
Implementing a Fully Polynomial Time Approximation Scheme forAll Terminal Network ReliabilityDavid R. Karger� Ray P. TaiMarch 3, 19971 AbstractThe classic all-terminal network reliability problemposits a graph, each of whose edges fails (disappears)independently with some given probability. The goal isto determine the probability that the network becomesdisconnected due to edge failures. The practical appli-cations of this question to communication networks areobvious, and the problem has therefore been the sub-ject of a great deal of study. Since it is ]P-complete,and thus believed hard to solve exactly, a great deal ofresearch has been devoted to estimating the failure prob-ability. A comprehensive survey can be found in [Col87].The �rst author recently presented an algorithm forapproximating the probability of network disconnectionunder random edge failures. In this paper, we reporton our experience implementing this algorithm. Ourimplementation shows that the algorithm is practicalon networks of moderate size, and indeed works betterthan the theoretical bounds predict. Part of thisimprovement arises from heuristic modi�cations to thetheoretical algorithm, while another part suggests thatthe theoretical running time analysis of the algorithmmight not be tight.Based on our observation of the implementation,we were able to devise analytic explanations of at leastsome of the improved performance. As one example,we formally prove the accuracy of a simple heuristicapproximation for the reliability. We also discuss otherquestions raised by the implementation which might besusceptible to analysis.1.1 The Problem. Formally, a network is modeledas a a graph G, each of whose edges e is presumed tofail (disappear) with some probability pe, and thus tosurvive with probability qe = 1 � pe (a simpli�ed ver-sion that we will focus on assumes each pe = p, but ourtechniques apply to the general case). Network relia-�MIT Laboratory for Computer Science, Cambridge, MA02139.email: karger@lcs.mit.eduURL: http://theory.lcs.mit.edu/~karger

bility is concerned with determining the probabilities ofcertain connectivity-related events in this network. Themost basic question of all-terminal network reliability isdetermining the probability that the network becomesdisconnected.The all-terminal network reliability problem is ]P-complete [Val79, PB83]. That is, it is in a complexityclass at least as intractable as NP and therefore seemsunlikely to have a polynomial time solution. Attentiontherefore turned to approximation algorithms.Perhaps the best approximation algorithm that canbe hoped for is a polynomial time approximation scheme(PTAS). In this de�nition, the interesting measure isthe running time of the approximation algorithm as afunction of the problem size n and the error parameter�, and the goal is for a running time which is polynomialin n for each �xed � (e.g., O(21=�n)). If the running timeis also polynomial in 1=�, the algorithm is said to be afully polynomial time approximation scheme (FPTAS).Recently, the �rst author gave a randomizedFPTAS for the all terminal network reliability prob-lem [Kar95]. Given a failure probability p for the edges,the algorithm, in time polynomial in n and 1=�, returnsa number P that estimates the probability FAIL(p) thatthe graph becomes disconnected. With high probabil-ity, P is in the range (1� �)FAIL(p). The algorithm isMonte Carlo, meaning that the approximation is cor-rect with high probability but that it is not possible toverify its correctness.1.2 Our Results. In this paper, we report on animplementation of the algorithm presented in [Kar95].Our �rst observation is that the algorithm is indeedpractical. On graphs of moderate size (up to 60 nodes)the algorithm ran in under an hour on a mid-rangeworkstation (60MHz SPARC 20). On all our inputfamilies, we observed a roughlyO(n3) running time withreasonable constants. This is signi�cantly better thanthe claimed bound of the theoretical algorithm.Part of this improved running time is due to heuris-tic modi�cations (discussed below) that we made whileimplementing the algorithm. Part, however, cannot be1



