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1 Abstract

The classic all-terminal network reliability problem
posits a graph, each of whose edges fails (disappears)
independently with some given probability. The goal is
to determine the probability that the network becomes
disconnected due to edge failures. The practical appli-
cations of this question to communication networks are
obvious, and the problem has therefore been the sub-
ject of a great deal of study. Since it is §P-complete,
and thus believed hard to solve exactly, a great deal of
research has been devoted to estimating the failure prob-
ability. A comprehensive survey can be found in [Col87].

The first author recently presented an algorithm for
approximating the probability of network disconnection
under random edge failures. In this paper, we report
on our experience implementing this algorithm. Our
implementation shows that the algorithm is practical
on networks of moderate size, and indeed works better
than the theoretical bounds predict. Part of this
improvement arises from heuristic modifications to the
theoretical algorithm, while another part suggests that
the theoretical running time analysis of the algorithm
might not be tight.

Based on our observation of the implementation,
we were able to devise analytic explanations of at least
some of the improved performance. As one example,
we formally prove the accuracy of a simple heuristic
approximation for the reliability. We also discuss other
questions raised by the implementation which might be
susceptible to analysis.

1.1 The Problem. Formally, a network is modeled
as a a graph G, each of whose edges e is presumed to
fail (disappear) with some probability p., and thus to
survive with probability ¢. = 1 — p. (a simplified ver-
sion that we will focus on assumes each p. = p, but our
techniques apply to the general case). Network relia-
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bility is concerned with determining the probabilities of
certain connectivity-related events in this network. The
most basic question of all-terminal network reliability is
determining the probability that the network becomes
disconnected.

The all-terminal network reliability problem is §7P-
complete [Val79, PB83|. That is, it is in a complexity
class at least as intractable as AP and therefore seems
unlikely to have a polynomial time solution. Attention
therefore turned to approximation algorithms.

Perhaps the best approximation algorithm that can
be hoped for is a polynomial time approximation scheme
(PTAS). In this definition, the interesting measure is
the running time of the approximation algorithm as a
function of the problem size n and the error parameter
€, and the goal is for a running time which is polynomial
in n for each fixed € (e.g., O(2'/n)). If the running time
is also polynomial in 1/¢, the algorithm is said to be a
fully polynomial time approximation scheme (FPTAS).

Recently, the first author gave a randomized
FPTAS for the all terminal network reliability prob-
lem [Kar95]. Given a failure probability p for the edges,
the algorithm, in time polynomial in n and 1/¢, returns
anumber P that estimates the probability FAIL(p) that
the graph becomes disconnected. With high probabil-
ity, P is in the range (1 & €)FAIL(p). The algorithm is
Monte Carlo, meaning that the approximation is cor-
rect with high probability but that it is not possible to
verify its correctness.

1.2 Ouwur Results. In this paper, we report on an
implementation of the algorithm presented in [Kar95].
Our first observation is that the algorithm is indeed
practical. On graphs of moderate size (up to 60 nodes)
the algorithm ran in under an hour on a mid-range
workstation (60MHz SPARC 20). On all our input
families, we observed a roughly O(n?) running time with
reasonable constants. This is significantly better than
the claimed bound of the theoretical algorithm.

Part of this improved running time is due to heuris-
tic modifications (discussed below) that we made while
implementing the algorithm. Part, however, cannot be



explained by these changes, and instead suggests that
the running-time analysis of [Kar95] may not be tight.
We will discuss our reasons for this belief.

Examination of some of our results suggested that in
many cases, FAIL(p) could be accurately approximated
by an easily computed formula involving the number of
near-minimum graph cuts. In this paper we give a proof
that this is indeed the case.

