,2, . . . ,m−
1,m, in order to obtain the l × m matrix X.

3. Transpose X to obtain an m × l matrix Y , so that

Y = XT. (30)

4. Form the product Z of the m × m unnormalized discrete Fourier transform F (m) and Y , so that

Z = F (m)Y. (31)

View the m × l matrix Z as a vector z stored in row-major order.

If we only need to compute l entries of z = F (n)v, then we can use Steps 1–3 above in their entirety to obtain Y ,
and then compute the desired entries of z directly from the entries of Y . Step 1 costs O(m · l log(l)) using the fast
Fourier transform, Step 2 costs O(m · l), and Step 3 costs O(m · l). It follows from (31) that each entry of z is a
linear combination of m entries of Y . Therefore, computing the l desired entries of z directly from the entries of Y

costs O(l · m).
Summing up these costs and using the fact that l ·m = n, we find that computing any specified l entries of z = F (n)v

from the entries of v costs

Cl of n = O
(
n log(l)

)
(32)

floating-point operations.

3.4. A randomized scheme for estimating the spectral norm of a matrix

In this subsection, we formalize the intuitively obvious statement that the product Ax of a matrix A and a random
vector x has a small Euclidean norm whenever ‖A‖ is small, and that ‖Ax‖ is only rarely not small whenever ‖A‖
is not small. By applying A to a short sequence of independent vectors x(1), x(2), . . . , x(k−1), x(k) and looking at the
results, we can estimate ‖A‖ with very high probability and acceptable accuracy.

Needless to say, other estimates of this type have been constructed previously; those in [3] are some of the
best-known ones. The estimates of [3] are different from ours in several respects, most notably in that we work
in the Euclidean norm, while the authors of [3] work in the max norm; in addition, the entries of our vectors
x(1), x(2), . . . , x(k−1), x(k) are Gaussian random variables, while in [3] the entries are chosen uniformly at random
from {−1,1}.

Theorem 3.15 below is the principal purpose of this subsection; we start with two technical lemmas. The follow-
ing lemma provides an expression for the probability that a certain trial will succeed several times, in terms of the
probability that the trial will succeed once.

Lemma 3.13. Suppose that μ is a positive real number, k, m, and n are positive integers, A is a complex m×n matrix,
and x and x(1), x(2), . . . , x(k−1), x(k) are n × 1 i.i.d. random vectors with i.i.d. entries, each distributed as a complex
Gaussian random variable of zero mean and unit variance.

Then,

P
{‖Ax(j)‖

‖x(j)‖ < μ‖A‖ for all j = 1,2, . . . , k − 1, k

}
=

(
P
{‖Ax‖

‖x‖ < μ‖A‖
})k

. (33)

Proof. Clearly,

P
{‖Ax(j)‖

‖x(j)‖ < μ‖A‖ for all j = 1,2, . . . , k − 1, k

}
= P

(
k⋂{‖Ax(j)‖

‖x(j)‖ < μ‖A‖
})

. (34)

j=1
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It follows from the independence of x(1), x(2), . . . , x(k−1), x(k) that

P

(
k⋂

j=1

{‖Ax(j)‖
‖x(j)‖ < μ‖A‖

})
=

k∏
j=1

P
{‖Ax(j)‖

‖x(j)‖ < μ‖A‖
}
. (35)

It follows from the fact that x(1), x(2), . . . , x(k−1), x(k) are all distributed the same as x that

P
{‖Ax(j)‖

‖x(j)‖ < μ‖A‖
}

= P
{‖Ax‖

‖x‖ < μ‖A‖
}

(36)

for j = 1,2, . . . , k − 1, k. Combining (34)–(36) yields (33). �
Given a matrix A and a random vector x, the following lemma estimates the probability that ‖Ax‖ is small com-

pared to ‖A‖ · ‖x‖. Theorem 1 in [6] provides another formulation of this lemma.

Lemma 3.14. Suppose that μ is a real number with 0 < μ < 1, m and n are positive integers, A is a complex m × n

matrix, and x is an n × 1 random vector with i.i.d. entries, each distributed as a complex Gaussian random variable
of zero mean and unit variance.

Then,

P
{‖Ax‖

‖x‖ < μ‖A‖
}

� 0.8μ
√

n. (37)

The following theorem provides an efficient means for testing whether the spectral norm of a matrix exceeds a
user-specified threshold.

Theorem 3.15. Suppose that μ is a real number with 0 < μ < 1, k, m, and n are positive integers, A is a complex
m × n matrix, and x(1), x(2), . . . , x(k−1), x(k) are n × 1 i.i.d. random vectors with i.i.d. entries, each distributed as a
complex Gaussian random variable of zero mean and unit variance.

Then,

P
{‖Ax(j)‖

‖x(j)‖ < μ‖A‖ for all j = 1,2, . . . , k − 1, k

}
� (0.8μ

√
n )k. (38)

Proof. Combining (33) and (37) yields (38). �
We now consider an application of Theorem 3.15.
On the one hand, suppose that ε is a positive real number, m and n are positive integers, and A is a complex m × n

matrix, such that

‖A‖ � 80
√

nε. (39)

To ascertain computationally that A has a spectral norm greater than ε, we apply A to half a dozen n× 1 i.i.d. random
vectors x(1), x(2), x(3), x(4), x(5), x(6) with i.i.d. entries, each distributed as a complex Gaussian random variable of
zero mean and unit variance. We then check whether at least one of the numbers

‖Ax(1)‖
‖x(1)‖ ,

‖Ax(2)‖
‖x(2)‖ ,

‖Ax(3)‖
‖x(3)‖ ,

‖Ax(4)‖
‖x(4)‖ ,

‖Ax(5)‖
‖x(5)‖ ,

‖Ax(6)‖
‖x(6)‖ (40)

is at least ε. Combining (39) and (38) with μ = 1
80

√
n

yields that

P
{‖Ax(j)‖

‖x(j)‖ < ε for all j = 1,2,3,4,5,6

}
� 10−12. (41)

Thus, we are unlikely to find that all of the numbers (40) are less than ε. Obviously, if the spectral norm of A is even
greater than 80

√
nε, then we are even less likely to find that all of the numbers (40) are less than ε.
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On the other hand, suppose that ε is a positive real number, m and n are positive integers, and A is a complex m×n

matrix, such that

‖A‖ < ε. (42)

Suppose we apply A to half a dozen n × 1 i.i.d. random vectors x(1), x(2), x(3), x(4), x(5), x(6) with i.i.d. entries, each
distributed as a complex Gaussian random variable of zero mean and unit variance. Then, (42) guarantees that all of
the numbers (40) will be less than ε.

Hence, by applying matrices to a few random vectors, we can with very high probability filter out those matrices
whose spectral norms are significantly greater than a user-specified precision ε, while always passing all of the matri-
ces whose spectral norms are less than ε. Thus, we can efficiently and reliably identify matrices whose spectral norms
are larger than desired, even when we cannot afford to form the individual entries of the matrices.

Remark 3.16. It is also possible to estimate the spectral norm of a matrix using the power method (or the Lanczos
method when tighter bounds are desired) with a random starting vector. The analysis in [11] guarantees a better bound
for both the power method and the Lanczos method as compared with the scheme of the present subsection when
running-times are proportional to operation counts, and storage is not an issue. However, the power and Lanczos
methods require successive applications of the matrix being tested (as well as its transpose) to a sequence of vectors
generated on-the-fly, whereas the scheme of the present subsection requires only the application of the matrix being
tested to a collection of independently generated vectors. Thus, in some circumstances the scheme of the present
subsection parallelizes better than the power and Lanczos methods.

4. Mathematical apparatus

In this section, we describe the principal mathematical tools used in Section 5.

4.1. Several technical lemmas

In this subsection, we prove several lemmas needed for the proof of Lemma 4.4 in Section 4.2.
The following lemma evaluates the mean and variance of a certain random variable similar to a random walk.