explained by these changes, and instead suggests thatthe running-time analysis of [Kar95] may not be tight.We will discuss our reasons for this belief.Examination of some of our results suggested that inmany cases, FAIL(p) could be accurately approximatedby an easily computed formula involving the number ofnear-minimum graph cuts. In this paper we give a proofthat this is indeed the case.2 The AlgorithmIn this section, we describe the approximation algo-rithm. Additional details can be found in [Kar95]. Anoutline of the algorithm is as follows. If the failure prob-ability is large, then it can be estimated via directMonteCarlo Algorithm (MCA) simulation of the edge failures.If the failure probability is small, we �nd that onlysmall cuts in the graph are likely to fail. We enumeratethese cuts using the Recursive Contraction Algorithm(RCA) of [KS95] and then �nd the probability that oneof them fails using the Self Adjusting Coverage Algo-rithm (SACA) of Karp, Luby, and Madras [KLM89].We now give some additional details of the algorithm.2.1 Monte Carlo Simulation. The most obviousway to estimate FAIL(p) is through Monte Carlo sim-ulations. Given the failure probability p for each edge,we can \simulate" edge failures by ipping an appropri-ately biased random coin for each edge. We can thentest whether the network is connected. If we do thismany times, then the fraction of trials in which the net-work becomes disconnected should intuitively providea good estimate of FAIL(p). Karp and Luby [KL85]investigated this idea formally, and observed (a gener-alization of) the following.Theorem 2.1. O((log n)=(�2FAIL(p))) trials su�ce toestimate FAIL(p) to within 1� � with high probability.Corollary 2.1. FAIL(p) can be estimated to within(1� �) in ~O(m=�2FAIL(p)) time.Proof. Each trial requires random choices for each edgefollowed by a depth �rst search. We remark thatsince FAIL(p) is unknown, our estimate is based on thenumber of trials that must be performed before a certainnumber of network failures occurs.2.2 Restriction to Small Cuts. The aw of thesimulation approach is that it is too slow for small valuesof FAIL(p). We now describe a scheme that becomese�ective precisely when direct simulation fails.Observe that a graph becomes disconnected pre-cisely when all of the edges in some cut of the graph fail(a cut is a minimal-under-inclusion set of edges whose

removal partitions the graph into more than one con-nected component). Throughout this paper, we assumethat our graph has minimum cut c|that is, that thesmallest cut in the graph has exactly c edges. An �-minimum cut is a cut with value at most �c. The fol-lowing are proved in [Kar95]:Fact 2.1. If each edge of a graph with minimum cutc fails with probability p, then the probability that thegraph becomes disconnected is at least pc.Lemma 2.1. There are at most n2� �-minimum cuts.Theorem 2.2. Suppose a graph has minimum cut cand that each edge of the graph fails independently withprobability p, where pc = n�(2+�) for some � > 0. Thenthe probability that a cut of value exceeding �c fails isat most n���(1 + 2=�). In particular, if� > 1 + 2=� + ln � �+2�� �� lnnthen the probability the network fails is approximated towithin � by the probability that a cut of value less than� fails.We have already argued that when pc is large, wecan use a Monte Carlo Algorithm (MCA) that directlysimulates edge failures. The previous theorem showsthat the when pc is small, we need only determinethe probability that a cut of value near c fails. TheRecursive Contraction Algorithm (RCA) can be usedto generate all cuts of value less than �c in ~O(n2�)time [KS95]. Since the cuts of value near c can beenumerated, we can generate a polynomial size booleanexpression (with a variable for each edge, true if theedge has failed) which is true if a small cut has failed.We then need to determine the probability that thisboolean expression is true, which can be done using SelfAdjusting Coverage Algorithm (SACA) of Karp, Luby,and Madras [KL85, KLM89]:Lemma 2.2. For the DNF counting problem, there is arandomized FPTAS running in ~O(m=�2) time on a sizem formula.Corollary 2.2. When pc = n�(2+�), FAIL(p) can beestimated to within � in O(cn2+4=� � 2+��� �1=�) time.Theorem 2.3. ([Kar95]) FAIL(p) can be estimated inO(min(mn3:5; cn4:7)=�2) time.Proof. If pc > 1=n3:5, run the Monte Carlo Algorithm.Otherwise, use the RCA/SACA method.2