2 The Algorithm

In this section, we describe the approximation algo-
rithm. Additional details can be found in [Kar95]. An
outline of the algorithm is as follows. If the failure prob-
ability is large, then it can be estimated via direct Monte
Carlo Algorithm (MCA) simulation of the edge failures.
If the failure probability is small, we find that only
small cuts in the graph are likely to fail. We enumerate
these cuts using the Recursive Contraction Algorithm
(RCA) of [KS95] and then find the probability that one
of them fails using the Self Adjusting Coverage Algo-
rithm (SACA) of Karp, Luby, and Madras [KLM89].
We now give some additional details of the algorithm.

2.1 Monte Carlo Simulation. The most obvious
way to estimate FAIL(p) is through Monte Carlo sim-
ulations. Given the failure probability p for each edge,
we can “simulate” edge failures by flipping an appropri-
ately biased random coin for each edge. We can then
test whether the network is connected. If we do this
many times, then the fraction of trials in which the net-
work becomes disconnected should intuitively provide
a good estimate of FAIL(p). Karp and Luby [KL85]
investigated this idea formally, and observed (a gener-
alization of) the following.

THEOREM 2.1. O((logn)/(e2 FAIL(p))) trials suffice to
estimate FAIL(p) to within 1 £ ¢ with high probability.

COROLLARY 2.1. FAIL(p) can be estimated to within
(1x€) in O(m/e? FAIL(p)) time.

Proof. Each trial requires random choices for each edge
followed by a depth first search. We remark that
since FAIL(p) is unknown, our estimate is based on the
number of trials that must be performed before a certain
number of network failures occurs.

2.2 Restriction to Small Cuts. The flaw of the
simulation approach is that it is too slow for small values
of FAIL(p). We now describe a scheme that becomes
effective precisely when direct simulation fails.

Observe that a graph becomes disconnected pre-
cisely when all of the edges in some cut of the graph fail
(a cut is a minimal-under-inclusion set of edges whose

removal partitions the graph into more than one con-
nected component). Throughout this paper, we assume
that our graph has minimum cut c—that is, that the
smallest cut in the graph has exactly ¢ edges. An a-
minimum cut is a cut with value at most ac. The fol-
lowing are proved in [Kar95]:

Fact 2.1. If each edge of a graph with minimum cut
¢ fails with probability p, then the probability that the
graph becomes disconnected is at least p°.

LeEMMA 2.1. There are at most n®%* a-minimum cuts.

THEOREM 2.2. Suppose a graph has minimum cut c
and that each edge of the graph fails independently with
probability p, where p°¢ = n~1%) for some 6 > 0. Then
the probability that a cut of value exceeding ac fails is
at most n=(1 +2/68). In particular, if

In (25%)
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then the probability the network fails is approzimated to
within € by the probability that a cut of value less than
a fails.

We have already argued that when p° is large, we
can use a Monte Carlo Algorithm (MCA) that directly
simulates edge failures. The previous theorem shows
that the when p¢ is small, we need only determine
the probability that a cut of value near c fails. The
Recursive Contraction Algorithm (RCA) can be used
to generate all cuts of value less than ac in O(n2?)
time [KS95]. Since the cuts of value near c¢ can be
enumerated, we can generate a polynomial size boolean
expression (with a variable for each edge, true if the
edge has failed) which is true if a small cut has failed.
We then need to determine the probability that this
boolean expression is true, which can be done using Self
Adjusting Coverage Algorithm (SACA) of Karp, Luby,
and Madras [KL85, KLM89]:

LEMMA 2.2. For the DNF counting problem, there is a
randomized FPTAS running in O(m/€®) time on a size
m formula.

COROLLARY 2.2. When p¢ = n~ %9 FAIL(p) can be

estimated to within € in O(cn?+4/0 (2%65)1/6) time.

THEOREM 2.3. ([KAR95]) FAIL(p) can be estimated in
O(min(mn3® cn ") /e?) time.

Proof. If p° > 1/n3®, run the Monte Carlo Algorithm.
Otherwise, use the RCA/SACA method.