Lemma 4.1. Suppose that l and m are positive integers with l � m, s1, s2, . . . , sl−1, sl are i.i.d. integer random vari-
ables, each distributed uniformly over {1,2, . . . ,m − 1,m}, F is the m × m unnormalized discrete Fourier transform,
Gsqb is the complex number

Gsqb = FsqFsb (43)

for s, q, b = 1,2, . . . ,m − 1,m, and Hqb is the complex number

Hqb =
l∑

r=1

Gsrqb (44)

for q, b = 1,2, . . . ,m − 1,m.
Then,

Hqq = l (45)

for q = 1,2, . . . ,m − 1,m,

EHqb = 0 (46)

when q �= b, and

E|Hqb|2 = l (47)

when q �= b.
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Proof. First, we prove (45). It follows from (43) that

Gsqq = 1 (48)

for s, q = 1,2, . . . ,m − 1,m. Combining (44) and (48) yields (45).
Next, we prove (46). It follows from (44) that

EHqb =
l∑

r=1

EGsrqb (49)

for q, b = 1,2, . . . ,m − 1,m. For any r = 1,2, . . . , l − 1, l, it follows from the fact that sr is distributed uniformly
over {1,2, . . . ,m − 1,m} that

EGsrqb = 1

m

m∑
s=1

Gsqb (50)

for q, b = 1,2, . . . ,m − 1,m. Combining (43) and the fact that distinct columns of F are orthogonal yields that

m∑
s=1

Gsqb = 0 (51)

when q �= b. Combining (49)–(51) yields (46).
Finally, we prove (47). It follows from (44) that

|Hqb|2 =
l∑

r=1

|Gsr qb|2 +
∑
r �=t

GsrqbGst qb (52)

for q, b = 1,2, . . . ,m − 1,m. It follows from (52) that

E|Hqb|2 =
l∑

r=1

E|Gsrqb|2 +
∑
r �=t

EGsrqbGst qb (53)

for q, b = 1,2, . . . ,m − 1,m.
It follows from (43) that

|Gsqb| = |Fsq||Fsb| (54)

for s, q, b = 1,2, . . . ,m − 1,m. However,

|Fsq| = |Fsb| = 1 (55)

for s, q, b = 1,2, . . . ,m − 1,m. Combining (54) and (55) yields that

E|Gsr qb|2 = 1 (56)

for r = 1,2, . . . , l − 1, l and q, b = 1,2, . . . ,m − 1,m.
It follows from the independence of s1, s2, . . . , sl−1, sl that

EGsrqbGst qb = (EGsr qb)(EGst qb) (57)

for q, b = 1,2, . . . ,m − 1,m, when r �= t . Combining (57), (50), and (51) yields that

EGsrqbGst qb = 0 (58)

for q, b = 1,2, . . . ,m − 1,m, when r �= t .
Combining (53), (56), and (58) yields (47). �
We will need the following technical lemma in order to prove Lemma 4.4 below.
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Lemma 4.2. Suppose that k, l, and m are positive integers, such that k � l < m. Suppose further that Hqb is the
complex number defined in (44) and (43), for q, b = 1,2, . . . ,m − 1,m. Suppose finally that R is the l × m SRFT
defined in Section 2, U is a complex m × k matrix whose columns are orthonormal, C is the complex k × k matrix
defined via the formula

C = (RU)∗(RU), (59)

and E is the complex k × k matrix with the entry

Epa =
m∑

q=1

dqUqp

∑
b �=q

dbUbaHqb (60)

for p,a = 1,2, . . . , k − 1, k, where d1, d2, . . . , dm−1, dm are the i.i.d. complex random variables, each distributed
uniformly over the unit circle, used in the construction of D in (6) for the SRFT R.

Then,

C = l · 1 + E. (61)

Proof. For any integers a and p with 1 � a � k and 1 � p � k, combining (59) and (6) yields that

Cpa =
l∑

r=1

m∑
q=1

FsrqdqUqp

m∑
b=1

FsrbdbUba. (62)

Combining (62), (43), and (44) yields that

Cpa =
m∑

q=1

|dq |2UqpUqaHqq +
m∑

q=1

dqUqp

∑
b �=q

dbUbaHqb. (63)

Combining (63), (45), the fact that |dq | = 1, and the fact that the columns of U are orthonormal yields that

Cpp = l +
m∑

q=1

dqUqp

∑
b �=q

dbUbpHqb, (64)

and

Cpa =
m∑

q=1

dqUqp

∑
b �=q

dbUbaHqb (65)

when p �= a.
Combining (64), (65), and (60) yields (61). �
The following lemma states that the spectral norm of the matrix E defined in (60) is reasonably small with high

probability.

Lemma 4.3. Suppose that α and β are real numbers greater than 1, and k, l, and m are positive integers, such that

m > l � α2β

(α − 1)2
k2. (66)

Suppose further that R is the l × m SRFT defined in Section 2, U is a complex m × k matrix whose columns are
orthonormal, and E is the complex k × k matrix defined in (60), with Hqb being the complex number defined in (44)

and (43), and with d1, d2, . . . , dm−1, dm being the i.i.d. complex random variables, each distributed uniformly over
the unit circle, used in the construction of D in (6) for the SRFT R.

Then,

‖E‖ � l

(
1 − 1

α

)
(67)

with probability at least 1 − 1 .

β
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Proof. We first derive an upper bound on E|Epa|2, for p,a = 1,2, . . . , k − 1, k, and then use this bound to prove (67).
It follows from (60) that

E|Epa|2 = E

(
m∑

q=1

dqUqp

∑
b �=q

dbUbaHqb

)(
m∑

r=1

drUrp

∑
c �=r

dcUcaHrc

)
. (68)

Performing the summation over q and r separately for the cases when q = r and when q �= r , and using the fact that
|dq | = 1, we obtain that

E
m∑

q,r=1

(
dqUqp

∑
b �=q

dbUbaHqb

)(
drUrp

∑
c �=r

dcUcaHrc

)

= E
m∑

q=1

|Uqp|2
∣∣∣∣∑
b �=q

dbUbaHqb

∣∣∣∣
2

+ E
∑
q �=r

dqdrUqpUrp

∑
b �=q

dbUbaHqb

∑
c �=r

dcUcaHrc. (69)

To bound the first term in the right-hand side of (69), we observe that

E
m∑

q=1

|Uqp|2
∣∣∣∣∑
b �=q

dbUbaHqb

∣∣∣∣
2

=
m∑

q=1

|Uqp|2E

∣∣∣∣∑
b �=q

dbUbaHqb

∣∣∣∣
2

. (70)

But,

E

∣∣∣∣∑
b �=q

dbUbaHqb

∣∣∣∣
2

= E
∑
b �=q

dbUbaHqb

∑
c �=q

dcUcaHqc. (71)

Moreover,

E
∑
b �=q

dbUbaHqb

∑
c �=q

dcUcaHqc =
∑

b,c �=q

UbaUcaEdbdcHqbHqc. (72)

Performing the summation over b and c separately for the cases when b = c and when b �= c, and using the fact that
|db| = 1, we obtain that∑

b,c �=q

UbaUcaEdbdcHqbHqc =
∑
b �=q

|Uba|2E|Hqb|2 +
∑

b,c �=q and b �=c

UbaUcaEdbdcHqbHqc. (73)

It follows from (47) that∑
b �=q

|Uba|2E|Hqb|2 = l
∑
b �=q

|Uba|2. (74)

It follows from the fact that the columns of U are normalized that∑
b �=q

|Uba|2 �
m∑

b=1

|Uba|2 = 1. (75)

Combining (74) and (75) yields that∑
b �=q

|Uba|2E|Hqb|2 � l. (76)

It follows from the independence of the random variables involved that∑
b,c �=q and b �=c

UbaUcaEdbdcHqbHqc =
∑

b,c �=q and b �=c

UbaUca(Edb)(Edc)(EHqbHqc). (77)

Combining (77) and the fact that Edb = 0 (or Edc = 0) yields that∑
UbaUcaEdbdcHqbHqc = 0. (78)
b,c �=q and b �=c
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Combining (70)–(73), (76), and (78) yields that

E
m∑

q=1

|Uqp|2
∣∣∣∣∑
b �=q

dbUbaHqb

∣∣∣∣
2

� l

m∑
q=1

|Uqp|2. (79)

Combining (79) and the fact that the columns of U are normalized yields that

E
m∑

q=1

|Uqp|2
∣∣∣∣∑
b �=q

dbUbaHqb

∣∣∣∣
2

� l. (80)

To bound the second term in the right-hand side of (69), we observe that

E
∑
q �=r

dqdrUqpUrp

∑
b �=q

dbUbaHqb

∑
c �=r

dcUcaHrc

= E
∑
q �=r

dqdrUqpUrp

(
drUraHqr +

∑
b �=q,r

dbUbaHqb

)(
dqUqaHrq +

∑
c �=q,r

dcUcaHrc

)
. (81)