Additional tweaking can slightly reduce the runningtime exponent, but it still appears rather large. Inparticular, even in the optimistic case where c = O(1)and m = O(nc) = O(n), we see that the theoreticalrunning time bound is roughly O(n4:5), which seemsunlikely to be practical.3 ImplementationImplementing the approximation algorithm was rela-tively straightforward. The MCA simply required adepth �rst search routine. To implement the scheme forsmall failures probabilities, we began with an implemen-tation of the RCA written as part of an experimentalstudy of minimum cut algorithms [CGK+]. That algo-rithm was designed to �nd a single minimum cut. Theimplementation of [CGK+] essentially follows [KS95],though with some modi�cations that sped it up in prac-tice. We had to make further modi�cations to �nd allnear-minimum cuts instead of �nding a single minimumcut. This had a signi�cant impact on performance, sincewe could no longer use the Padberg-Rinaldi heuristicsthat give signi�cant speedup when looking for one min-imum cut [CGK+]. The running time of the RCA wasthe dominant factor in the running time of our algo-rithm.Once we had generated the set of near minimumcuts, we built a boolean formula and passed it to astraightforward implementation of the self adjustingcoverage algorithm (SACA) of [KLM89]. The timespent in this part was typically negligible (less than10%) compared to that spent in the RCA. Thus, whenRCA/SACA dominates MCA, it is basically the runningtime of the RCA that determines the running time ofthe approximation algorithm.We now discuss two changes we made to improvein practice on the algorithm's theoretical performancebound.3.1 Dovetailing. Although the theoretical algorithmspeci�ed which option (MCA or RCA/SACA) should berun for any speci�c probability, we wanted our algorithmto choose the option that was best in practice for theparticular input instance. To achieve this, we dovetailedcalls to both algorithms on any particular input, andstopped as soon as one of them terminated. This,of course, gave us an algorithm which took twice thetime of the faster of the two choices. Rather thanperforming the dovetailing ourselves, we chose to let theoperating system handle it. We forked two processesthat separately ran the two algorithms. The operatingsystem interleaved their operation, allocating roughly50% of the CPU cycles to each process. When oneprocess �nished, it sent a signal to the other process.

Both processes then reported their CPU time usages;these times were added to give the overall running time.In the (now common) case of a two-processor machine,this implementation will clearly gain a factor of two inspeed with no additional programming necessary.3.2 Optimizing �. In the theoretical algorithm,� is chosen so that the probability a greater than �-minimum cut fails, namely n���(1 + 2=�) is less than �times the probability that a minimum cut fails, namelypc. In practice, we can hope to do much better. Thegoal is simply to get n���(1+2=�) � �FAIL(p) in orderto get an estimate accurate to within �. In theory,since initially we do not know FAIL(p), we take pc aslower a bound on FAIL(p). However, in practice thismay be extremely pessimistic. Indeed, in our initialimplementation, we would discover after the fact thatwe had chosen an � signi�cantly larger than we needed,dramatically slowing down the algorithm. We thereforerealized that it would help to have an (even coarse) lowerbound estimate of FAIL(p) that could be used to give abetter bound on �.To compute this estimate, we note that for any �,the probability that an at most �-minimum cut fails is alower bound on FAIL(p). Therefore, running the RCAwith any � and applying the SACA to the resulting setof cuts gives us a usable lower bound. We select ourinitial � so that in fact,n���(1 + 2=�) = n2pc = n��:This is a very optimistic choice, as in fact n2pc isnearly an upper bound on the possible value of FAIL(p).However, it worked well in practice. The resulting � ismuch smaller than the theoretical algorithm calls for.To minimize our estimation running time, we alsoset a goal of � = 1=2. This still gives us a factorof two estimate for FAIL(p). We run the forked MCand RCA algorithm and use the returned estimate tochoose a suitable value of � for the �nal run. Inall of our experiments, the running time of the initialestimation step was negligible compared to that of themore accurate �nal step.4 Test ProcedureIn order to test our algorithm, we devised several inputfamilies parameterized by the number of vertices n. Wethen ran them with variations in the interesting param-eters of the problem, p and �. After discussing these in-put families, we describe some of their limitations whichone might wish to address in future experimental work.4.1 Input Families.3