Additional tweaking can slightly reduce the running
time exponent, but it still appears rather large. In
particular, even in the optimistic case where ¢ = O(1)
and m = O(nc) = O(n), we see that the theoretical
running time bound is roughly O(n*®), which seems
unlikely to be practical.

3 Implementation

Implementing the approximation algorithm was rela-
tively straightforward. The MCA simply required a
depth first search routine. To implement the scheme for
small failures probabilities, we began with an implemen-
tation of the RCA written as part of an experimental
study of minimum cut algorithms [CGK™]. That algo-
rithm was designed to find a single minimum cut. The
implementation of [CGK™] essentially follows [KS95],
though with some modifications that sped it up in prac-
tice. We had to make further modifications to find all
near-minimum cuts instead of finding a single minimum
cut. This had a significant impact on performance, since
we could no longer use the Padberg-Rinaldi heuristics
that give significant speedup when looking for one min-
imum cut [CGK™]. The running time of the RCA was
the dominant factor in the running time of our algo-
rithm.

Once we had generated the set of near minimum
cuts, we built a boolean formula and passed it to a
straightforward implementation of the self adjusting
coverage algorithm (SACA) of [KLM89]. The time
spent in this part was typically negligible (less than
10%) compared to that spent in the RCA. Thus, when
RCA/SACA dominates MCA, it is basically the running
time of the RCA that determines the running time of
the approximation algorithm.

We now discuss two changes we made to improve
in practice on the algorithm’s theoretical performance
bound.

3.1 Dovetailing. Although the theoretical algorithm
specified which option (MCA or RCA/SACA) should be
run for any specific probability, we wanted our algorithm
to choose the option that was best in practice for the
particular input instance. To achieve this, we dovetailed
calls to both algorithms on any particular input, and
stopped as soon as one of them terminated. This,
of course, gave us an algorithm which took twice the
time of the faster of the two choices. Rather than
performing the dovetailing ourselves, we chose to let the
operating system handle it. We forked two processes
that separately ran the two algorithms. The operating
system interleaved their operation, allocating roughly
50% of the CPU cycles to each process. When one
process finished, it sent a signal to the other process.

Both processes then reported their CPU time usages;
these times were added to give the overall running time.
In the (now common) case of a two-processor machine,
this implementation will clearly gain a factor of two in
speed with no additional programming necessary.

3.2 Optimizing «. In the theoretical algorithm,
« is chosen so that the probability a greater than a-
minimum cut fails, namely n~2°(1 + 2/6) is less than €
times the probability that a minimum cut fails, namely
p¢. In practice, we can hope to do much better. The
goal is simply to get n=*9(1+2/4) < eFAIL(p) in order
to get an estimate accurate to within e. In theory,
since initially we do not know FAIL(p), we take p¢ as
lower a bound on FAIL(p). However, in practice this
may be extremely pessimistic. Indeed, in our initial
implementation, we would discover after the fact that
we had chosen an « significantly larger than we needed,
dramatically slowing down the algorithm. We therefore
realized that it would help to have an (even coarse) lower
bound estimate of FAIL(p) that could be used to give a
better bound on a.

To compute this estimate, we note that for any «,
the probability that an at most a-minimum cut fails is a
lower bound on FAIL(p). Therefore, running the RCA
with any « and applying the SACA to the resulting set
of cuts gives us a usable lower bound. We select our
initial « so that in fact,

n=%(1+2/8) =n’p° =n"".

This is a very optimistic choice, as in fact n2p° is
nearly an upper bound on the possible value of FAIL(p).
However, it worked well in practice. The resulting « is
much smaller than the theoretical algorithm calls for.

To minimize our estimation running time, we also
set a goal of € = 1/2. This still gives us a factor
of two estimate for FAIL(p). We run the forked MC
and RCA algorithm and use the returned estimate to
choose a suitable value of a for the final run. In
all of our experiments, the running time of the initial
estimation step was negligible compared to that of the
more accurate final step.