Expanding the product, we obtain that

E
∑
q �=r

dqdrUqpUrp

(
drUraHqr +

∑
b �=q,r

dbUbaHqb

)(
dqUqaHrq +

∑
c �=q,r

dcUcaHrc

)

= E
∑
q �=r

dqdrUqpUrpdrdqUraUqaHqrHrq

+ E
∑
q �=r

dqdrUqpUrp

∑
b �=q,r

dbUbaHqb

∑
c �=q,r

dcUcaHrc

+ E
∑
q �=r

dqdrUqpUrpdrUraHqr

∑
c �=q,r

dcUcaHrc

+ E
∑
q �=r

dqdrUqpUrpdqUqaHrq

∑
b �=q,r

dbUbaHqb. (82)

To evaluate the first term in the right-hand side of (82), we observe that

E
∑
q �=r

dqdrUqpUrpdrdqUraUqaHqrHrq =
∑
q �=r

UqpUrpUraUqaE(dq)2(dr )2HqrHrq. (83)

It follows from the independence of the random variables involved that

E(dq)2(dr)2HqrHrq = (
E(dq)2)(E(dr )2

)
(EHqrHrq) (84)

when q �= r . Combining (83), (84), and the fact that E(dq)2 = 0 (or E(dr )
2 = 0) yields that

E
∑
q �=r

dqdrUqpUrpdrdqUraUqaHqrHrq = 0. (85)

To evaluate the second term in the right-hand side of (82), we note that the independence of the random variables
involved implies that

E
∑
q �=r

dqdrUqpUrp

∑
b �=q,r

dbUbaHqb

∑
c �=q,r

dcUcaHrc

=
∑
q �=r

UqpUrp(Edq)(Edr)

(
E

∑
b �=q,r

dbUbaHqb

∑
c �=q,r

dcUcaHrc

)
. (86)

Combining (86) and the fact that Edq = 0 (or Edr = 0) yields that

E
∑

dqdrUqpUrp

∑
dbUbaHqb

∑
dcUcaHrc = 0. (87)
q �=r b �=q,r c �=q,r
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To evaluate the third term in the right-hand side of (82), we observe that

E
∑
q �=r

dqdrUqpUrpdrUraHqr

∑
c �=q,r

dcUcaHrc =
∑
q �=r

UqpUrpUraEdq(dr)2Hqr

∑
c �=q,r

dcUcaHrc. (88)

It follows from the independence of the random variables involved that

Edq(dr)2Hqr

∑
c �=q,r

dcUcaHrc = (Edq)
(
E(dr)2

)(
EHqr

∑
c �=q,r

dcUcaHrc

)
(89)

when q �= r . It follows from the fact that Edq = 0 (or E(dr )
2 = 0) that

(Edq)
(
E(dr )2

)(
EHqr

∑
c �=q,r

dcUcaHrc

)
= 0. (90)

Combining (88)–(90) yields that

E
∑
q �=r

dqdrUqpUrpdrUraHqr

∑
c �=q,r

dcUcaHrc = 0. (91)

Similarly,

E
∑
q �=r

dqdrUqpUrpdqUqaHrq

∑
b �=q,r

dbUbaHqb = 0. (92)

Combining (81), (82), (85), (87), (91), and (92) yields that

E
∑
q �=r

dqdrUqpUrp

∑
b �=q

dbUbaHqb

∑
c �=r

dcUcaHrc = 0. (93)

Combining (68), (69), (80), and (93) yields that

E|Epa|2 � l. (94)

It follows from (94) that

E
k∑

p,a=1

|Epa|2 � k2l. (95)

However,

‖E‖2 �
k∑

p,a=1

|Epa|2. (96)

Combining (96) and (95) yields that

E‖E‖2 � k2l. (97)

Combining (97) and the Markov inequality yields that

‖E‖ �
√

βk2l (98)

with probability at least 1 − 1
β

. Combining (98) and (66) yields (67). �
4.2. Spectral norms of various random matrices

In this subsection, we derive bounds on the spectral norms of several random matrices.
With the choice α = 8 and β = 2, the following lemma states that, with probability at least 1

2 , the least singular

value of the complex l × k matrix RU is at least
√

l
8 , and the greatest singular value is at most

√
15l
8 , where R is the

l × m SRFT defined in Section 2, U is a complex m × k matrix whose columns are orthonormal, and m > l � 3k2.
This lemma is similar to the subspace Johnson–Lindenstrauss lemma (Corollary 11) of [17].
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Lemma 4.4. Suppose that α and β are real numbers greater than 1, and k, l, and m are positive integers, such that

m > l � α2β

(α − 1)2
k2. (99)

Suppose further that R is the l × m SRFT defined in Section 2, U is a complex m × k matrix whose columns are
orthonormal, and C is the complex k × k matrix defined via the formula

C = (RU)∗(RU). (100)

Then, the least (that is, the kth greatest) singular value σk of RU satisfies

σk = 1√‖C−1‖ �
√

l

α
(101)

and (simultaneously) the greatest singular value σ1 of RU satisfies

σ1 = √‖C‖ �
√

l

(
2 − 1

α

)
(102)

with probability at least 1 − 1
β

.

Proof. Combining (61) and (67) yields (102).
We now prove (101). It follows from (61) that

∥∥C−1
∥∥ = 1

l

∥∥∥∥
(

1 + 1

l
· E

)−1∥∥∥∥. (103)

However,∥∥∥∥
(

1 + 1

l
· E

)−1∥∥∥∥ �
∞∑

j=0

∥∥∥∥−1

l
· E

∥∥∥∥
j

. (104)

It follows from (67) that
∞∑

j=0

∥∥∥∥−1

l
· E

∥∥∥∥
j

� α (105)

with probability at least 1 − 1
β

. Combining (103)–(105) yields (101). �
The following lemma states that the spectral norm of the l × m SRFT defined in Section 2 is at most

√
lm.

Lemma 4.5. Suppose that l and m are positive integers with l < m, and R is the l × m SRFT defined in Section 2.
Then,

‖R‖ �
√

lm. (106)

Proof. It follows from (6) that

‖R‖ � ‖S‖‖F‖‖D‖. (107)

However,

‖S‖ �
√

l, (108)

‖F‖ �
√

m, (109)

and

‖D‖ = 1. (110)

Combining (107)–(110) yields (106). �
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The following lemma states that, for any matrix A, with high probability there exists a matrix T with a reasonably
small spectral norm, such that T RA is a good approximation to A, where R is the SRFT defined in Section 2.

Lemma 4.6. Suppose that k, l, m, and n are positive integers with k � l, such that l < m and l < n. Suppose further
that α and β are real numbers greater than 1, such that

m > l � α2β

(α − 1)2
k2. (111)

Suppose finally that A is a complex m × n matrix, and R is the l × m SRFT defined in Section 2.
Then, there exists a complex m × l matrix T such that

‖T RA − A‖ �
√

αm + 1σk+1 (112)

and

‖T ‖ �
√

α

l
(113)

with probability at least 1 − 1
β

, where σk+1 is the (k + 1)st greatest singular value of A.

Proof. We prove the existence of a matrix T satisfying (112) and (113) by constructing one.
We start by forming an SVD of A,

A = UΣV ∗, (114)

where U is a complex unitary m × m matrix, Σ is a real m × n matrix whose entries are nonnegative everywhere and
zero off of the main diagonal, and V is a complex unitary n × n matrix, such that

Σi,i = σi (115)

for i = 1,2, . . . ,min{m,n} − 1,min{m,n}, where Σi,i is the entry in row i and column i of Σ , and σi is the ith
greatest singular value of A.