4.1.1 Cycles. As has already been observedin [KS95], the cycle is a peculiarly \hard" graph whenit comes to minimum cut problems. Lomonosov andPolesskii [LP71] showed that in fact the cycle is the\least reliable graph" in an easily formalized sense. Then-vertex cycle has �n2� minimum cuts|the most possi-ble for any n-vertex graph. It also has the maximumnumber of (k=2)-minimum cuts for any integer k � 2.As observed in [CGK+], it is the input on which theRCA runs slowest without Padberg-Rinaldi tests. Onthe cycle, the RCA has running time �(n2)|equal toits upper bound. We therefore expected it to take moretime to compute the reliability of a cycle than any othergraph. We will argue later that this assumption was notactually correct.Another advantage of the cycle as an input fornetwork reliability computations is that the reliabilityof a cycle can be determined exactly. The cycle becomesdisconnected precisely when at least two edges fail.Thus if each edge fails with probability p, the probabilitythe network becomes disconnected is1� (1� p)n � np(1� p)n�1:Comparing the output of the our algorithm to theanalytic bound lets us determine the accuracy ouralgorithm achieves in practice.4.1.2 Delaunay Graphs (DEL). We chose randomDelaunay graphs as a natural model of network build-ing. We begin by placing n points randomly in theunit square. We �nd a Delaunay triangulation of thesepoints. We then construct the dual graph if this trian-gulation; this connects two of our original points if theyshare an edge in the triangulation. This constructionyields planar graphs in which nearby vertices are con-nected to each other and all edges are thus relativelyshort. This seemed a plausible model of networks thatare constructed with an aim towards creating \short"(near straight line) paths between points while also cre-ating reasonable connectivity. The Delaunay graphstend to have minimum cuts in the range 3-5.We constructed our Delaunay graphs using NET-PAD, a publicly available network design tool dis-tributed by Bellcore.4.1.3 Near Neighbor Graphs (NN). Milena Mi-hail of Bellcore suggested our third model to us; shestated that it captured many of the characteristics ofcurrent telecommunication networks. These graphs areparameterized by two quantities, a radius r and a de-gree d. We begin by placing n random points in the unitsquare. Then, for each point x, we �nd its r nearestneighbors. From among those r neighbors, we choose d

neighbors at random and connect them to x. Note thatsince each edge can be picked two ways, we might endup with parallel edges|these correspond to \doubly re-liable" links.In our experiments, we set r = 8 and d = 4,parameters suggested by Dr. Mihail.An extension of this model adds supernodes thatserve as \central exchanges." We chose 4 such supern-odes, and attached each to half the nodes among then=3 nodes nearest to it.4.1.4Weighted Near Neighbor Graphs (WNN). Theprevious families all assign to every edge a �xed failureprobability p. The algorithm of [Kar95] can also han-dle the case of varying failure probabilities. To studythis case, consider the following model of link failures.We begin with the Near Neighbor graphs, but we giveeach link a length equal to the Euclidean distance of itsendpoints. We then assign to each in�nitesimal unit dlof length on the link an independent failure probability�dl, implying that a link of length l survives with prob-ability e��l. Varying � is analogous to varying p in theuniform failure model.Our motivation for this model was knowledge thatmany link failures are caused by utility workers acciden-tally digging through a communication link.4.2 Discussion of Input Families. It should benoted that our test families fail to explore possiblevariations in several input features. All of our graphs:� are sparse,� have low degree (in the range 2{8),� have their minimum cuts at individual vertices, and� have �(n) minimum cuts (at individual vertices).Further work should clearly explore graphs which aredense and which have more interesting minimum cutstructures. However, we believe our input familiesare reasonable models of the kinds of communicationnetworks that will arise in practice. For example,if a network designer is attempting to minimize thecost of the network, then typically every edge willcross a near-minimum cut. If an edge crosses nonear-minimum cut, the designer can reduce cost beleaving out the edge without signi�cantly decreasing thenetwork's reliability. Thus, a well designed network willtend to have many minimum cuts. Similarly, since linkfailures are quite unlikely events, we do not need largeminimum cuts to ensure high reliability. By the samecost-based argument as above, this would seem to imply4



