
A randomized linear algorithm for clock synchronization in multi–agent systems

Bolognani, Saverio; Lovisari, Enrico; Carli, Ruggero; Zampieri, Sandro

Published in:
Proceedings of the 51st Conference on Decision and Control

2012

Link to publication

Citation for published version (APA):
Bolognani, S., Lovisari, E., Carli, R., & Zampieri, S. (2012). A randomized linear algorithm for clock
synchronization in multi–agent systems. In Proceedings of the 51st Conference on Decision and Control

Total number of authors:
4

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

Download date: 25. Aug. 2022

https://portal.research.lu.se/en/publications/ebd38515-0b92-4e53-9045-e40cc1e477f8

A randomized linear algorithm for clock synchronization

in multi–agent systems

Saverio Bolognani Ruggero Carli Enrico Lovisari Sandro Zampieri

Abstract— In this paper a randomized linear protocol for
time synchronization of clocks in a multi–agent scenario is
considered. Clocks are allowed to have different offsets and
different rates, and they communicate through an asymmetric
broadcast protocol. The contribution of this paper is twofold.
It is first shown that, under very mild conditions on the com-
munication graph, it is possible to tune a protocol parameter
in such a way that synchronization is achieved in mean–square.
Then, via numerical simulations, the proposed strategy is com-
pared with other fully distributed strategies recently proposed
in the literature. While being slightly slower to reach the
asymptotic synchronization, the proposed strategy significantly
outperforms the other strategies in terms of robustness against
process and measurement noises and time-varying clock drifts.

I. INTRODUCTION

In networked control systems and in multi–agent systems

it is often needed to guarantee tight time synchronization

among the different agents. For example, basic synchro-

nization is needed in any sensor network, when different

devices have to provide their measurements with proper

time–stamping for subsequent data fusion and processing.

In some cases, however, the need for synchronization can

be very demanding. This is the case, for example, when

the collected data need to be interpreted according to a fast

dynamical model for the system, like in distributed detection

and localization of moving targets. In other scenarios, precise

time synchronization is required in order to perform some

specific measurements on the system: examples include the

voltage phasor measurement in electric power networks, via

synchronized phasor measurement units, and some time-of-

flight-based (GPS-like) distance measurements. Also some

ancillary services in networked control systems rely on

correct time sync: notably, TDMA communication (where

the use of a shared communication channel is regulated by

precise slotting of the access times) and energy saving mech-

anism (when nodes remain idle for most of the time and must

wake up all together in order to initiate a communication).

For all these applications, especially for large scale sys-

tems, extremely robust solutions must be designed, in order

to guarantee synchronization also in case of partial failure of

the system, communication faults, node appearance and dis-

appearance, and also possible malicious attacks. Scalability is

The research leading to these results has received funding from the EU
7th Framework Programme [FP7/2007-2013] under grant agreements no.
257462 HYCON2 and no. 223866 FeedNetBack.

The authors are with the Dept. of Information Engineering,
University of Padova, Via Gradenigo 6/a, 35131 Padova, Italy.
Email: {saverio.bolognani|carlirug|lovisari
|zampi}@dei.unipd.it.

also an issue, as we want the performance of the synchroniza-

tion algorithms to be practically independent from the size

of the system. On the contrary we want the reconfiguration

to be minimal every time a new node enters or leaves the

network, or if two networks merge. Because of these reasons,

the family of time synchronization algorithms that are based

on the construction of a hierarchical coordination tree, as in

[1], [2], are poorly suited for these applications. Maintaining

such architecture may be unbearable in many scenarios, and

these solutions exhibit little robustness against the failure of

any node which is not a leaf of the tree.

Other algorithms available in the literature try to cir-

cumvent the main drawbacks of tree-based solutions by

constructing different architectures, like clusters of nodes,

each one headed by an elected master node [3]. Master

nodes then synchronize among them, at a higher level

of coordination. Unless the communication architecture is

specifically designed, however, there is no guarantee that

master nodes can communicate more reliably over the longer

distances of the high level communication layer.

In this work, instead, we adopt a fully distributed (lead-

erless) approach, in which all the nodes communicate with

a limited number of neighbors, and each node behaves in

the same way. Existing algorithms in this sense include [4]

and [5], which however suffer from specific drawbacks: the

algorithm proposed in [4], inspired by the fireflies integrate-

and-fire synchronization mechanism, can compensate for

different clock offsets but not for different clock skews; on

the other hand, the algorithm proposed in [5] compensates

for the clock skews but not for the time offsets.

Fully distributed protocols that can compensate for both

clock skews and offsets have been proposed in [6], [7].

For these algorithms, convergence has been proved by the

authors, under reasonable assumptions. The main weakness

of these solutions resides in their highly nonlinear dynamic

behavior, which prevents the analysis of their robustness with

respect to data losses in the communication, quantization

noise, communication errors, and unmodeled dynamics of the

clocks. On the other hand, in [8], a linear, PI-like, distributed

algorithm has been proposed for the correction of both skew

and offset clock errors. The performance and the robust-

ness of this algorithm (which closely resembles high-order

consensus algorithms) have been thoroughly analyzed via

numerical simulations. However, providing a formal proof

of its convergence proved to be a difficult task, except for

some special cases in which either the communication graph

was restricted to some special families, or some assumptions

were made on the asynchronous activation of the nodes.

In this paper we prove that the algorithm convergence

can be guaranteed, via proper tuning of a design parameter,

independently from the communication graph. The proposed

algorithm can indeed be specialized to different communica-

tion strategies. According to the adopted technology, it might

be easier to perform symmetric vs. asymmetric communica-

tion, and point-to-point (gossip) vs. broadcast communica-

tion. Many of the most appealing applications of multi–agent

systems that we have mentioned before, are provided with

some inherently broadcast communication channel (namely,

wireless communication for sensor networks and power-line

communication in the electric grid). For this reason, we focus

in the following on the broadcast protocol, even if the main

result applies to generic communication protocols.