Next, we define auxiliary matrices G and H . We define G to be the leftmost l × k block of the l × m matrix RU ,
and H to be the rightmost l × (m − k) block of RU , so that

RU = (G|H). (116)

We define G(−1) to be the complex k × l matrix given by the formula

G(−1) = (G∗G)−1G∗. (117)

Finally, we define T to be the m × l matrix given by

T = U

(
G(−1)

0

)
. (118)

Combining (12), (117), (116), and (101) (using the leftmost k columns of the matrix U from the present proof as
the matrix denoted U in (101) and (100)) yields that

∥∥G(−1)
∥∥ �

√
α

l
(119)

with probability at least 1 − 1
β

. Combining (118), (119), and the fact that U is unitary yields (113).
We now show that T defined in (118) satisfies (112).
We define Φ to be the leftmost uppermost k ×k block of Σ , and Ψ to be the rightmost lowermost (m−k)× (n−k)

block of Σ , so that

Σ =
(

Φ 0
0 Ψ

)
. (120)
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Combining (114), (116), and (118) yields that

T RA − A = U

((
G(−1)

0

)
(G|H) − 1

)
ΣV ∗. (121)

Combining (117) and (120) yields that((
G(−1)

0

)
(G|H) − 1

)
Σ =

(
0 G(−1)HΨ

0 −Ψ

)
. (122)

Furthermore,∥∥∥∥∥
(

0 G(−1)HΨ

0 −Ψ

)∥∥∥∥∥
2

�
∥∥G(−1)HΨ

∥∥2 + ‖Ψ ‖2. (123)

Moreover,∥∥G(−1)HΨ
∥∥ �

∥∥G(−1)
∥∥‖H‖‖Ψ ‖. (124)

Combining (120) and (115) yields that

‖Ψ ‖ � σk+1. (125)

Combining (121)–(125) and the fact that U and V are unitary yields that

‖T RA − A‖ �
√∥∥G(−1)

∥∥2‖H‖2 + 1σk+1. (126)

Clearly,

‖H‖ �
∥∥(G|H)

∥∥. (127)

Combining (116) and the fact that U is unitary yields that∥∥(G|H)
∥∥ = ‖R‖. (128)

Combining (127), (128), and (106) yields that

‖H‖ �
√

lm. (129)

Combining (126), (119), and (129) yields (112). �
4.3. Randomized linear least-squares regression

In this subsection, we derive bounds regarding randomized methods for the solution in the least-squares sense of
overdetermined systems of linear-algebraic equations.

The following lemma states that, with high probability, there exists a matrix Θ with a reasonably small spectral
norm, such that Θ is the inverse of the SRFT R (defined in Section 2) on the image under R of a certain subspace.

Lemma 4.7. Suppose that α and β are real numbers greater than 1, and k, l, and m are positive integers, such that

m > l � α2β

(α − 1)2
(2k)2. (130)

Suppose further that R is the l × m SRFT defined in Section 2, A is a complex m × k matrix, and B is a complex
m × k matrix.

Then, there exists a complex m × l matrix Θ such that

ΘRA = A, (131)

ΘRB = B, (132)
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and

‖Θ‖ �
√

α

l
(133)

with probability at least 1 − 1
β

.

Proof. We define U to be a complex matrix whose columns constitute an orthonormal basis of the subspace of C
m

spanned by the columns of A and the columns of B . We define j to be the number of columns in U . Combining the
facts that A has k columns and that B has k columns yields that

j � 2k. (134)

Combining (130), (134), (101), and the fact that the columns of U are orthonormal yields that the least (that is, the
j th greatest) singular value σj of RU satisfies

σj �
√

l

α
(135)

with probability at least 1 − 1
β

. It follows from (135) that (RU)∗(RU) is invertible, so we can define Θ to be the
complex m × l matrix

Θ = U
(
(RU)∗(RU)

)−1
(RU)∗. (136)

It follows from (136) that

ΘRU = U. (137)

Combining (137) and the fact that the columns of A and the columns of B are in the column space of U yields (131)
and (132).

Combining (136) and the fact that the columns of U are orthonormal yields that

‖Θ‖ �
∥∥(

(RU)∗(RU)
)−1

(RU)∗
∥∥. (138)

Combining (12) and (135) yields that

∥∥(
(RU)∗(RU)

)−1
(RU)∗

∥∥ �
√

α

l
. (139)

Combining (138) and (139) yields (133). �
The following lemma states that, with high probability, a k×k matrix X minimizing ‖RAX− RB‖ also minimizes

‖AX − B‖ to within a small factor, where R is the l × m SRFT defined in Section 2, A is an m × k matrix, and B

is an m × k matrix. Whereas solving AX ≈ B in the least-squares sense involves m simultaneous linear equations,
solving RAX ≈ RB in the least-squares sense involves just l simultaneous linear equations.

Lemma 4.8. Suppose that α and β are real numbers greater than 1, and k, l, and m are positive integers, such that

m > l � α2β

(α − 1)2
(2k)2. (140)

Suppose further that R is the l × m SRFT defined in Section 2, A is a complex m × k matrix, B is a complex m × k

matrix, X is a complex k × k matrix which minimizes the quantity

‖RAX − RB‖, (141)

and Y is a complex k × k matrix which minimizes the quantity

‖AY − B‖. (142)

Then,

‖AX − B‖ �
√

2α − 1‖AY − B‖ (143)

with probability at least 1 − 1 .

β
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Proof. Combining (131) and (132) yields that

‖AX − B‖ = ‖ΘRAX − ΘRB‖. (144)

However,

‖ΘRAX − ΘRB‖ � ‖Θ‖‖RAX − RB‖. (145)

It follows from the fact that X minimizes (141) that

‖RAX − RB‖ � ‖RAY − RB‖. (146)

We next define U to be a matrix whose columns constitute an orthonormal basis for the subspace of C
m spanned by

the columns of A and the columns of B , and define j to be the number of columns in U . Then, there exists a complex
j × k matrix Z such that

AY = UZ, (147)

and there exists a complex j × k matrix C such that

B = UC. (148)

Combining (147) and (148) yields that

‖RAY − RB‖ = ‖RUZ − RUC‖. (149)

Yet,

‖RUZ − RUC‖ � ‖RU‖‖Z − C‖. (150)

Combining the facts that A has k columns and that B has k columns yields that

j � 2k. (151)

Combining (140), (151), (102), and the fact that the columns of U are orthonormal yields that

‖RU‖ �
√

l

(
2 − 1

α

)
(152)

with probability at least 1 − 1
β

.
It follows from the fact that the columns of U are orthonormal that

‖Z − C‖ = ‖UZ − UC‖. (153)

Combining (147) and (148) yields that

‖UZ − UC‖ = ‖AY − B‖. (154)

Combining (153) and (154) yields that

‖Z − C‖ = ‖AY − B‖. (155)

Combining (144)–(146), (149), (150), (152), (155), (133), and the fact that the matrix U used in the proof of (133)
is identical to the matrix U used in the present proof (so that (133) and (152) hold simultaneously with probability at
least 1 − 1

β
) yields (143). �

Remark 4.9. Theorem 12 in [17] motivated us to use Lemma 4.8. Lemma 4.8 and its proof are modeled after Theo-
rem 12 in [17].

The following lemma states that, with high probability, the product PXQ∗ of matrices P , X, and Q∗ is a good
approximation to a matrix A, provided that

1. A∗PP ∗ is a good approximation to A∗,
2. AQQ∗ is a good approximation to A,
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3. the columns of Q are orthonormal, and
4. X minimizes ‖RPX − RAQ‖, where R is the SRFT defined in Section 2.

Lemma 4.10. Suppose that α and β are real numbers greater than 1, and k, l, m, and n are positive integers, such
that

m > l � α2β

(α − 1)2
(2k)2. (156)

Suppose further that R is the l × m SRFT defined in Section 2, A is a complex m × n matrix, P is a complex m × k

matrix, Q is a complex n×k matrix whose columns are orthonormal, and X is a complex k×k matrix which minimizes
the quantity

‖RPX − RAQ‖. (157)

Then,

‖PXQ∗ − A‖ �
√

2α − 1‖A∗PP ∗ − A∗‖ + ‖AQQ∗ − A‖ (158)

with probability at least 1 − 1
β

.

Proof. It follows from the triangle inequality that

‖PXQ∗ − A‖ � ‖PXQ∗ − AQQ∗‖ + ‖AQQ∗ − A‖. (159)

To derive a bound on the first term in the right-hand side of (159), we observe that

‖PXQ∗ − AQQ∗‖ � ‖PX − AQ‖‖Q‖. (160)

Combining (156), (143), and the fact that X minimizes (157) yields that

‖PX − AQ‖ �
√

2α − 1
∥∥P(P ∗AQ) − AQ

∥∥ (161)

with probability at least 1 − 1
β

. However,

‖PP ∗AQ − AQ‖ � ‖A∗PP ∗ − A∗‖‖Q‖. (162)

It follows from the fact that the columns of Q are orthonormal that

‖Q‖ � 1. (163)

Combining (160)–(163) yields that

‖PXQ∗ − AQQ∗‖ �
√

2α − 1‖A∗PP ∗ − A∗‖ (164)

with probability at least 1 − 1
β

.