4 Test Procedure

In order to test our algorithm, we devised several input
families parameterized by the number of vertices n. We
then ran them with variations in the interesting param-
eters of the problem, p and e. After discussing these in-
put families, we describe some of their limitations which
one might wish to address in future experimental work.

4.1 Input Families.



4.1.1 Cycles. As has already been observed
in [KS95], the cycle is a peculiarly “hard” graph when
it comes to minimum cut problems. Lomonosov and
Polesskii [LP71] showed that in fact the cycle is the
“least reliable graph” in an easily formalized sense. The
n-vertex cycle has (’;) minimum cuts—the most possi-
ble for any n-vertex graph. It also has the maximum
number of (k/2)-minimum cuts for any integer k > 2.
As observed in [CGK™], it is the input on which the
RCA runs slowest without Padberg-Rinaldi tests. On
the cycle, the RCA has running time ©(n?)—equal to
its upper bound. We therefore expected it to take more
time to compute the reliability of a cycle than any other
graph. We will argue later that this assumption was not
actually correct.

Another advantage of the cycle as an input for
network reliability computations is that the reliability
of a cycle can be determined exactly. The cycle becomes
disconnected precisely when at least two edges fail.
Thus if each edge fails with probability p, the probability
the network becomes disconnected is

1—(1—p)" —np(l—p)"~".

Comparing the output of the our algorithm to the
analytic bound lets us determine the accuracy our
algorithm achieves in practice.

4.1.2 Delaunay Graphs (DEL). We chose random
Delaunay graphs as a natural model of network build-
ing. We begin by placing n points randomly in the
unit square. We find a Delaunay triangulation of these
points. We then construct the dual graph if this trian-
gulation; this connects two of our original points if they
share an edge in the triangulation. This construction
yields planar graphs in which nearby vertices are con-
nected to each other and all edges are thus relatively
short. This seemed a plausible model of networks that
are constructed with an aim towards creating “short”
(near straight line) paths between points while also cre-
ating reasonable connectivity. The Delaunay graphs
tend to have minimum cuts in the range 3-5.

We constructed our Delaunay graphs using NET-
PAD, a publicly available network design tool dis-
tributed by Bellcore.

4.1.3 Near Neighbor Graphs (NN). Milena Mi-
hail of Bellcore suggested our third model to us; she
stated that it captured many of the characteristics of
current telecommunication networks. These graphs are
parameterized by two quantities, a radius r and a de-
gree d. We begin by placing n random points in the unit
square. Then, for each point z, we find its r nearest
neighbors. From among those r neighbors, we choose d
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neighbors at random and connect them to . Note that
since each edge can be picked two ways, we might end
up with parallel edges—these correspond to “doubly re-
liable” links.

In our experiments, we set r
parameters suggested by Dr. Mihail.

An extension of this model adds supernodes that
serve as “central exchanges.” We chose 4 such supern-
odes, and attached each to half the nodes among the
n/3 nodes nearest to it.

8 and d = 4

)

4.1.4
Weighted Near Neighbor Graphs (WNN). The
previous families all assign to every edge a fixed failure
probability p. The algorithm of [Kar95] can also han-
dle the case of varying failure probabilities. To study
this case, consider the following model of link failures.
We begin with the Near Neighbor graphs, but we give
each link a length equal to the Euclidean distance of its
endpoints. We then assign to each infinitesimal unit dl
of length on the link an independent failure probability
Adl, implying that a link of length [ survives with prob-
ability e, Varying A is analogous to varying p in the
uniform failure model.

Our motivation for this model was knowledge that
many link failures are caused by utility workers acciden-
tally digging through a communication link.

4.2 Discussion of Input Families. It should be
noted that our test families fail to explore possible
variations in several input features. All of our graphs:

e are sparse,

e have low degree (in the range 2-8),

e have their minimum cuts at individual vertices, and
e have ©(n) minimum cuts (at individual vertices).