In Section II we introduce a model for the clocks and we

described the proposed algorithm. In Section III we present

the main theoretical result, proving and commenting the

convergence properties of the algorithm. Finally, in Section

IV, we simulate the algorithm behavior and we propose a

numerical comparison with other fully distributed strategies.

While being slightly slower in the asymptotic converge

to synchronization, the strategy we propose in this paper

significantly outperforms the other strategies in terms of

robustness against process and measurement noises and time-

varying clock drifts.

A. Mathematical preliminaries

Before proceeding, we collect some useful definitions and

notations. In this paper, G = (V, E) denotes an undirected

graph where V = {1, . . . , N} is the set of vertices and E
is the set of edges, i.e., E ⊆ V × V . Since G is undirected,

if (i, j) ∈ E then also (j, i) ∈ E . A path in G consists of a

sequence of vertices (i1, i2, . . . , ir) such that (ih, ih+1) ∈ E
for every h ∈ {1, . . . , r − 1}. A graph G is connected if for

any pair of vertices (i, j) there exists a path connecting i to j.

Given a matrix M ∈ R
N×N , we define the associatedu graph

GM by taking N nodes and putting an edge (j, i) in EM if

Mij 6= 0. Given a graph G on V , the matrix M is compatible

with G if EM ⊆ E . Given the node i, by Ni we denote the

set of its neighbors, i.e., Ni = {j ∈ V |(i, j) ∈ E}. With the

symbol 1 we denote the N -dimensional vector having all the

components equal to 1. Given the vector v ∈ R
N , by diag(v)

we denote the diagonal matrix having the components of

v as diagonal elements. Superscript ∗ denote the transpose

operation.

II. PROBLEM FORMULATION AND PROPOSED SOLUTION

In this section we formulate the problem we aim at solving

in this paper and we propose our solution, which is a modi-

fication of the one introduced in [9]. This section is divided

into three parts. In subsection II-A we describe the adopted

clock model. In subsection II-B we formulate the clock

synchronization problem over a communication network.

Finally, in subsection II-C we introduce the PI controller

based on randomized asymmetric broadcast communications.

A. Mathematical modeling of a clock

Assume that each clock has an oscillator able to periodi-

cally increment a counter by one unit, commonly known as

tick. Let ∆ and s(t) denote, respectively, the period of the

oscillator and the evolution of the counter. Therefore

s(t) =

⌊

t− t0
∆

⌋

where t0 is the time when the clock has been started and

where ⌊a⌋ denotes the largest integer smaller than or equal

to a. Based on its own counter, each clock estimates the time.

The value ∆ is assumed to be unknown; typically, only

an estimate ∆̂ of it is available to the clock. Since only ∆̂
and s are known, a natural way to built an estimate t̂(t) of

the absolute time t is given by

t̂(t) = t̂(t0) + ∆̂ (s(t)− s(t0)) , (1)

where t̂(t0) is an estimate of t0 and denotes the initial offset.

Both t̂(t) and ∆̂(t) can be modified if the clock obtains

information allowing it to improve its time and oscillator

period estimates. We denote by Tup(h), for h = 0, 1, . . . ,

these updating time instants. We can interpret the h-th update

as an event which happens at time Tup(h), and such that1

{

t̂(T+
up(h)) = t̂(Tup(h)) + u′(h)

∆̂(T+
up(h)) = ∆̂(Tup(h)) + u′′(h)

where u′ and u′′ denote the control inputs applied to t̂ and

∆̂, respectively. In between consecutive updating times, the

estimate ∆̂ is kept constant, while t̂(t) is updated according

to (1). Thus, for t ∈
(

T+
up(h), Tup(h+ 1)

)

the updating law

can be written as
{

t̂(t) = t̂(T+
up(h)) + ∆̂(T+

up(h)) (s(t)− s(Tup(h)))

∆̂(t) = ∆̂(T+
up(h))

(2)

We conclude this subsection by observing that s(t) −

s(Tup(h)) =
t−Tup(h)

∆ + r(h) where −1 < r(h) < 1 and

so r(h) can be neglected if ∆ ≪ 1 which will be assumed

in the sequel. Equation (2) can then be rewritten as
{

t̂(t) = t̂(T+
up(h)) +

∆̂(T+
up(h))

∆ (t− Tup(h))

∆̂(t) = ∆̂(T+
up(h))

(3)

B. Clock synchronization

Consider now a network composed by N clocks. For i ∈
{1, . . . , N}, let ∆i be the period of the oscillator of clock

i and let xi(t) = [x′
i(t) x

′′
i (t)]

∗
= [t̂i(t) ∆̂i(t)]

∗
denote its

local state.

Assume that the clocks can exchange their time readings

x′
i(t)’s according to a graph of admissible communications

G = (V, E), where V = {1, . . . , N} and where (i, j) ∈ E
whenever node i and node j can communicate.