Combining (159) and (164) yields (158). �
5. Description of the algorithm

In this section, we describe the algorithm of the present paper. In Section 5.1, we discuss approximations to in-
terpolative decompositions. In Section 5.2, we discuss approximations to SVDs. In Section 5.3, we discuss a usually
more efficient alternative method for constructing approximations to SVDs. In Section 5.4, we tabulate the computa-
tional costs of various parts of the algorithm.

5.1. Interpolative decomposition

Suppose that k, m, and n are positive integers with k < m and k < n, and A is a complex m × n matrix. In this
subsection, we will collect together k appropriately chosen columns of A into a complex m×k matrix B , and construct
a complex k × n matrix P , such that some subset of the columns of P makes up the k × k identity matrix,

‖P ‖ �
√

4k(n − k) + 1, (165)
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and

‖BP − A‖ �
√

kmnσk+1, (166)

where σk+1 is the (k + 1)st greatest singular value of A. We may assume without loss of generality that m is the
product of prime factors no greater than a small constant (say 2), if necessary by adjoining to A rows consisting
entirely of zeros. Then, to construct matrices B and P satisfying (165) and (166), we choose an integer l near to, but
greater than, k, such that l < m and l < n (for example, l = k + 8), and make the following three steps:

1. Using the algorithm of Section 3.3, compute the l × n product matrix

Y = RA, (167)

where R is the l × m SRFT defined in Section 2. (This step amounts to applying A∗ to R∗, in order to identify
the range of A∗.)

2. Using Observation 3.3, form a complex l × k matrix Z whose columns constitute a subset of the columns of Y ,
and a complex k × n matrix P satisfying (165), such that some subset of the columns of P makes up the k × k

identity matrix, and

‖ZP − Y‖ �
√

4k(n − k) + 1ηk+1, (168)

where ηk+1 is the (k + 1)st greatest singular value of Y .
3. Due to Step 2, the columns of Z constitute a subset of the columns of Y . In other words, there exists a finite

sequence i1, i2, . . . , ik−1, ik of integers such that, for any j = 1,2, . . . , k − 1, k, the j th column of Z is the ij th
column of Y . Collect the corresponding columns of A into a real m×k matrix B , so that, for any j = 1,2, . . . , k−
1, k, the j th column of B is the ij th column of A.

It is easy to see that the matrices B and P satisfy (165) and (166). Indeed, Step 2 above guarantees (165) by
construction. Moreover, combining (167), (168), and Remark 3.8 yields that

‖RBP − RA‖ �
√

4k(n − k) + 1ηk+1, (169)

where ηk+1 is the (k + 1)st greatest singular value of Y . Combining (167) and the fact that ηk+1 is the (k + 1)st
greatest singular value of Y yields that

ηk+1 � ‖R‖σk+1, (170)

where σk+1 is the (k + 1)st greatest singular value of A. Suppose that α and β are real numbers greater than 1, such
that

m > l � α2β

(α − 1)2
k2. (171)

Then, combining (13), (112), (113), (165), (169), (170), and (106) yields that

‖BP − A‖ �
((√

4k(n − k) + 1 + 1
)√

αm + 1 + √
4k(n − k) + 1

√
αm

)
σk+1 (172)

with probability at least 1 − 1
β

, where σk+1 is the (k + 1)st greatest singular value of A. The bound (172) is a precise
version of (166). We can use the verification scheme described in Section 3.4 to estimate ‖BP − A‖ during each run
of the algorithm.

Strictly speaking, we require that (171) hold in order to prove our theoretical bound (172). However, numerical
experiments (some of which are reported in Section 6) indicate that in fact l need be only very slightly greater than k;
l = k + 8 always worked in our experiments.

5.2. Singular value decomposition

Suppose that k, m, and n are positive integers with k < m and k < n, such that m and n are products of prime
factors no greater than a small constant (2, for example). Suppose further that A is a complex m × n matrix. In this
subsection, we will construct an approximation to an SVD of A such that

‖UΣV ∗ − A‖ �
√

max{m,n}σk+1, (173)
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where U is a complex m× k matrix whose columns are orthonormal, V is a complex n× k matrix whose columns are
orthonormal, Σ is a real diagonal k × k matrix whose entries are all nonnegative, and σk+1 is the (k + 1)st greatest
singular value of A. To do so, we choose an integer l near to, but greater than, k, such that l < m and l < n, and make
the following ten steps:

1. Using the algorithm of Section 3.3, compute the l × n product matrix

Y = RA, (174)

where R is the l × m SRFT defined in Section 2. (This step amounts to applying A∗ to R∗, in order to identify
the range of A∗.)

2. Using the algorithm of Section 3.3, compute the l × m product matrix

Ỹ = R̃A∗, (175)

where R̃ is an l × n realization of the SRFT defined in Section 2. (This step amounts to applying A to R̃∗, in
order to identify the range of A.)

3. Using an SVD, form a complex n× k matrix Q whose columns are orthonormal, such that there exists a complex
k × l matrix Z for which

‖QZ − Y ∗‖ � ηk+1, (176)

where ηk+1 is the (k +1)st greatest singular value of Y , and Y is defined in (174). (See Observation 3.5 for details
concerning the construction of such a matrix Q.)

4. Using an SVD, form a complex m× k matrix P whose columns are orthonormal, such that there exists a complex
k × l matrix Z̃ for which

‖P Z̃ − Ỹ ∗‖ � η̃k+1, (177)

where η̃k+1 is the (k +1)st greatest singular value of Ỹ , and Ỹ is defined in (175). (See Observation 3.5 for details
concerning the construction of such a matrix P .)

5. Using the algorithm of Section 3.3, compute the l × k product matrix

W = RP, (178)

where R is the same realization of the l × m SRFT as in (174), and P is from (177).
6. Compute the l × k product matrix

B = YQ, (179)

where Y is defined in (174), and Q is from (176).
7. Compute the complex k × k matrix X which minimizes the quantity

‖WX − B‖, (180)

where W is defined in (178), and B is defined in (179). (See, for example, Section 5.3 in [8] for details concerning
the construction of such a minimizing X.)

8. Construct an SVD of X from (180), that is,

X = UXΣ
(
V X

)∗
, (181)

where UX is a complex k × k matrix whose columns are orthonormal, V X is a complex k × k matrix whose
columns are orthonormal, and Σ is a real diagonal k × k matrix whose entries are all nonnegative. (See, for
example, Chapter 8 in [8] for details concerning the construction of such an SVD.)

9. Compute the m × k product matrix

U = PUX, (182)

where P is from (177), and UX is from (181).
10. Compute the n × k product matrix

V = QV X, (183)

where Q is from (176), and V X is from (181).
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It is clear that the columns of U are orthonormal, as are the columns of V , and that the entries of Σ are all nonnegative
and are zero off of the main diagonal. It is easy to see that the matrices U , Σ , and V satisfy (173). Indeed, combin-
ing (180), (178), (179), and (174) yields that X minimizes the quantity (157). Suppose that α and β are real numbers
greater than 1, such that

m > l � α2β

(α − 1)2
(2k)2. (184)

Then, combining (184) and the fact that X minimizes the quantity (157) yields (158), that is,

‖PXQ∗ − A‖ �
√

2α − 1‖A∗PP ∗ − A∗‖ + ‖AQQ∗ − A‖ (185)

with probability at least 1 − 1
β

.
We bound ‖AQQ∗ − A‖ first, then ‖A∗PP ∗ − A∗‖. It follows from (174) that

ηk+1 � ‖R‖σk+1, (186)

where ηk+1 is the (k + 1)st greatest singular value of Y , and σk+1 is the (k + 1)st greatest singular value of A.
Combining (18), (112), (113), (176), (174), (186), and (106) yields that

‖AQQ∗ − A‖ � 2(
√

αm + 1 + √
αm)σk+1 (187)

with probability at least 1 − 1
β

.
Similarly,

‖A∗PP ∗ − A∗‖ � 2(
√

αn + 1 + √
αn )σk+1 (188)

with probability at least 1 − 1
β

.
Combining (185), (187), and (188) yields that

‖PXQ∗ − A‖ � 2(
√

2α − 1 + 1)
(√

α max{m,n} + 1 + √
α max{m,n} )

σk+1 (189)

with probability at least 1 − 3
β

. Combining (189) and (181)–(183) yields that

‖UΣV ∗ − A‖ � 2(
√

2α − 1 + 1)
(√

α max{m,n} + 1 + √
α max{m,n} )

σk+1 (190)

with probability at least 1 − 3
β

. The bound (190) is a precise version of (173). We can use the verification scheme
described in Section 3.4 to estimate ‖UΣV ∗ − A‖ during each run of the algorithm.