that networks will have small minimum cuts and willtherefore be sparse.We also believe that the good performance of ouralgorithms on our input families indicates that theywill also perform well on other input families. Forexample, since the running time of the RCA is notparticularly dependent on the number of edges in agraph (see [KS95]) we expect essentially the sameperformance on dense graphs as on sparse ones.4.3 Parameters. For our experiments, we have 3input parameters to consider: the error parameter �,the number of vertices n, and the failure probability p.For any one graph family, several natural questions areraised:� How does the actual error in approximation com-pare to the speci�ed �?� For a given input, what is the running time of theapproximation as a function of the edge failure ratep? As a function of FAIL(p)?� For a given input, how does FAIL(p) depend on p?� For a given family, as a function of n, what is theworst case running time over all p?We will raise other questions later.5 Running Time MeasurementsWe now begin describing the results of our tests. Weuse logarithmic axis scales for running times, so thatpolynomial running times correspond to straight linegraphs. We also use logarithmic axis scales for p andFAIL(p), as these are typically polynomially related.We use linear scales for n and �. All times are reportedin (CPU) seconds.In many cases, our data is qualitatively the samefor all of our test inputs. Therefore, we place one �gurein place for ease of reference and give the others inthe appendix. Additional data can be found in thefull paper. We discard one parameter immediately: wefound that running time as a function of � was essentiallyas predicted. Thus, for the remainder of this paper, wework with a �xed � = 0:1.As we discuss our results, we will note that theyoften diverge signi�cantly from the theoretical predic-tions. We give some tentative explanations of these di-vergences, and believe that future work will be able toextend these rationalizations to sound theoretical re-sults.5.1 Running Time vs. p. We now consider arepresentative outcome, a plot of the running time as

a function of p for the cycle family. Figure 1 showsthis plot. The same overall behavior can be seenfor Delaunay graphs and near neighbor graphs (seeFigure 8).
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Figure 1: Running time vs. p for cyclesAs can be seen in this plot, the running time at verysmall p is small. It rises superpolynomially to a peak asp increases, and then decays polynomially in 1=p as pcontinues to increase. All of our graph families exhibitthis behavior macroscopically. The interpretation is asfollows. At very small values of p, the MCA is useless.However, we can get a good approximation simplyby examining the �-minimum cuts for � very near 1.Indeed, for p in�nitesimal, all of the failure probabilitycomes from the probability that a minimum cut fails.Enumerating the �-minimum cuts takes O(n2�) timeusing the RCA, and this is the dominant time in thecomputation. As p grows, we must consider larger andlarger values �; this causes the running time increase.Eventually, the RCA is so slow that the MCA becomesthe faster of the two. The MCA has running timeinversely proportional to the failure probability, whichon the cycle is proportional to O((np)2). Thus for largep the running time decays quadratically as p increases.5.2 Running time versus �. We next consider therunning time of the RCA as a function of the parameter�. Since the RCA dominates the running time ofthe algorithm, the running time of our approximationscheme is determined by the � needed for a goodapproximation. The theoretical time bound of the RCAis ~O(n2�). Figure 2 shows that the running time bounddoes indeed have the form nk� for some k, since we geta running time dependence whose logarithm is near-linear in �. Surprisingly, however, the constant k isnot the theoretically predicted 2 (except in the case of5



the cycle). Indeed, for the Delaunay and near-neighborconstructions, the running time appears to be roughlyO(n��1).
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Figure 2: Running time vs. � for near neighborsA possible explanation for this phenomenon is thefollowing. The Delaunay and Near-Neighbor graphshave some degree of \expansion" in that the number ofedges leaving a set of vertices tends to be proportionalto the number of vertices in a set. Thus in these families,all minimum cuts tend to be isolated vertices, whilelarger sets of vertices tend to have at least 2c edgesleaving them. In many ways, then, these graph act likegraphs with minimum cut 2c, implying that the cuts ofvalue �c have value �=2 times the \e�ective" minimumcut. Finding such cuts will only take O(n2(�=2)) =O(n�) time.
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Figure 3: Running time vs. � for near neighbors,compared to 10�As evidence for this conjecture, consider Figure 3