For each clock i, i ∈ {1, . . . , N}, we denote by Ttx,i(h),
h ∈ N the time instants in which node i transmits its

readings, and by Tup,i(h
′), h′ ∈ N the time instants in which

it performs an update of its state based on the information

1Given the time t, the symbol t+ denotes the instant just after time t.

received from its neighbors. More precisely, analogously to

the case of a single clock in the previous subsection,

xi(T
+
up,i(h)) = xi(Tup,i(h)) + ui(h), (4)

where ui(h) = [u′
i(h) u

′′
i (h)]

∗
is the control action applied

at time Tup,i(h), while for t ∈
(

T+
up,i(h), Tup,i(h+ 1)

)

we

assume that the state xi is updated according to (3), that is,
{

x′
i(t) = x′

i(T
+
up,i(h)) +

x′′

i (T
+

up,i
(h))

∆i
(t− Tup,i(h))

x′′
i (t) = x′′

i (T
+
up,i(h))

(5)

The goal is to find a control law that yields synchroniza-

tion, i.e. such that there exist constants a ∈ R>0 and b ∈ R

such that synchronization errors

ei(t) := x′
i(t)− (at+ b), i = {1, . . . , N} (6)

converge to zero or remain small.

C. A PI Controller based on randomized asymmetric broad-

cast communications

In this subsection we propose a control law to solve the

synchronization problem stated in the previous subsection.

To do so, we first need to define the data transmission

and communication protocols used by the clocks to ex-

change information with each other. In this paper we adopt

an asymmetric broadcast communication model where the

transmission’s time instants are the samples generated by N
independent Poisson processes having all the same intensity.

In formal terms, for each i ∈ {1, . . . , N},

• the time instants Ttx,i(h), h ∈ N, are the sample times

of a Poisson process of intensity λ > 0;

• at time Ttx,i(h), h ∈ N, node i transmits only the

information related to the first component of its state,

i.e., x′
i(Ttx,i(h)), to all its neighbors in the graph G,

namely, to any j ∈ Ni.

• nodes j ∈ Ni receive x′
i(Ttx,i(h)) exactly at the

time instant Ttx,i(h) in which it has been transmitted

(assuming negligible transmission delays)2.

Based on the information received, nodes j ∈ Ni instan-

taneously update their current state xj(Ttx,i(h)) with the

correction

uj =

[

u′
j

u′′
j

]

=
1

2

[

1
α

]

(

x′
i(Ttx,i(h))− x′

j(Ttx,i(h))
)

where α > 0 is a control parameter. Notice that, since there

are no deliver delays, Ttx,i(h) = Tup,j(h
′) for some h′ ≥ h.

From (4), it follows that, for all j ∈ Ni,

x′
j(T

+
tx,i(h)) =

1

2

(

x′
j(Ttx,i(h)) + x′

i(Ttx,i(h))
)

x′′
j (T

+
tx,i(h)) = x′′

j (Ttx,i(h))+ (7)

+
α

2

(

x′
i(Ttx,i(h))− x′

j(Ttx,i(h))
)

.

Notice that the above control law can be seen as a PI

controller where u′
j = x′

i(Ttx,i(h))−x′
j(Ttx,i(h)) and u′′

j =

2In general, the information xi(Ttx,i(h)) is received by clock j ∈ Ni

at a delayed time Trx,i,j(h) = Ttx,i(h) + γi,j(h), where γi,j(h) is a
nonnegative real number representing the deliver delay between i and j.

α
(

x′
i(Ttx,i(h))− x′

j(Ttx,i(h))
)

represent the proportional

and the integral part, respectively. We refer to the control

law described above as a PI controller based on randomized

asymmetric broadcast communications.

Remark 2.1: The proposed strategy is similar to the one

introduced in [9]. However, in [9], the authors adopted a

randomized asymmetric gossip communication model, i.e.,

the information x′
i(Ttx,i(h)), is sent by node i to only one

of its neighbors, randomly selected in Ni with probability

1/|Ni|.

III. ANALYSIS

The goal of this section is to provide some theoretical

insights on the convergence properties of the control strategy

presented in the previous section. We start our analysis

by introducing a convenient vector-form description of the

evolution of the clocks’ network. To do so, we need some

auxiliary definitions. First of all, we stack the state variables

in vectors as follows

x′ =







x′
1
...

x′
N






∈ R

N , x′′ =







x′′
1
...

x′′
N






∈ R

N , x =

[

x′

x′′

]

∈ R
2N

and similarly for u′ ∈ R
N , u′′ ∈ R

N and u ∈ R
2N .

Let the matrix Ei ∈ R
N×N , for i ∈ {1, . . . , N}, be

defined as

Ei :=
∑

j∈Ni

eje
∗
j − eje

∗
i ,

where ek is defined as the vector whose value is 1 in position

k and 0 elsewhere. The control action at time Ttx,i(h) can

therefore be rewritten as

u(Ttx,i(h)) =

[

− 1
2Ei 0

−α
2Ei 0

]

x(Ttx,i(h)),

i.e. Ei is the “control matrix” for the broadcast of agent i.
It is also clear that Ei1 = 0, which intuitively means that if

the clocks are synchronized, no control is needed.

We let the matrix D ∈ R
N×N be defined as

D = diag{d1, . . . , dN}

where for simplicity di := 1/∆i. To conclude, we let

{Tup(h), h ∈ N} be the set of all the updating time instants

of the clocks’ network, i.e.,

{Tup(h), h ∈ N} =

N
⋃

i=1

{Tup,i(h), h ∈ N},

where, without loss of generality, we assume Tup(h) ≤
Tup(h + 1). Notice that, for any h ∈ N, there exist i ∈
{1, . . . , N}, j ∈ Ni, and h′, h′′

j ∈ N with h′ ≤ h, h′′
j ≤ h,

such that

Tup(h) := Tup,j(h
′
j) = Ttx,i(h

′′), ∀j ∈ Ni.