Further work should clearly explore graphs which are
dense and which have more interesting minimum cut
structures. However, we believe our input families
are reasonable models of the kinds of communication
networks that will arise in practice. For example,
if a network designer is attempting to minimize the
cost of the network, then typically every edge will
cross a near-minimum cut. If an edge crosses no
near-minimum cut, the designer can reduce cost be
leaving out the edge without significantly decreasing the
network’s reliability. Thus, a well designed network will
tend to have many minimum cuts. Similarly, since link
failures are quite unlikely events, we do not need large
minimum cuts to ensure high reliability. By the same
cost-based argument as above, this would seem to imply



that networks will have small minimum cuts and will
therefore be sparse.

We also believe that the good performance of our
algorithms on our input families indicates that they
will also perform well on other input families. For
example, since the running time of the RCA is not
particularly dependent on the number of edges in a
graph (see [KS95]) we expect essentially the same
performance on dense graphs as on sparse ones.

4.3 Parameters. For our experiments, we have 3
input parameters to consider: the error parameter e,
the number of vertices n, and the failure probability p.
For any one graph family, several natural questions are
raised:

e How does the actual error in approximation com-
pare to the specified €?

e For a given input, what is the running time of the
approximation as a function of the edge failure rate
p? As a function of FAIL(p)?

e For a given input, how does FAIL(p) depend on p?

e For a given family, as a function of n, what is the
worst case running time over all p?

We will raise other questions later.

5 Running Time Measurements

We now begin describing the results of our tests. We
use logarithmic axis scales for running times, so that
polynomial running times correspond to straight line
graphs. We also use logarithmic axis scales for p and
FAIL(p), as these are typically polynomially related.
We use linear scales for n and «. All times are reported
in (CPU) seconds.

In many cases, our data is qualitatively the same
for all of our test inputs. Therefore, we place one figure
in place for ease of reference and give the others in
the appendix. Additional data can be found in the
full paper. We discard one parameter immediately: we
found that running time as a function of € was essentially
as predicted. Thus, for the remainder of this paper, we
work with a fixed e = 0.1.

As we discuss our results, we will note that they
often diverge significantly from the theoretical predic-
tions. We give some tentative explanations of these di-
vergences, and believe that future work will be able to
extend these rationalizations to sound theoretical re-
sults.

5.1 Running Time vs. p. We now consider a
representative outcome, a plot of the running time as

a function of p for the cycle family. Figure 1 shows
this plot. The same overall behavior can be seen
for Delaunay graphs and near neighbor graphs (see
Figure 8).
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Figure 1: Running time vs. p for cycles

As can be seen in this plot, the running time at very
small p is small. It rises superpolynomially to a peak as
p increases, and then decays polynomially in 1/p as p
continues to increase. All of our graph families exhibit
this behavior macroscopically. The interpretation is as
follows. At very small values of p, the MCA is useless.
However, we can get a good approximation simply
by examining the @-minimum cuts for « very near 1.
Indeed, for p infinitesimal, all of the failure probability
comes from the probability that a minimum cut fails.
Enumerating the a-minimum cuts takes O(n*®) time
using the RCA, and this is the dominant time in the
computation. As p grows, we must consider larger and
larger values «; this causes the running time increase.
Eventually, the RCA is so slow that the MCA becomes
the faster of the two. The MCA has running time
inversely proportional to the failure probability, which
on the cycle is proportional to O((np)?). Thus for large
p the running time decays quadratically as p increases.

5.2 Running time versus a. We next consider the
running time of the RCA as a function of the parameter
«. Since the RCA dominates the running time of
the algorithm, the running time of our approximation
scheme is determined by the « needed for a good
approximation. The theoretical time bound of the RCA
is O(n?®). Figure 2 shows that the running time bound
does indeed have the form n*® for some k, since we get
a running time dependence whose logarithm is near-
linear in «. Surprisingly, however, the constant k is
not the theoretically predicted 2 (except in the case of



the cycle). Indeed, for the Delaunay and near-neighbor
constructions, the running time appears to be roughly
O(no=1).