Remark 5.1. Step 7 is motivated by an idea from [1,7,16] of using the SRFT defined in Section 2 for the purpose of
computing a solution in the least-squares sense to an overdetermined system of linear-algebraic equations.

Remark 5.2. It is possible to replace the l ×n matrix Y defined in (174) with a k×n matrix, by applying the algorithm
of Section 5.1 to Y T and using the transpose of the obtained n × k matrix in place of Y . Similarly, it is possible to
replace the l × m matrix Ỹ defined in (175) with a k × m matrix, by applying the algorithm of Section 5.1 to Ỹ T and
using the transpose of the obtained m × k matrix in place of Ỹ . Furthermore, it is possible to obtain replacements
for Y and Ỹ by using “QR” decompositions or SVDs in place of the interpolative decompositions employed by the
algorithm of Section 5.1.

5.3. Singular value decomposition by means of the interpolative decomposition

In this subsection, we provide an alternative to the algorithm of Section 5.2 for computing an approximation to a
singular value decomposition. This alternative is usually somewhat more efficient.

Suppose that k, m, and n are positive integers with k < m and k < n, and A is a complex m × n matrix. We will
compute an approximation to an SVD of A such that

‖UΣV ∗ − A‖ �
√

kmnσk+1, (191)

where U is a complex m× k matrix whose columns are orthonormal, V is a complex n× k matrix whose columns are
orthonormal, Σ is a real diagonal k × k matrix whose entries are all nonnegative, and σk+1 is the (k + 1)st greatest
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singular value of A. To do so, we choose an integer l near to, but greater than, k, such that l < m and l < n (for
example, l = k + 8), and use the algorithm of Section 5.1 to construct the matrices B and P in (165) and (166). Then,
we make the following four steps:

1. Construct a lower triangular complex k ×k matrix L, and a complex n×k matrix Q whose columns are orthonor-
mal, such that

P = LQ∗. (192)

(See Remark 3.11 for details concerning the construction of such matrices L and Q.)
2. Compute the m × k product matrix

C = BL. (193)

3. Construct an SVD of C, that is,

C = UΣW ∗, (194)

where U is a complex m × k matrix whose columns are orthonormal, Σ is a real diagonal k × k matrix whose
entries are all nonnegative, and W is a complex k × k matrix whose columns are orthonormal. (See, for example,
Chapter 8 in [8] for details concerning the construction of such an SVD.)

4. Compute the n × k product matrix

V = QW. (195)

It is clear that the columns of U are orthonormal, as are the columns of V , and that the entries of Σ are all nonnegative
and are zero off of the main diagonal. It is easy to see that the matrices U , Σ , and V satisfy (191). Indeed, suppose
that α and β are real numbers greater than 1, such that

m > l � α2β

(α − 1)2
k2. (196)

Then, combining (172) and Lemma 3.10 yields that

‖UΣV ∗ − A‖ �
((√

4k(n − k) + 1 + 1
)√

αm + 1 + √
4k(n − k) + 1

√
αm

)
σk+1 (197)

with probability at least 1 − 1
β

, where σk+1 is the (k + 1)st greatest singular value of A. The bound (197) is a precise
version of (191). We can use the verification scheme described in Section 3.4 to estimate ‖UΣV ∗ − A‖ during each
run of the algorithm.

Strictly speaking, we require that (196) hold in order to prove our theoretical bound (197). However, numerical
experiments (some of which are reported in Section 6) indicate that in fact l need be only very slightly greater than k;
l = k + 8 always worked in our experiments.

Remark 5.3. Steps 2 and 4 in the procedure of the present subsection are somewhat subtle numerically. Both Steps 2
and 4 involve constructing products of matrices, and in general constructing the product ΞΩ of matrices Ξ and Ω

can be numerically unstable. Indeed, in general some entries of Ξ or Ω can have unmanageably large absolute
values, while in exact arithmetic no entry of the product ΞΩ has an unmanageably large absolute value; in such
circumstances, constructing the product ΞΩ can be unstable in finite-precision arithmetic. However, this problem
does not arise in Steps 2 and 4 above, due to (165), (25), the fact that the columns of B constitute a subset of the
columns of A (so that ‖B‖ � ‖A‖), and the fact that the columns of Q are orthonormal, as are the columns of W .

5.4. Costs

In this subsection, we tabulate the numbers of floating-point operations required by the algorithm described in
Sections 5.1–5.3, as applied once to a complex m × n matrix A.
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5.4.1. Interpolative decomposition
The algorithm of Section 5.1 incurs the following costs in order to compute an approximation to an interpolative

decomposition of A:

1. Computing Y in (167) costs O(mn log(l)).
2. Computing Z and P in (168) costs O(lkn log(n)).
3. Forming B in Step 3 requires retrieving k columns of the m × n matrix A, which costs O(km).

The verification scheme of Section 3.4 requires applying A, B , and P to a fixed number (say 6) of vectors, at costs of
O(mn), O(km), and O(kn). Summing up the costs for Steps 1–3 above and for the verification scheme, we conclude
that the algorithm of Section 5.1 costs

CID = O
(
mn log(l) + lkn log(n)

)
. (198)

Remark 5.4. When “QR” decompositions are used as in [5] to compute the matrices Z and P in (168), the cost of
the algorithm of Section 5.1 is usually less than the cost of the algorithm of Section 5.2, typically

C′
ID = O

(
mn log(l) + lkn

)
. (199)

5.4.2. Singular value decomposition
The algorithm of Section 5.2 incurs the following costs in order to compute an approximation to a singular value

decomposition of A:

1. Computing Y in (174) costs O(mn log(l)).
2. Computing Ỹ in (175) costs O(mn log(l)).
3. Computing Q in (176) costs O(l2n).
4. Computing P in (177) costs O(l2m).
5. Computing W in (178) costs O(km log(l)).
6. Computing B in (179) costs O(lkn).
7. Computing X minimizing (180) costs O(k2l).
8. Computing the SVD (181) of X costs O(k3).
9. Computing U in (182) costs O(k2m).

10. Computing V in (183) costs O(k2n).

The verification scheme of Section 3.4 requires applying A, U , Σ , and V ∗ to a fixed number (say 6) of vectors, at costs
of O(mn), O(km), O(k), and O(kn). Summing up the costs for Steps 1–10 above and for the verification scheme, we
conclude that the algorithm of Section 5.2 costs

CSVD = O
(
mn log(l) + l2(m + n)

)
. (200)

Remark 5.5. With the modifications described in Remark 5.2, the scheme of Section 5.2 costs

C′
SVD = O

(
mn log(l) + k2(m + n) + kl2 log(l)

)
. (201)

(201) can be less than (200) when l is large. However, while our current theoretical bounds require l > k2 to guarantee
good accuracy, our numerical experiments (some of which are reported in Section 6) indicate that l � k + 5 suffices.
For l = k + 5, the estimate (200) is as tight as (201).