Moreover observe that, since the N Poisson processes gen-

erating the transmission time instants are independent one

from another, the updating time instants {Tup(h), h ∈ N}
can be seen as the sample times of a Poisson process of

intensity Nλ. We denote by δ(h) := Tup(h + 1) − Tup(h)
the interarrival time between two subsequent updates. By

the properties of Poisson processes, and being δ(h) i.i.d.,

we have

E [δ(h)] = µ =
1

Nλ
, E

[

δ(h)2
]

= σ2 =
2

N2λ2

We now consider the discrete time evolution of the state x
at the update time instants Tup(h), h ∈ N. By combining (3)

with (7), we obtain

x(h+ 1) =

[

I δ(h)D
0 I

]([

I 0
0 I

]

−

[

1
2E(h) 0
α
2E(h) 0

])

x(h)

(8)

where for simplicity we denote x(h) := x(Tup(h)), and

we set E(h) = Ei if, during the h-th iteration, node i is

the transmitting node. The sampled system is a stochastic

time–varying system, and if we prove that it achieves syn-

chronization, then also the original continuous-time system

synchronizes, since it is autonomous (i.e., no control is

applied) when no update takes place.

For the convergence analysis it is convenient to introduce

the quantities y(h) ∈ R
N−1 and z(h) ∈ R

N−1 defined as

y(h) := V ∗x′(h) z(h) := V ∗Dx′′(h)

where V ∈ R
N×N−1 is a matrix whose columns form an

orthonormal basis for span{1}, i.e. V ∗
1 = 0 and V ∗V =

IN−1, begin IN−1 the (N − 1) × (N − 1) identity matrix.

In words, y(h) is an error vector which is zero only if

x′(h) belongs to span{1}, namely when the clocks are

synchronized. Analogously, z(h) is zero only if the vector of

the estimates x′′(h) belongs to span{D−1
1}, namely when

the slope of all the clocks is the same, i.e. ∆̂1

∆1
= · · · = ∆̂N

∆N
.

This argument shows that the synchronization error defined

in (6) is zero, or asymptotically approaches this value, if both

y(h) and z(h) vanish in time.

Our aim is to perform a mean–square analysis of the

process

[

y(h)
z(h)

]

, and thus we introduce

Σ(h) = E

[

y(h)
z(h)

]

[

y(h)∗ z(h)∗
]

We say that mean–square synchronization is achieved if
[

y(h)∗ z(h)∗
]∗ t→∞

−→ 0 in mean square, i.e. if Σ(h)
t→∞
−→ 0.

In order to state our main result, we need some additional

notations. Let E = E[E(h)], h ∈ N, be the expected value

of the communication matrices. Notice that since E(h) is

i.i.d. and uniform, E = E[Ei] =
1
N

∑

i∈V Ei.

It is easy to see that the admissible communication graph

G = (V, E) is the graph induced by E, namely, an edge (i, j)
exists in E if and only if namely if [E]ij 6= 0.

We can now state the following result, which gives suf-

ficient conditions for mean–square synchronization to take

place. The proof is postponed to the next section.

Theorem 3.1: Assume that the admissible communica-

tions graph G = (V, E) is connected. Assume moreover that

the matrix inequality

IN−1 ⊗ Ē−1F̄ + Ē−1F̄ ⊗ IN−1 > 0 (9)

is satisfied, where Ē = V ∗EV and F̄ = V ∗DEV . Then

there exists a value α∗ > 0 such that, for any α ∈ (0, α∗),
mean–square synchronization is achieved.

Remark 3.2: The result stated in Theorem 3.1 holds true

not only when the asymmetric broadcast communication

protocol is adopted but also for any other communication

protocol, like the symmetric gossip [10] and the asymmetric

gossip [9].

Among the hypoteses of Theorem 3.1, connectivity of

G is clearly a necessary condition, as otherwise the graph

would be divided into two or more components which do

not communicate, and thus cannot, in general, synchronize.

Condition (9) is a bit more involving, however it is always

verified in some notable cases, as the following corollary

states.

Corollary 3.3: Assume that the admissible communica-

tions graph G = (V, E) is connected. Assume moreover

E = ET . Then there exists a value α∗ > 0 such that for

any α ∈ (0, α∗) mean–square synchronization is achieved.

The result of Corollary 3.3 is quite remarkable since,

provided that E = ET , it ensures that existence of α∗ >
0 for any matrix D > 0 (i.e. for any difference in the

oscillators’ frequency). It can be shown that the condition

E = ET is satisfied in particular in the asymmetric broadcast

protocol adopted in this paper. Furthermore, E = ET is

also true in some other notable scenarios. These include the

particular case of highly regular graphs, like Cayley graphs

[11], and the case of symmetric protocols, like the symmetric

gossip [10], in which the matrix E(h) is extracted from a

family of symmetric matrices.

Remark 3.4: Condition (9) is automatically verified if

D = I , for any (possibly asymmetric) communication

protocol. Since the dynamics of Σ are ruled by an operator

whose eigenvalues depend continuously on the matrix D,

the existance of α∗ > 0 that achieves mean–square synchro-

nization is guaranteed even in the case where D is a small

enough perturbation of the identity matrix I .

This is the approach followed by the authors in [9],

where they considered the same control law analyzed in this

paper, based however on the asymmetric gossip protocol.

They performed a convergence study of the evolution of Σ
assuming that G is the complete graph and that D = I .

Under these assumptions they found that synchronization is

achieved if and only if α < α∗ = λ/2.

In general, for a given matrix D, one needs to check con-

dition (9) numerically, thus performing a robustness analysis

on the values of oscillator periods ∆̂i, i ∈ {1, . . . , N}, for

which the PI controller yields the synchronization.