NN: Time vs. Alpha
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Figure 2: Running time vs. a for near neighbors

A possible explanation for this phenomenon is the
following. The Delaunay and Near-Neighbor graphs
have some degree of “expansion” in that the number of
edges leaving a set of vertices tends to be proportional
to the number of vertices in a set. Thus in these families,
all minimum cuts tend to be isolated vertices, while
larger sets of vertices tend to have at least 2c¢ edges
leaving them. In many ways, then, these graph act like
graphs with minimum cut 2¢, implying that the cuts of
value ac have value /2 times the “effective” minimum
cut. Finding such cuts will only take O(n?(®/?) =
O(n®) time.

Number of cuts (cumulative) vs. value
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a/,’
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Figure 3: Running time vs.
compared to 10¢

a for near neighbors,

As evidence for this conjecture, consider Figure 3

6

counting the (cumulative) number of minimum cuts less
than a given value for a particular 40 node weighted
near-neighbor graph. The minimum cut is roughly 5. As
can be seen by the fitted line, the number of minimum
cuts increases as 10® rather than as 40%*.

5.3 Worst case running time. Since we can-
not predict what failure probability might actually be
needed by a user, we are of course interested in the
worst-case p. This is the running time at the “peak” of
the time-versus-p graph of Section 5.1. In Figure 4 we
plot for cycles the worst case running time (over all p)
as a function of the size n (graphs for other families are
given in the appendix).
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Figure 4: Running time vs. n for Cycles

The roughly O(n?*#®) running time we experience is
significantly less than the O(n*®) running time claimed
in the theoretical algorithm. This can be explained as
follows. In a cycle, FAIL(p) =~ (4)p¢ ~ n°. It follows
that the RCA chooses an « such that

n=*°(1+2/8) <en™°.

We therefore deduce that the running time of the RCA,

O(n**) = O(n’/(e0)*/°)

This is O(n®) unless § ~ 0. Once § ~ 0, so that
FAIL(p) ~ 1/n?, we find that the MCA runs in O(n?)
time. This observation is validated by the plot in
Figure 5 of the value of FAIL(p) that corresponds to
the worst case running time; as claimed it is roughly
1/n2.

We initially chose to study the cycle because it is
the graph for which the RCA takes longest to find a-
minimum cuts, but this was on the assumption that «
was fixed. Since the necessary a for a cycle is small, it
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Figure 5: FAIL(p) at worst runtime vs. n for Cycles

is not clear that the cycle graph whose reliability our
algorithm finds it hardest to estimate.

While the running time on the cycle is easily
explained, what is more surprising is that the algorithm
had a similar bound on our other classes of graphs.
We found the O(n?) worst-case running time to be
typical, as can be seen in Figures 9 and 10 for our other
graph families. What this is essentially saying is that
RCA dominates until ¢ is very close to 0—that is, the
probability that a minimum cut fails will be very close to
n~2 at crossover to MCA. To verify this fact, consider
Figure 11 which shows «a increasing to 5 or 6—much
larger than the theoretical bound suggests.

One possible explanation for this phenomenon is a
generalization of our argument for the cycle. In the full
version of [CGK™], using ideas from [Kar95], a weak
connection is drawn between the running time of the
RCA and the reliability of the graph it is being run on.
Roughly speaking, the more reliable a graph, the faster
the RCA solves it (for a given «). We have just argued
that when graphs are unreliable, our approximation
algorithm uses a smaller a in the RCA. Our theoretical
analysis assumes simultaneously that the RCA takes its
worst-case time (implying that the input is an unreliable
graph) but that the graph is so reliable that we must
use our worst-case . Perhaps these two assumptions
cannot be true simultaneously.

6 Reliability Results

A user of the program is probably less concerned
with the implementation details than with the actual
reliabilities. In Figures 6 and 12, we plot the failure
probability FAIL(p) as a function of p for each graph
family.