counting the (cumulative) number of minimum cuts lessthan a given value for a particular 40 node weightednear-neighbor graph. The minimum cut is roughly 5. Ascan be seen by the �tted line, the number of minimumcuts increases as 10� rather than as 402�.5.3 Worst case running time. Since we can-not predict what failure probability might actually beneeded by a user, we are of course interested in theworst-case p. This is the running time at the \peak" ofthe time-versus-p graph of Section 5.1. In Figure 4 weplot for cycles the worst case running time (over all p)as a function of the size n (graphs for other families aregiven in the appendix).
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Figure 4: Running time vs. n for CyclesThe roughly O(n2:8) running time we experience issigni�cantly less than the O(n4:5) running time claimedin the theoretical algorithm. This can be explained asfollows. In a cycle, FAIL(p) � �n2�pc � n�� . It followsthat the RCA chooses an � such thatn���(1 + 2=�) � �n��:We therefore deduce that the running time of the RCA,~O(n2�) = ~O(n2=(��)2=�)This is ~O(n3) unless � � 0. Once � � 0, so thatFAIL(p) � 1=n2, we �nd that the MCA runs in ~O(n3)time. This observation is validated by the plot inFigure 5 of the value of FAIL(p) that corresponds tothe worst case running time; as claimed it is roughly1=n2.We initially chose to study the cycle because it isthe graph for which the RCA takes longest to �nd �-minimum cuts, but this was on the assumption that �was �xed. Since the necessary � for a cycle is small, it6
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Figure 5: FAIL(p) at worst runtime vs. n for Cyclesis not clear that the cycle graph whose reliability ouralgorithm �nds it hardest to estimate.While the running time on the cycle is easilyexplained, what is more surprising is that the algorithmhad a similar bound on our other classes of graphs.We found the ~O(n3) worst-case running time to betypical, as can be seen in Figures 9 and 10 for our othergraph families. What this is essentially saying is thatRCA dominates until � is very close to 0|that is, theprobability that a minimum cut fails will be very close ton�2 at crossover to MCA. To verify this fact, considerFigure 11 which shows � increasing to 5 or 6|muchlarger than the theoretical bound suggests.One possible explanation for this phenomenon is ageneralization of our argument for the cycle. In the fullversion of [CGK+], using ideas from [Kar95], a weakconnection is drawn between the running time of theRCA and the reliability of the graph it is being run on.Roughly speaking, the more reliable a graph, the fasterthe RCA solves it (for a given �). We have just arguedthat when graphs are unreliable, our approximationalgorithm uses a smaller � in the RCA. Our theoreticalanalysis assumes simultaneously that the RCA takes itsworst-case time (implying that the input is an unreliablegraph) but that the graph is so reliable that we mustuse our worst-case �. Perhaps these two assumptionscannot be true simultaneously.6 Reliability ResultsA user of the program is probably less concernedwith the implementation details than with the actualreliabilities. In Figures 6 and 12, we plot the failureprobability FAIL(p) as a function of p for each graphfamily.It can be seen that the reliability graph was basi-
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Figure 6: FAIL(p) vs. p for Near Neighborscally a straight line. In each case, examining the inputshowed that the slope was determined by the minimumcut. That is, it appeared that with other quantities heldconstant, FAIL(p) = �(pc)This put us in mind of a well known heuristicestimate of FAIL(p) (see [Col87]). Let us write thegraph cuts as Ci, i = 1; : : : ; 2n�1. Let Fi denote theevent that cut Ci fails. We can use inclusion exclusionto write FAIL(p) asPr[[Fi] = Xi1 Pr[Fi1 ]� Xi1<i2 Pr[Fi1 \ Fi2 ] +Xi1<i2<i3 Pr[Fi1 \ Fi2 \ Fi3 ] + � � � :A heuristic argument says that the �rst term in thissum is a reasonable estimate (it is an upper bound).That is, we might as well sum the probabilities thateach cut fails. If we let nk denote the number ofcuts with k edges, then this heuristic says that weshould approximate FAIL(p) by Pnkpk. The analysisof Theorem 2.2 [Kar95] shows that this sum in turnis accurately approximated by Pk��c nkpk when p issu�ciently small.The advantage of the heuristic is that it does notrequire running the SACA. This does not simply saveon implementation overhead. With the heuristic, allwe need is a count of the number of cuts of each size.Such a count can be built without storing any cuts|all we need to store is a (hash) key for each cut weencounter so that we can ignore it if we encounter ita second time. This is a signi�cant bene�t: on ourlarger problems, we began running out of space as �became large. Therefore, an optimization like this one7