Remark 3.5: Theorem 3.1 offers an answer to the prob-

lem of mean–square synchronization, since it ensures the

existence of a consensus–like scheme capable of achieving

synchronization, under minimal assumptions on G. It remains

to study how the amplitude of the maximum α∗ depends

on the adopted protocol and how it scales with the size

of the network. This issue is important since it is in quite

intuitive that the smaller is α, the slower the clocks reach

the synchronization.

A. Proof of Theorem 3.1 and Corollary 3.3

In order to prove our results, we first need to write in

a suitable way the evolution of Σ(h). In order to do this,

notice that Ω := V V ∗ = IN − 1
N 11

T . In this section I will

denote the (N − 1) × (N − 1) identity. Using the fact that

for any i ∈ {1, . . . , N}, EiΩ = Ei, by easy computations

one can see that the evolution of y and z is described by the

following iteration
[

y(h+ 1)
z(h+ 1)

]

=

[

I − 1
2 Ẽ(h)− αδ(h)

2 F̃ (h) δ(h)

−α
2 F̃ (h) I

] [

y(h)
z(h)

]

where Ẽ(h) = V ∗E(h)V and F̃ (h) = V ∗DE(h)V .

We can thus write

Σ(h) = E

[[

y(h)
z(h)

]

[

y∗(h) z∗(h)
]

]

=

[

Σyy(h) Σyz(h)
Σ∗

yz(h) Σzz(h)

]

,

where

Σyy(h) := E[y(h)y∗(h)], Σyz(h) := E[y(h)z∗(h)],

Σzy(h) := E[z(h)y∗(h)], Σzz(h) := E[z(h)z∗(h)].

The assumption on statistical independence on the choice

of E(h) and of the updating times allows to write

Σ(h+ 1) = E[A(h)Σ(h)A∗(h)] (10)

where

A(h) :=

[

I − 1
2 Ẽ(h)− αδ(h)

2 F̃ (h) δ(h)

−α
2 F̃ (h) I

]

.

Simple manipulation yields then

Σ+
yy = E

[(

I −
1

2
Ẽ(h)−

αδ(h)

2
F̃ (h)

)

Σyy×

×

(

I −
1

2
Ẽ(h)∗ −

αδ(h)

2
F̃ (h)∗

)

+ λΣzy

(

I −
1

2
Ẽ(h)∗ −

αδ(h)

2
F̃ (h)∗

)

+ λ

(

I −
1

2
Ẽ(h)−

αδ(h)

2
F̃ (h)

)

Σyz

+ δ(h)2Σzz

]

Σ+
yz = E

[

−
α

2

(

I −
1

2
Ẽ(h)−

αδ(h)

2
F̃ (h)

)

ΣyyF̃ (h)∗

+

(

I −
1

2
Ẽ(h)−

αδ(h)

2
F̃ (h)

)

Σyz

−
αδ(h)

2
ΣzyF̃ (h)∗ + δ(h)Σzz

]

Σ+
zy = E

[

−
α

2
F̃ (h)Σyy

(

I −
1

2
Ẽ(h)∗ −

αδ(h)

2
F̃ (h)∗

)

+Σzy

(

I −
1

2
Ẽ(h)∗ −

αδ(h)

2
F̃ (h)∗

)

−
αδ(h)

2
F̃ (h)Σyz + δ(h)Σzz

]

Σ+
zz = E

[

α2

4
F̃ (h)ΣyyF̃ (h)∗ −

α

2
F̃ (h)Σyz

−
α

2
ΣzyF̃ (h)∗ +Σzz

]

Define now Ē = E[Ẽ(h)], F̄ = E[F̃ (h)] and

EQR = E[Q⊗R]

where Q,R ∈ {E,F}.

Once we set

Y = vec Σyy W = vec Σyz

W ′ = vec Σzy Z = vec Σzz

it is easy, making use of the properties of the Kronecker

product and sum3, to obtain the following iteration rule









Y
W
W ′

Z









+

=
(

M0 + αM1 + α2M2

)









Y
W
W ′

Z









where, called Ā = − 1
2 Ē ⊕ Ē + 1

4EEE ,

M0 =








I + Ā µ(I − 1
2I ⊗ Ē) µ(I − 1

2 Ē ⊗ I) σ2I
0 I − 1

2I ⊗ Ē 0 µI
0 0 I − 1

2 Ē ⊗ I µI
0 0 0 I









and, called B̄ = −µ
2 (F̄ ⊕ F̄ − 1

2EEF − 1
2EFE),

M1 =








B̄ −σ2

2 I ⊗ F̄ −σ2

2 F̄ ⊗ I 0
− 1

2 (F̄ ⊗ I − 1
2EFE) −µ

2 I ⊗ F̄ −µ
2 F̄ ⊗ I 0

− 1
2 (I ⊗ F̄ − 1

2EEF) −µ
2 I ⊗ F̄ −µ

2 F̄ ⊗ I 0
0 − 1

2I ⊗ F̄ − 1
2 F̄ ⊗ I 0









and finally

M2 =









σ2

4 EFF 0 0 0
µ
4EFF 0 0 0
µ
4EFF 0 0 0
1
4EFF 0 0 0









We have thus rewritten the evolution of the matrix Σ(h)
as a linear system governed by a matrix M(α) dependent on

the design parameter α.

In order to prove Theorem 3.1, we make use of the

following perturbation result, taken from [12], in which we

call an eigenvalue semi–simple if its algebraic and geometric

multiplicities coincide.