It can be seen that the reliability graph was basi-

Figure 6: FAIL(p) vs. p for Near Neighbors

cally a straight line. In each case, examining the input
showed that the slope was determined by the minimum
cut. That is, it appeared that with other quantities held
constant,

FAIL(p) = ©(p°)

This put us in mind of a well known heuristic
estimate of FAIL(p) (see [Col87]). Let us write the
graph cuts as C;, i = 1,...,2" !, Let F; denote the
event that cut C; fails. We can use inclusion exclusion
to write FAIL(p) as

PriuF] = Y Pr[F,]— Y Pr[F, NF,]+
i1 i1 <iz
> PrF, NF, N Fyl 4.

11 <i2<1i3

A heuristic argument says that the first term in this
sum is a reasonable estimate (it is an upper bound).
That is, we might as well sum the probabilities that
each cut fails. If we let n, denote the number of
cuts with k edges, then this heuristic says that we
should approximate FAIL(p) by Y_ ngp*. The analysis
of Theorem 2.2 [Kar95] shows that this sum in turn
is accurately approximated by > ... nep® when p is
sufficiently small.

The advantage of the heuristic is that it does not
require running the SACA. This does not simply save
on implementation overhead. With the heuristic, all
we need is a count of the number of cuts of each size.
Such a count can be built without storing any cuts—
all we need to store is a (hash) key for each cut we
encounter so that we can ignore it if we encounter it
a second time. This is a significant benefit: on our
larger problems, we began running out of space as «
became large. Therefore, an optimization like this one



to conserve space would increase the size of problems
we could handle.

Figure 7 shows that these estimates are indeed quite
good. The graph plots the relative error between our
original RCA/SACA estimate and that determined by
summing the small-cut failure probabilities.
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Figure 7: Error in heuristic approximation vs. p

7 Analysis of a Heuristic

In this section, we give an analytic justification for the
heuristic presented in the previous section. Our formal
theorem is the following:

THEOREM 7.1. When FAIL(p) < n~™, the sum of the
a-minimum cuts’ failure probabilities is a (1 + o(1))-
approximation to FAIL(p).

The proof of this theorem runs as follows. Until
now, we have relied on the fact that the most likely way
for a graph to fail is for some of its near-minimum cuts
to fail. We strengthen this argument to observe that
most likely, ezactly one of these near minimum cuts fails.
We use this argument to show that that the error which
arises from truncating the inclusion-exclusion expansion
at the first term is negligible.

To prove the theorem, we argue as follows. As
discussed Section 2, [Kar95] proves that it is sufficient to
approximate, for the given €, the probability that some
a-minimum cut fails, where

« =

1+2/6— (Ine)/dlnn

Let us write these e-minimum cuts as C;, 5 = 1,...,n%%

Let F; denote the event that cut C; fails. We can use

inclusion exclusion to write the failure probability as

PrUF,] = ) Pr[Fu]- ) Pi[F, NF,]+

i1 <iz

1
> PriF,

i <i2<i3z

NF,NE,]+---.

Later terms in this summation measure events involving
many cut failures. We show that when many cuts
fail, the graph partitions into many pieces, meaning
a multiway cut fails. We then argue that this is so
unlikely that later terms in the sum can be ignored.
This immediately yields Theorem 7.1.

7.1 Inclusion-Exclusion Analysis. As discussed
above, our analyses use a truncation of the inclusion-
exclusion expression for Pr[UF;]. Suppose we truncate
the inclusion-exclusion, leaving out the k" and later
terms. If k£ is odd the truncated sum yields a lower
bound; if & is even it yields an upper bound. We show
that this bound is sufficiently tight.