to conserve space would increase the size of problemswe could handle.Figure 7 shows that these estimates are indeed quitegood. The graph plots the relative error between ouroriginal RCA/SACA estimate and that determined bysumming the small-cut failure probabilities.
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Figure 7: Error in heuristic approximation vs. p7 Analysis of a HeuristicIn this section, we give an analytic justi�cation for theheuristic presented in the previous section. Our formaltheorem is the following:Theorem 7.1. When FAIL(p) < n�(4), the sum of the�-minimum cuts' failure probabilities is a (1 + o(1))-approximation to FAIL(p).The proof of this theorem runs as follows. Untilnow, we have relied on the fact that the most likely wayfor a graph to fail is for some of its near-minimum cutsto fail. We strengthen this argument to observe thatmost likely, exactly one of these near minimum cuts fails.We use this argument to show that that the error whicharises from truncating the inclusion-exclusion expansionat the �rst term is negligible.To prove the theorem, we argue as follows. Asdiscussed Section 2, [Kar95] proves that it is su�cient toapproximate, for the given �, the probability that some�-minimum cut fails, where� = 1 + 2=� � (ln �)=� lnnLet us write these �-minimum cuts as Ci, i = 1; : : : ; n2�.Let Fi denote the event that cut Ci fails. We can use

inclusion exclusion to write the failure probability asPr[[Fi] = Xi1 Pr[Fi1 ]� Xi1<i2 Pr[Fi1 \ Fi2 ] +Xi1<i2<i3 Pr[Fi1 \ Fi2 \ Fi3 ] + � � � :Later terms in this summation measure events involvingmany cut failures. We show that when many cutsfail, the graph partitions into many pieces, meaninga multiway cut fails. We then argue that this is sounlikely that later terms in the sum can be ignored.This immediately yields Theorem 7.1.7.1 Inclusion-Exclusion Analysis. As discussedabove, our analyses use a truncation of the inclusion-exclusion expression for Pr[[Fi]. Suppose we truncatethe inclusion-exclusion, leaving out the kth and laterterms. If k is odd the truncated sum yields a lowerbound; if k is even it yields an upper bound. We showthat this bound is su�ciently tight.Lemma 7.1. Let Su be the event that u or more of theevents Fi occur. If the inclusion-exclusion expansion istruncated at the kth term, the error introduced isXu �u� 2k � 2�Su:Proof. Let Tu be the event that exactly u of the eventsFi occur. Consider the �rst summation PFi1 in theinclusion-exclusion expansion. The event that preciselythe events Fj1 ; : : : ; Fju occur contributes to the u termsPr[Fj1 ]; : : : ;Pr[Fju ] in the sum. It follows that eachsample point contributing to Tu is counted u = �u1�times in this summation. Thus,XPr[Fi1 ] =Xu �u1�Pr[Tu]:By the same reasoning,XPr[Fi1 \ Fi2 ] =Xu �u2�Pr[Tu];and so on. It follows that the error introduced bytruncation at term k isXj�k(�1)k�j Xi1<���<ij Pr[Fi1 \ � � � \ Fij ]= Xj�k(�1)k�jXu �uj�Pr[Tu]= Xu Xj�k(�1)k�j�uj�Pr[Tu]= Xu �u� 1k � 1�Pr[Tu]8