Theorem 3.6: Let be M(α) ∈ R
N×N be a matrix de-

pendent on the parameter α in a sufficiently smooth way

so that the first derivative Ṁ(α)|α=0 exists. Let moreover

µ1, . . . , µm be semi–simple eigenvalues of M(α) with as-

sociated right eigenvectors r1, . . . , rm and left eigenvectors

3The Kronecker sum of A and B is defined as A⊕B = A⊗ I+ I⊗B,
where the identities are of suitable dimensions.

lT1 , . . . , l
T
m. Assume that these families of eigenvectors are

chosen such that if

R =
[

r1 . . . rm
]

L =
[

l1 . . . lm
]∗

then LR = Im, where Im is the m ×m identity. Then the

derivative of µi w.r.t. α, for α = 0, exists and is the i-th
eigenvalue of the matrix LM ′R where M ′ = Ṁ(α)|α=0.

Our scope here is to use this theorem in order to study the

eigenvalues of the matrix M(α) for α small and positive.

First of all, we need to introduce some other notations

and a technical result. Given Ei ∈ S , we let Pi = I − 1
2Ei

and P = I − 1
2E. Notice that each Pi is a row–stochastic

matrix, and P is a primitive matrix under the assumption

G to be connected. By Frobenius–Perron theorem Pv = v
if and only if v = β1. Moreover, the left eigenvalue of P
associated with 1, which is usually denoted by πT , has only

strictly positive entries. We normalize πT so that πT
1 = 1.

The following fact holds.

Lemma 3.7: Assume that G = (V, E) is strongly con-

nected and for any i, Pii > 0 with nonzero probability. Then

the matrix M0 has exactly (N−1)2 semi–simple eigenvalues

in 1, and the other eigenvalues are stable, namely, in absolute

value less than 1.

Proof: As it is clear from the upper-block-triangular

structure of M0, this matrix has at least (N−1)2 eigenvalues

in 1, so first of all we need to check that the other blocks

have only stable eigenvalues. First of all,

I −
1

2
Ē = V ∗(I −

1

2
EEi)V = V ∗PV

and since Ḡ is strongly connected, P has only stable eigen-

values and a unique eigenvalue in 1 associated with 1. It is

an easy exercise to see that V ∗PV has all the eigenvalues of

P apart that in 1. This proves that (I− 1
2 Ē)⊗I is stable, and

analogously I⊗(I− 1
2 Ē), due to the properties of Kronecker

product.

It remains to analyze the first block of M0, which is

(V ∗ ⊗ V ∗)

(

E(I −
1

2
Ei)⊗ (I −

1

2
Ei)

)

(V ⊗ V)

Applying Proposition 4.3 in [13], we know that the middle

matrix is row–stochastic and primitive. Analogously to the

previous case, we conclude for the stability of the block.

As a side–consequence of the Lemma, the matrix A =
− 1

2 Ē ⊕ Ē + 1
4EEE turns out to be invertible.

Consider now the following matrices

L =
[

0 0 0 2Ē−1 ⊗ Ē−1
]

R =









Ā−1
(

µ2Ē ⊕ Ē + 1
2 (σ

2 − 2µ2)Ē ⊗ Ē
)

µĒ ⊗ I
µI ⊗ Ē
1
2 Ē ⊗ Ē









It is easy to check the following equalities

LM0 = L, M0R = R, LR = IN−1

and that both L and R are (row– and column–, respectively)

full–rank matrices. Thus the N − 1 eigenvalues in 1 of M0

are semi–simple. We can now prove our result.

Proof: [of Theorem 3.1] By assumption G is connected,

thus the previously defined matrices exist and the eigenvalues

in 1 are semi–simple. And we can thus apply Theorem 3.6,

which in our case reads

LM0R = −µ2(I ⊗ Ē−1F̄ + Ē−1F̄ ⊗ I)

Since λ > 0, the derivative of all the eigenvalues in 1 of M0

is strictly negative for α > 0 small enough. Thus there exists

α∗ such that if α ∈ (0, α∗), M(α) is a stable matrix, and then

Σ(h)
t→∞
−→ 0, i.e. we achieve mean–square synchronization.

If we assume E = ET we can prove our second result.

Proof: [of Corollary 3.3] If E = ET is symmetric, then

not only E = EΩ, but also E = ΩE. We can thus write

F̄ = V ∗DEV = V ∗DV V ∗EV = D̄Ē, where D̄ = V ∗DV .

Thus

I ⊗ Ē−1F̄ + Ē−1F̄ ⊗ I =
(

E−1 ⊗ E−1
) (

I ⊗ D̄ + D̄ ⊗ I
)

(E ⊗ E)

so that I ⊗ Ē−1F̄ + Ē−1F̄ ⊗ I > 0 if and only if I ⊗ D̄ +
D̄ ⊗ I > 0. Since the generic eigenvalue of this last sum is

the sum of any pair of eigenvalues of I ⊗ D̄ and D̄⊗ I , we

only have to check that the eigenvalues of D̄ = V ∗DV are

strictly positive, which is trivial if D > 0.

IV. NUMERICAL EXAMPLES

A. Implementation examples of the PI consensus controller

algorithm

In this section we provide a numerical example illustrating

the PI consensus controller algorithm proposed in this paper.

We consider a connected random geometric graph gen-

erated by choosing N = 100 points uniformly distributed

in the unit square, and then placing an edge between each

pair of points at distance less than 0.1. In Figure 1 we plot

the trajectories of the quantity logN−1/2‖e(h)‖ for three

different values of α, precisely α = λ, λ/5, λ/10, where

we set λ = 0.01. In all the simulations we run we assume

the initial condition x′
i(0) uniformly distributed in [0, 10].

Moreover the plots reported are the result of the average over

1000 Monte Carlo runs, randomized with respect to both the

graph and the initial conditions.

Observe that the all the trajectories converge to zero

exponentially and that the speed of convergence depends on

the value of the control parmeter α.