LEMMA 7.1. Let S, be the event that u or more of the
events F; occur. If the inclusion-exclusion expansion is
truncated at the k" term, the error introduced is

u—2
zu: (k _ 2) S,.
Proof. Let T, be the event that ezactly u of the events
F; occur. Consider the first summation ) F;, in the
inclusion-exclusion expansion. The event that precisely
the events F},,..., F}j, occur contributes to the u terms
Pr[F},],...,Pr[F;,] in the sum. It follows that each

sample point contributing to T, is counted u = (11‘)
times in this summation. Thus,

Y P, = G‘) Pr[T.].

u

By the same reasoning,

S PrF, N Fy] = zu: (g) Pr[T,],

and so on. It follows that the error introduced by
truncation at term k is

NI MRS

>k i1 <<
_ ];(_Uk—fzu:(;‘) Pr(T,]
- ;J_sz(—n’“-f(;‘) Pr(1)

= Zu: <Z : i) Pr[T,]



Now let us define S, to be the event that u or more of
the F; occur, meaning that Pr[T,] = Pr[S,] — Pr[Sy_1].
Then we can rewrite our bound above as

> (27 Prisd Pt

_ ) (Z - i) Prisid =3 (Z B i) PrlSut]
- ; <Z - i) Pr[S,] — EU: (Z ~ i) Pr[S,]
- (G-

5 (5 piisa

u

7.2 A Simple Approximation. Using the above
error bound, we can prove Theorem 7.1. Let F;
denote the event that the i** near-minimum cut fails.
Our objective is to estimate Pr[UF;]. Summing the
individuals cuts’ failure probabilities corresponds to
truncating our inclusion-exclusion sum at the second
term, giving (by Lemma 7.1) an error of ), ., S,. We
now bound this error by bounding the quantities S,
using r-way cuts. An r-way cut is simply a partition of
the graph vertices into r components; the cut edges are
those with endpoints in different components.

LEMMA 7.2. If u distinct (2-way) cuts fail then a
[log(u + 1) + 1]-way cut fails.

Proof. Consider a configuration in which w distinct cuts
have failed simultaneously. Suppose this induces &
connected components. Let us contract each connected
component in the configuration to a single vertex. Each
failed cut in the original graph corresponds to a distinct
failed cut in the contracted graph. Since the contracted
graph has k vertices, we know that there are at most
28=1_1 ways to partition its vertices into two nonempty
groups, and thus at most this many cuts. In other
words, u < 281 — 1. Now solve for u and observe it
must be integral.

We now use a fact which is a slight generalization
of Theorem 2.2:

LEMMA 7.3. If p° = n= (19 then the probability that
an r-way cut fails is at most n—97/2,

Proof. Based on work in [Kar95], with details in the full
version of that paper.

Thus, for example, S, and S3 are at most the
probability that a 3-way cut fails, which by Lemma 7.3

is at most n39/2, More generally, it follows from
the above lemma and Lemma 7.3 that all 2% values
Sory .oy Sorsry < n~(k+2)9/2 Tt follows that the error

in our approximation is

Y Su <

u>2

Z oy~ (k+2)3/2

k>1

=9 Z(2n—6/2)k
k>1

= 207321+ 0(1))

This is o(FAIL(p)) whenever n—3%/2 = o(n~(%9) i.e.
0> 4.

8 Conclusion

Our implementation of the approximation algorithm
of [Kar95] had a pleasant outcome: an algorithm that
works better in practice than claimed theoretically. Our
algorithm is practical and has motivated analysis of a
well known heuristic for the reliability problem. The
implementation has suggested several open problems.

e Is the analysis of the theoretical algorithm tight?
We have been unable to identify any input instances
that even approach the worst-case running time
bounds given.

e In particular, can we prove that networks satisfying
certain natural reliability criteria yield a better
running time bound for the recursive contraction
algorithm? For example, some improvement would
follow immediately from the fact that all such
graphs have many minimum cuts.

e Can we totally do away with the use of SACA by
working only with the inclusion-exclusion represen-
tation of cuts?

Naturally, it would also be appropriate to examine
other graph families (e.g. dense ones) to learn more
about the way the algorithm behaves in practice.
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