5.4.3. Singular value decomposition by means of the interpolative decomposition
The algorithm of Section 5.3 incurs the following costs in order to compute an approximation to a singular value

decomposition of A, in addition to (198):

1. Computing L and Q in (192) costs O(k2n).
2. Computing C in (193) costs O(k2m).
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Table 1
ID of the 4096 × 4096 matrix A defined in (204)

k l σk+1 δdirect δfast δfast/δest tdirect tfast tdirect/tfast

8 16 0.100E1 0.100E1 0.177E1 41.7 0.29E1 0.17E1 1.7
24 32 0.534E–7 0.755E–7 0.364E–6 41.2 0.79E1 0.19E1 4.1
56 64 0.588E–9 0.578E–7 0.997E–8 34.5 0.18E2 0.22E1 8.2

120 128 0.687E–11 0.178E–7 0.514E–9 39.0 0.37E2 0.29E1 13
248 256 0.622E–11 0.561E–6 0.407E–9 46.2 0.76E2 0.60E1 13
504 512 0.201E–11 0.162E–6 0.339E–9 29.9 0.16E3 0.28E2 5.7

1016 1024 0.150E–11 0.651E–6 0.285E–9 34.1 0.32E3 0.12E3 2.7

Table 2
ID of the 2048 × 2048 matrix A effecting convolution with γ defined in (213)

k l σk+1 δdirect δfast δfast/δest tdirect tfast tdirect/tfast

8 16 0.225E–5 0.319E–5 0.823E–5 5.06 0.72E0 0.42E0 1.7
24 32 0.187E–8 0.148E–7 0.184E–7 7.58 0.20E1 0.48E0 4.1
56 64 0.459E–10 0.119E–7 0.793E–9 9.59 0.44E1 0.58E0 7.6

120 128 0.687E–11 0.569E–7 0.118E–9 12.7 0.92E1 0.96E0 9.6
248 256 0.263E–11 0.181E–8 0.774E–10 10.8 0.18E2 0.24E1 7.4
504 512 0.162E–11 0.981E–11 0.759E–10 11.1 0.36E2 0.13E2 2.8

1016 1024 0.127E–11 0.851E–11 0.723E–10 11.9 0.72E2 0.46E2 1.6

Table 3
ID of the 1024 × 1024 matrix A defined in (216)

k l σk+1 δdirect δfast δfast/δest tdirect tfast tdirect/tfast

8 16 0.225E–5 0.342E–5 0.100E–4 14.2 0.17E0 0.10E0 1.7
24 32 0.187E–8 0.383E–8 0.163E–7 18.1 0.47E0 0.12E0 3.9
56 64 0.459E–10 0.127E–9 0.819E–9 14.5 0.11E1 0.16E0 6.5

120 128 0.687E–11 0.246E–10 0.213E–9 19.7 0.21E1 0.32E0 6.7
248 256 0.263E–11 0.133E–10 0.119E–9 14.9 0.46E1 0.97E0 4.7
504 512 0.162E–11 0.956E–11 0.117E–9 16.8 0.86E1 0.48E1 1.8

3. Computing the SVD of C in (194) costs O(k2m).
4. Computing V in (195) costs O(k2n).

The verification scheme of Section 3.4 requires applying A, U , Σ , and V ∗ to a fixed number (say 6) of vectors, at
costs of O(mn), O(km), O(k), and O(kn). Summing up the costs for Steps 1–4 above and for the verification scheme,
plus (198), we conclude that the algorithm of Section 5.3 costs

CSVD(ID) = O
(
mn log(l) + lkn log(n) + k2m

)
. (202)

Remark 5.6. As in Remark 5.4, when “QR” decompositions are used as in [5] to compute the matrices Z and P

in (168), the cost of the algorithm of Section 5.3 is usually less than the cost of the algorithm of Section 5.2, typically

C′
SVD(ID) = O

(
mn log(l) + lkn + k2m

)
. (203)

6. Numerical examples

In this section, we describe the results of several numerical tests of the algorithm of the present paper. Tables 1–6
summarize the numerical output of applying the algorithm to the matrix A defined below for each of the examples.

In all of the tables, we set l = k + 8 for the user-specified parameter l, where k is the rank of the approximations
constructed by the algorithms. As described below, many of the entries in the tables report the worst or average
results over multiple trials of the randomized algorithms. We conducted 30 randomized trials for Tables 1 and 4, 100
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Table 4
SVD of the 4096 × 4096 matrix A defined in (204)

k l σk+1 δdirect δfast δfast/δest tdirect tfast tdirect/tfast

8 16 0.100E1 0.100E1 0.177E1 41.7 0.29E1 0.17E1 1.7
24 32 0.534E–7 0.755E–7 0.364E–6 41.2 0.80E1 0.20E1 4.1
56 64 0.588E–9 0.575E–7 0.997E–8 34.5 0.19E2 0.28E1 6.7

120 128 0.687E–11 0.682E–8 0.514E–9 39.0 0.41E2 0.59E1 6.9
248 256 0.622E–11 0.127E–7 0.407E–9 46.2 0.87E2 0.19E2 4.7
504 512 0.201E–11 0.150E–7 0.339E–9 29.9 0.19E3 0.79E2 2.4

1016 1024 0.150E–11 0.689E–8 0.285E–9 34.1 0.46E3 0.35E3 1.3

Table 5
SVD of the 2048 × 2048 matrix A effecting convolution with γ defined in (213)

k l σk+1 δdirect δfast δfast/δest tdirect tfast tdirect/tfast

8 16 0.225E–5 0.319E–5 0.823E–5 5.06 0.73E0 0.41E0 1.8
24 32 0.187E–8 0.148E–7 0.184E–7 7.58 0.20E1 0.52E0 3.9
56 64 0.459E–10 0.956E–8 0.793E–9 9.59 0.47E1 0.85E0 5.5

120 128 0.687E–11 0.273E–7 0.178E–9 12.7 0.11E2 0.23E1 4.6
248 256 0.263E–11 0.159E–8 0.774E–10 10.8 0.24E2 0.86E1 2.8
504 512 0.162E–11 0.981E–11 0.759E–10 11.1 0.58E2 0.42E2 1.4

1016 1024 0.127E–11 0.851E–11 0.723E–10 11.9 0.16E3 0.18E3 0.9

Table 6
SVD of the 1024 × 1024 matrix A defined in (216)

k l σk+1 δdirect δfast δfast/δest tdirect tfast tdirect/tfast

8 16 0.225E–5 0.342E–5 0.100E–4 14.2 0.18E0 0.11E0 1.6
24 32 0.187E–8 0.383E–8 0.163E–7 18.1 0.51E0 0.15E0 3.4
56 64 0.459E–10 0.127E–9 0.819E–9 14.5 0.12E1 0.30E0 3.9

120 128 0.687E–11 0.246E–10 0.213E–9 19.7 0.27E1 0.90E0 3.0
248 256 0.263E–11 0.133E–10 0.119E–9 14.9 0.68E1 0.41E1 1.7
504 512 0.162E–11 0.956E–11 0.117E–9 16.8 0.20E2 0.20E2 1.0

randomized trials for Tables 2 and 5, and 500 randomized trials for Tables 3 and 6. For the verification scheme of
Section 3.4, we ran 6 independent tests of each randomized approximation matrix, exactly as described in Section 3.4.

Tables 1–3 display the results of applying the interpolative decomposition algorithm of Section 5.1 once to the
matrix A defined below for each example. Tables 4–6 display the results of applying the singular value decomposition
algorithm of Section 5.3. The numerical experiments reported in [21] indicate that the algorithm of Section 5.2 is not
competitive with the algorithm of Section 5.3 in terms of either accuracy or efficiency.

In all of the tables, k is the rank of the approximations constructed by the algorithms, and σk+1 is the (k + 1)st
greatest singular value of A; σk+1 is also the spectral norm of the difference between the original matrix A and its
best rank-k approximation.

In Tables 1–3, δdirect is the spectral norm of the difference between the original matrix A and the approximation BP

to an interpolative decomposition obtained via the pivoted “QR” decomposition algorithm of [5] that is based upon
plane (Householder) reflections. In Tables 4–6, δdirect is the spectral norm of the difference between the original matrix
A and the approximation UΣV ∗ to an SVD obtained via following up a pivoted “QR” decomposition algorithm based
upon plane (Householder) reflections with a call to the LAPACK 3.1.1 divide-and-conquer SVD routine dgesdd.

In Tables 1–3, δfast is the maximum over multiple randomized trials of the spectral norm of the difference between
the original matrix A and the approximation BP to an interpolative decomposition obtained via the randomized
algorithm. In Tables 4–6, δfast is the maximum over multiple randomized trials of the spectral norm of the difference
between the original matrix A and the approximation UΣV ∗ to an SVD obtained via the randomized algorithm.

In Tables 1–3, δfast/δest is the maximum over multiple randomized trials of the factor by which the randomized
verification scheme of Section 3.4 underestimated the spectral norm of the difference between A and the approxi-
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mation BP to an interpolative decomposition obtained via the randomized algorithm. In Tables 4–6, δfast/δest is the
maximum over multiple randomized trials of the factor by which the randomized verification scheme underestimated
the spectral norm of the difference between A and the approximation UΣV ∗ to an SVD obtained via the randomized
algorithm.