B. Comparison with other distributed strategies

In this section we provide a comparison between the

approach we propose in this paper and the one pursued

in [7], based on the cascade of two consensus algorithms.

Precisely, the goal is to compare the performance, in terms

of robustness to both noisy transmission data and time-

varying oscillator periods, between the algorithm described

in Section II-C and the Average TimeSync algorithm (denoted

hereafter with the shorthand ATS), introduced in [7].

For the sake of clearness, we start by briefly reviewing the

ATS algorithm. As in previous sections, let G be a connected

undirected graph. The ATS algorithm is the following.

0 500 1000 1500 2000

10
−15

10
−10

10
−5

10
0

Iterations

S
y
n
c
h
ro

n
iz

a
ti
o
n
 e

rr
o
r

α=λ

α=λ/5

α=λ/10

Fig. 1. Trajectories of the synchronization error generated by the PI

consensus strategy algorithm for different values of α.

Processor states: Recall that, for i ∈ {1, . . . , N}, the i-th
node has a local clock that, according to the notation used

in [14], we denote in this subsection as τi(t), t ∈ R≥0;

specifically, τi(t) = dit + x′
i(0) where di and x′

i(0) are as

in Section II.

At any time instant t, the i-th node keeps in memory the

values αi(t), γi(t), τ̄i(t) and {ηij(t)}j∈Ni
, where αi, γi, τ̄i

and ηij , j ∈ Ni, are auxiliary variables. Moreover the i-th
node stores in memory also the value τi(Ttx,i(hsi)) and the

values τi(Ttx,j(hsj)) where, for j ∈ Ni ∪ {i}, Ttx,j(hsj)
denotes the instant in which node j performed its last trans-

mission before time t, i.e., t ∈ (Ttx,j(hsj), Ttx,j(hsj + 1))

Transmission and Updating step: At time Ttx,i(h) node

i performs its h-th transmission broadcasting to all its

neighbors the data τi(Ttx,i(h−1)), τi(Ttx,i(h)), αi(Ttx,i(h))
and τ̄i(Ttx,i(h)). For j ∈ Ni, node j istantaneously performs

the following actions in order

1) it receives the data τi(Ttx,i(h − 1)), τi(Ttx,i(h)),
αi(Ttx,i(h)) and τ̄i(Ttx,i(h));

2) it estimates the relative clock skew ηji := di/dj by

computing

ηji(Ttx,i(h)
+) = ρ ηji(Ttx,i(h))+

(1− ρ)
τi(Ttx,i(h))− τi(Ttx,i(h− 1))

τj(Ttx,i(h))− τj(Ttx,i(h− 1))

where ρ is a filtering parameter;

3) it updates the variable αj according to

αj(Ttx,i(h)
+) =

1

2
αj(Ttx,i(h))+

1

2
ηji(Ttx,i(h)

+)αi(Ttx,i(h))

4) it updates the variable γj according to

γj(Ttx,i(h)
+) = γj(Ttx,i(h))+

1

2
(τ̄i(Ttx,i(h))− τ̄j(Ttx,i(h)))

0 500 1000 1500

10
−20

10
−15

10
−10

10
−5

10
0

Iterations

S
y
n
c
h
ro

n
iz

a
ti
o
n
 e

rr
o
r

ATS

PI

Fig. 2. Comparison in terms of speed of convergence between the approach
proposed in this paper and the ATS algorithm.

5) it updates the variable τ̄j according to

τ̄j(Ttx,i(h)
+) =

αj(Ttx,i(h)
+)τj(Ttx,i(h)) + γj(Ttx,i(h)

+)

Test 4.1 (Speed of convergence to synchronization): We

provide here a comparison of the speed of convergence

of the proposed algorithms and of the ATS algorithm. We

consider a random geometric graph G, where vertices are 30
points uniformly distributed in the unit square, and nodes

whose distance is smaller than 0.4 are connected.

In Figure 2, we depict for both strategies the behavior of

logN−1/2‖e‖ for both strategies being e the synchronization

error defined as e = Ωx′ for the PI strategy and e = Ωτ̄ for

the ATS algorithm, where Ω = I − 1
N 11

T . The dashed red

curve refers to the PI strategy, while the solid blue curve to

the ATS algorithm. The two strategies have been simulated

using the same transmission times. Moreover the control

parameters of both algorithms have been experimentally

designed in order to maximize the speed of convergence.

The plots reported have been obtained averaging over 1000
simulations; a different random geometric graph and initial

conditions are independently generated for each simulation.

From Figure 2, one can see that the ATS algorithm out-

performs, with the respect to the speed of convergence, the

performance of the PI consensus strategy.

Test 4.2: (Robustness with the respect to communication

noise and time-varying oscillator frequencies):

We now assume that

1) the information exchanged by the nodes is affected by

communication noise; and

2) the oscillator periods are time-varying.

Specifically, we assume that if x′
j(Ttx,j(h)) is any infor-

mation transmitted by node j to node i at time Ttx,j(h),
then node i receives the information x′

j(Ttx,j(h))+nj→i(h)
where nj→i(h) is a white noise of bounded support. As far

as the oscillator periods are concerned, we assume that they

are modeled as saturated random walks, namely, for each

i ∈ {1, . . . , N}, the value of ∆i is always within the interval

[∆− ǫ,∆+ ǫ] for some ǫ such that 0 < ǫ < ∆, where we

0 1000 2000 3000 4000
10

−15

10
−10

10
−5

10
0

Iterations

S
y
n
c
h
ro

n
iz

a
ti
o
n
 e

rr
o
r

ATS
PI

Fig. 3. Comparison in terms of robustness to communication noises and
time-varying oscillator periods between the PI consensus strategy proposed
in this paper and the ATS algorithm.

recall ∆ represents the nominal value of the oscillator period.