Now let us de�ne Su to be the event that u or more ofthe Fi occur, meaning that Pr[Tu] = Pr[Su]�Pr[Su�1].Then we can rewrite our bound above asXu �u� 1k � 1�(Pr[Su]� Pr[Su+1])= Xu �u� 1k � 1�Pr[Su]�Xu �u� 1k � 1�Pr[Su+1]= Xu �u� 1k � 1�Pr[Su]�Xu �u� 2k � 1�Pr[Su]= Xu ��u� 1k � 1���u� 2k � 1��Pr[Su]= Xu �u� 2k � 2�Pr[Su]7.2 A Simple Approximation. Using the aboveerror bound, we can prove Theorem 7.1. Let Fidenote the event that the ith near-minimum cut fails.Our objective is to estimate Pr[[Fi]. Summing theindividuals cuts' failure probabilities corresponds totruncating our inclusion-exclusion sum at the secondterm, giving (by Lemma 7.1) an error of Pk�2 Su. Wenow bound this error by bounding the quantities Suusing r-way cuts. An r-way cut is simply a partition ofthe graph vertices into r components; the cut edges arethose with endpoints in di�erent components.Lemma 7.2. If u distinct (2-way) cuts fail then adlog(u+ 1) + 1e-way cut fails.Proof. Consider a con�guration in which u distinct cutshave failed simultaneously. Suppose this induces kconnected components. Let us contract each connectedcomponent in the con�guration to a single vertex. Eachfailed cut in the original graph corresponds to a distinctfailed cut in the contracted graph. Since the contractedgraph has k vertices, we know that there are at most2k�1�1 ways to partition its vertices into two nonemptygroups, and thus at most this many cuts. In otherwords, u � 2k�1 � 1. Now solve for u and observe itmust be integral.We now use a fact which is a slight generalizationof Theorem 2.2:Lemma 7.3. If pc = n�(2+�), then the probability thatan r-way cut fails is at most n��r=2.Proof. Based on work in [Kar95], with details in the fullversion of that paper.Thus, for example, S2 and S3 are at most theprobability that a 3-way cut fails, which by Lemma 7.3

is at most n�3�=2. More generally, it follows fromthe above lemma and Lemma 7.3 that all 2k valuesS2k ; : : : ; S2k+1�1 � n�(k+2)�=2. It follows that the errorin our approximation isXu�2Su � Xk�1 2kn�(k+2)�=2= n��Xk�1(2n��=2)k= 2n�3�=2(1 + o(1))This is o(FAIL(p)) whenever n�3�=2 = o(n�(2+�)), i.e.� > 4.8 ConclusionOur implementation of the approximation algorithmof [Kar95] had a pleasant outcome: an algorithm thatworks better in practice than claimed theoretically. Ouralgorithm is practical and has motivated analysis of awell known heuristic for the reliability problem. Theimplementation has suggested several open problems.� Is the analysis of the theoretical algorithm tight?We have been unable to identify any input instancesthat even approach the worst-case running timebounds given.� In particular, can we prove that networks satisfyingcertain natural reliability criteria yield a betterrunning time bound for the recursive contractionalgorithm? For example, some improvement wouldfollow immediately from the fact that all suchgraphs have many minimum cuts.� Can we totally do away with the use of SACA byworking only with the inclusion-exclusion represen-tation of cuts?Naturally, it would also be appropriate to examineother graph families (e.g. dense ones) to learn moreabout the way the algorithm behaves in practice.References[CGK+] Chandra C. Chekuri, Andrew V. Goldberg,David R. Karger, Matthew S. Levine, and Cli� Stein.Experimental study of minimum cut algorithms. Sub-mitted to SODA 1997.[Col87] Charles J. Colbourn. The Combinatorics of Net-work Reliability, volume 4 of The International Seriesof Monographs on Computer Science. Oxford Univer-sity Press, 1987.9
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