In Tables 1–3, tdirect is the number of seconds of CPU time taken by the pivoted “QR” decomposition algorithm
of [5] that is based upon plane (Householder) reflections. In Tables 4–6, tdirect is the number of seconds of CPU time
taken by the combination of a pivoted “QR” decomposition algorithm based upon plane (Householder) reflections
and the LAPACK 3.1.1 divide-and-conquer SVD routine dgesdd.

In all of the tables, tfast is the average over multiple randomized trials of the number of seconds of CPU time
taken by the randomized algorithm plus the number of seconds taken by the verification scheme of Section 3.4; every
approximation produced by the randomized algorithm passed the verification test during our experiments (as well as
during all of our experiments with l � k + 5).

The values of δdirect and δfast displayed in the tables are those obtained via the power method for estimating the
spectral norm of a matrix.

Tables 1 and 4 report the results of applying the algorithms of Sections 5.1 and 5.3 to the 4096 × 4096 matrix
defined via the formula

A =
l+2∑
k=1

u(k)σk

(
v(k)

)∗
, (204)

where

σk = 10−120·([k−1] mod 10)/(l+1) (205)

for k = 1,2, . . . , l + 1, l + 2,(
v(k)

)
j

= 1√
4096

e2πijk/4096 (206)

for j = 1,2, . . . ,4095,4096 and k = 1,2, . . . , l + 1, l + 2, and

(
u(1)

)T = 1√
n − 1

(1 1 . . . 1 1 0 ) , (207)

(
u(2)

)T = (0 0 . . . 0 0 1 ) , (208)(
u(3)

)T = 1√
n − 2

(1 −1 1 −1 . . . 1 −1 1 −1 0 0 ) , (209)

(
u(4)

)T = 1√
2

(1 0 −1 0 0 . . . 0 0 ) , (210)

(
u(5)

)T = 1√
2

(0 0 0 0 1 0 −1 0 0 . . . 0 0 ) , (211)

(
u(6)

)T = 1√
2

(0 0 0 0 0 0 0 0 1 0 −1 0 0 . . . 0 0 ) , (212)

and so on. More precisely, for k = 4, 5, . . . , l + 1, l + 2, the (4k − 15)th and (4k − 13)th entries of u(k) are 1√
2

and

− 1√
2

, and all other entries of u(k) are zero. Obviously, σ1, σ2, . . . , σl+1, σl+2 are the nonzero singular values of A. We
note that ‖A‖ = σ1 = 1.

Tables 2 and 5 report the results of applying the algorithms of Sections 5.1 and 5.3 to the 2048 × 2048 matrix A

effecting convolution with the complex 2048 × 1 column vector γ with the entry

γj = 1

2048

2048∑
k=1

e−2πi(j−1)(k−1)/2048σk (213)

for j = 1,2, . . . , 2047, 2048, where

σk = 10−24·([k−1] mod 2)/(l+1) (214)
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for k = 1,2, . . . , l + 1, l + 2, and

σk = 0 (215)

otherwise (for k = l +3, l +4, . . . ,2047,2048). Combining the facts that A effects convolution with γ , and that γ is a
discrete Fourier transform of σ1, σ2, . . . , σ2047, σ2048, yields that σ1, σ2, . . . , σ2047, σ2048 are the singular values of A.
We note that ‖A‖ = σ1 = 1.

Tables 3 and 6 report the results of applying the algorithms of Sections 5.1 and 5.3 to the 1024 × 1024 matrix A

defined via the formula

A =
l+2∑
k=1

u(k)σk

(
v(k)

)∗
, (216)

where

σk = 10−12·(k−1)/(l+1) (217)

for k = 1,2, . . . , l +1, l +2, and u(1), u(2), . . . , u(l+1), u(l+2) and v(1), v(2), . . . , v(l+1), v(l+2) are two independent sets
of orthonormal vectors obtained by applying the Gram–Schmidt process to vectors whose entries are drawn i.i.d. from
a pseudorandom number generator with a complex Gaussian distribution of zero mean and unit variance. Obviously,
σ1, σ2, . . . , σl+1, σl+2 are the nonzero singular values of A. We note that ‖A‖ = σ1 = 1.

We performed all computations using IEEE standard double-precision variables, whose mantissas have approxi-
mately one bit of precision less than 16 digits (so that the relative precision of the variables is approximately 0.2E–15).
We ran all computations on one core of a 1.86 GHz Intel Centrino Core Duo microprocessor with 2 MB of L2 cache
and 1 GB of RAM. We compiled the Fortran 77 code using the Lahey/Fujitsu Linux Express v6.2 compiler, with the
optimization flag --o2 enabled. We used a double-precision version of P.N. Swarztrauber’s FFTPACK library for the
fast Fourier transforms required by Step 1 in the algorithm of Section 3.3. We used the LAPACK 3.1.1 divide-and-
conquer SVD routine dgesdd to compute the SVDs in Steps 3, 4, and 8 in the algorithm of Section 5.2 and in Step 3
in the algorithm of Section 5.3. For the numbers s1, s2, . . . , sl−1, sl used to construct the matrix S in (6), we drew
numbers uniformly at random without replacement from {1,2, . . . ,m − 1,m}; while deriving our theoretical bounds,
we assumed that the numbers were drawn with replacement.

Remark 6.1. Tables 1–6 indicate that the algorithms of Sections 5.1 and 5.3 are generally more efficient than the
classical pivoted “QR” decomposition algorithm based on plane (Householder) reflections, followed by either the
algorithm of [5] or the LAPACK 3.1.1 divide-and-conquer SVD routine.

Remark 6.2. The numerical experiments reported in [21] indicate that the algorithm of Section 5.2 is not competitive
with the algorithm of Section 5.3 in terms of either accuracy or efficiency. However, the algorithm of Section 5.2 is of
theoretical interest.

Remark 6.3. The entries in the tables for δfast/δest are all less than 8
√

n, in accord with (38) for 6 verification trials,
where A is n × n (in fact, the values are all less than

√
n).

7. Conclusions and generalizations

This paper provides an algorithm for the low-rank approximation of arbitrary matrices. Given the entries of a
matrix A, the algorithm provides a means for computing several of the greatest singular values and corresponding
singular vectors of A; it is generally faster than existing schemes, can access each column of A independently and at
most twice, and parallelizes easily.

The theoretical bounds derived in the present paper should be considered preliminary. Our numerical experiments
indicate that the algorithm performs better than our estimates guarantee. Comfortingly, the verification scheme of
Section 3.4 provides an inexpensive means for determining the precision of the approximation obtained during every
run. If the algorithm were to produce an approximation that were less accurate than desired, then one could run the
algorithm again with an independent realization of the random variables involved, in effect boosting the probability
of success at a reasonable additional expected cost.
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Nevertheless, the randomized algorithm produced an approximation accurate to within 3 digits of the best pos-
sible during every trial reported in the numerical experiments of Section 6, obviating the need to run the algorithm
again (assuming that k was chosen sufficiently large that the accuracy of the best possible rank-k approximation
was sufficiently high). We are currently investigating our empirical observation that the algorithm produces a nearly
optimal approximation whenever the user-specified parameter l is only very slightly greater than the rank k of the
approximation. Our current theoretical bounds require l > k2 in order to ensure good accuracy.

The algorithm of the present article admits several generalizations along the lines discussed in [14], namely:

1. If the singular values of the matrix being approximated decay sufficiently fast, then the factors of
√

m in (166)
and (191), and of

√
max{m,n} in (173), would appear to be superfluous, both in theory and in practice.

2. In the present article, the rank k of the approximation to be constructed and the user-specified parameter l are fixed.
In practice, one adjusts k and l during the course of the algorithm in order to guarantee that the approximation
attains a prescribed accuracy, preferably using as small a number l as possible.

3. The present article constructs approximations to interpolative decompositions and to singular value decomposi-
tions. We have constructed a similar algorithm for approximating the Schur decomposition (see, for example,
Theorem 7.1.3 and the surrounding discussion in [8] for a description of the Schur decomposition).

4. The present paper uses complex arithmetic. When processing real matrices, one should use only real arithmetic.
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