Precisely, for i ∈ {1, . . . , N},

∆i(Tup(h+ 1)) = Sat∆,ǫ [∆i(Tup(h)) + ni(Tup(h))]

where ni(Tup(h)) is a white noise of bounded support and,

for ∆, ǫ ∈ R such that 0 < ǫ < ∆,

Sat∆,ǫ(x) =







x if ∆− ǫ ≤ x ≤ ∆+ ǫ
∆− ǫ if x < ∆− ǫ
∆+ ǫ if x > ∆+ ǫ

The behavior of logN−1/2‖e‖ is plotted in Figure 3 for

both strategies.

The control parameters for both algorithms have been cho-

sen experimentally in such a way to minimize the steady state

value of ‖e‖. Data have been obtained averaging over 1000
simulations; a different random geometric graph and initial

conditions are generated for each simulation. From Figure 3,

one can see that the PI consensus strategy outperforms, with

respect to robustness to communication noises and time-

varying oscillator periods, the ATS algorithm.

Remark 4.3: Besides the comparison provided in the pre-

vious two examples, it is worth stressing also the fact that

the ATS algorithm requires, in general, higher computational

and memory capabilities than the PI strategy. In the ATS

algorithm, each node has to perform non-linear updates and

has to keep in memory a number of variables which is

proportional to the number of its neighbors.

Remark 4.4: The Distributed Time-Sync Protocol is an

another fully distributed algorithm recently proposed in the

literature to solve the clock synchronization problem, see [6].

The authors of [6], for simplicity, restrict themselves to the

case where all the clocks have exactly the same constant

oscillator period, but have different initial offsets. The offsets

compensation is posed as a least-squares problem which

is solved in a distributed way through a gradient-based

method. The authors mention that a similar least-squares

approach could be used also to solve the case of different

clocks frequencies. We have run a number of simulations

implementing this cascade of two least-squares solvers and

we have observed that the performance of this protocol is

comparable with the performance of the ATS algorithm with

the respect to both the speed of convergence and robustness.

V. CONCLUSIONS

In this paper we have considered a recently proposed

randomized strategy for time synchronization of a network

of clocks, adopting in particular an asymmetric broadcast

communication protocol. Our main result shows that under

mild conditions in the admissible communications, it is

always possible to tune the control parameter α in order to

achieve (robust) mean–square synchronization. A compari-

son with other distributed strategies has also been performed,

showing slower convergence but higher resilience to noise

and uncertainties. Future work includes the study of the

maximum allowed α and a more extensive comparison of

the proposed strategy versus its competitors.

REFERENCES

[1] S. Ganeriwal, R. Kumar, and M. Srivastava, “Timingsync protocol for
sensor networks,” in Proceedings of the first international conference

on Embedded networked sensor systems (SenSys’03), 2003.
[2] M. Maròti, B. Kusy, G. Simon, and Àkos Lèdeczi, “The flooding time

synchronization protocol,” in Proc. of the 2nd international conf. on

Embedded networked sensor systems (SenSys’04), 2004, pp. 39–49.
[3] J. Elson, L. Girod, and D. Estrin, “Fine-grained network time synchro-

nization using reference broadcasts,” in Proceedings of the 5th sym-

posium on Operating systems design and implementation (OSDI’02),
2002, pp. 147–163.

[4] G. Werner-Allen, G. Tewari, A. Patel, M. Welsh, and R. Nagpal,
“Firefly-inspired sensor network synchronicity with realistic radio
effects,” in ACM Conference on Embedded Networked Sensor Systems

(SenSys’05), San Diego, November 2005.
[5] O. Simeone and U. Spagnolini, “Distributed time synchronization

in wireless sensor networks with coupled discrete-time oscillators,”
EURASIP Journal on wireless sensor networks, 2007.

[6] R. Solis, V. Borkar, and P. R. Kumar, “A new distributed time
synchronization protocol for multihop wireless networks,” in 45th

IEEE Conference on Decision and Control (CDC’06), San Diego,
December 2006, pp. 2734–2739.

[7] L. Schenato and F. Fiorentin, “Average timesynch: a consensus-
based protocol for clock synchronization in wireless sensor networks,”
Automatica, vol. 47, no. 9, pp. 1878–1886, 2011.

[8] R. Carli, A. Chiuso, L. Schenato, and S. Zampieri, “Optimal synchro-
nization for networks of noisy double integrators,” IEEE Transactions

on Automatic Control, vol. 56, no. 5, pp. 1146–1152, May 2011.
[9] R. Carli, E. D’Elia, and S. Zampieri., “A PI controller based on asym-

metric gossip communications for clocks synchronization in wireless
sensors networks,” in Proceedings of the 50th IEEE Conference on

Decision and Control. CDC’11, 2011.
[10] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip

algorithms,” IEEE Transactions on Information Theory, vol. 52, no. 6,
pp. 2508 – 2530, june 2006.

[11] L. Babai, “Spectra of cayley graphs,” Journal of Combinatorial

Theory, Series B., pp. 27:180–189, 1979.
[12] K. Cai and H. Ishii, “Average consensus on general digraphs,” 1988,

available Online.
[13] F. Fagnani and S. Zampieri, “Randomized consensus algorithms over

large scale networks,” IEEE Journal on Selected Areas in Communi-

cations, vol. 26, pp. 634–649, 2008.
[14] L. Schenato and F. Fiorentin, “Average timesync: A consensus-based

protocol for time synchronization in wireless sensor networks,” in
Proceedings of 1st IFAC Workshop on Estimation and Control of

Networked Systems (NecSys09), September 2009.

