
A Randomized, O(log w)-Depth 2-Smoothing Network
∗

Marios Mavronicolas
Department of Computer Science

University of Cyprus
CY-1678 Nicosia, Cyprus

mavronic@cs.ucy.ac.cy

Thomas Sauerwald
International Computer Science Institute (ICSI)

1947 Center Street, Suite 600
Berkeley, CA 94704, USA

sauerwal@upb.de

ABSTRACT

A K-smoothing network is a distributed, low-contention data
structure where tokens arrive arbitrarily on w input wires
and reach w output wires via their completely asynchronous
propagation through the network. The maximum discrep-
ancy among the numbers of tokens arriving at the ouput
wires, called smoothness, is at most K. It has been a long-
standing open problem to construct a K-smoothing network
with (i) optimal K, (ii) optimal Θ(lg w) depth (called small-
depth), (iii) no use of the AKS sorting network, and (iv) no
reliance on global initialization.

In this work, we present a very simple, randomized net-
work which meets all four desiderata:

• It is the cascade of a reasonably small number (about
150) of copies of the simple block network [6]; hence,
it is small-depth and does not use the AKS sorting
network.

• It achieves smoothness K = 2; hence, it is optimal
with respect to smoothness due to a recent improbabil-
ity result about randomized, small-depth, 1-smoothing
networks from [14].

• The network is randomized : each balancer is oriented
independently and uniformly at random, thus requir-
ing no global initialization.

Cascaded before the Θ(lgw)-depth 2-counter network due
to Klugerman and Plaxton [13], which does use the AKS
sorting network as a building block, our 2-smoothing net-
work yields a new, randomized counting network with depth
Θ(lg w). The new network is a much simpler alternative to
the classical, small-depth counting networks from [12, 13].

∗This work has been partially supported by the IST Pro-
gram of the European Union under contract number 15964
(AEOLUS) and by the German Academic Exchange Service
(DAAD)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’09, August 11–13, 2009, Calgary, Alberta, Canada.
Copyright 2009 ACM 978-1-60558-606-9/09/08 ...$5.00.

Categories and Subject Descriptors

G.2.1 [Mathematics of Computing]: Combinatorics—
Combinatorial Algorithms; G.3 [Probability and Statis-
tics]: Stochastic Processes; C.2.4 [Distributed Systems]:
Distributed Applications—Load Balancing

1. INTRODUCTION
Smoothing networks (together with ceibling counting net-
works [4]) have been studied extensively in Distributed Com-
puting Theory since their introduction in the seminal paper
by Aspnes, Herlihy and Shavit [4]— see, e.g., [1, 2, 4, 8, 9,
11, 12, 13, 14]. Smoothing networks offer a modern, wait-
free approach for important applications in asynchronous
concurrent computing, such as load balancing and producers-
consumers, which alleviates the latency due to contention.

A smoothing network [4] is a distributed data structure
which acyclically interconnects balancers and wires. A bal-
ancer typically receives tokens on its two input wires and
forwards them out to its two output wires, called top and
bottom, in a round-robin fashion. A token represents a re-
quest for a service by a process. Each token arrives at one
of the network’s w input wires, propagates asynchronously
through the network and exits through one of the network’s
output wires. The dispersion through the network helps re-
ducing the contention and, thereby, the latency due to con-
tention. On the other hand, the network should have small
depth in order to reduce the latency due to propagation. We
are interested in the pairwise difference of the numbers of
tokens exiting on the network’s output wires; the maximum
(over all executions) of these differences is called smooth-
ness. A K-smoothing network [1, 4] has smoothness K. A
perfect smoothing network should meet four desiderata:

(1) It should guarantee optimal smoothness in order to
optimize the performance of load balancing applica-
tions running on top of the smoothing network.

(2) It should have optimal O(lg w) depth; Ω(lg w) has
been observed to be a lower bound on the depth of a
(1-)smoothing network [15].

(3) It should be simple in order to allow for practical
implementations; this excludes the use of the famous
AKS sorting network due to Ajtai, Komlós and Sze-
merédi [3] (with depth Θ(lg w)) as a building block in
the construction due to its huge constants hidden in
the Θ(lg w) notation.

(4) It should permit for local initialization [2, 8, 9] in
order to increase robustness against balancer failures.

Despite a large research effort in the last eighteen years (see,
for example, [2, 4, 8, 9, 11, 12, 13, 14]), no perfect smoothing
network has been yet known. As early as 1992, Klugerman
and Plaxton envisioned [13]:

”In view of the fact that every smoothing network
produced thus far has incorporated a sorting net-
work as a primary component, it would be inter-
esting to bound the depth complexity of sorting
by a small constant times the depth complexity of
smoothing, or to construct a small-depth smooth-
ing network that makes no use of sorting networks.“

In this work, we shall present a smoothing network that
employs randomization. As we shall explain, the smoothing
network we shall present comes as close as possible to the
second vision of Klugerman and Plaxton [13] while simulta-
neously providing additional benefits.
We present a very simple, randomized, O(lg w)-depth 2-
smoothing network which meets all four desiderata. The
network is the cascade of a reasonably small number of
copies of the very simple block network introduced in [6]
and used in many constructions of smoothing and counting
networks (such as the periodic counting network [4]); for ex-
ample, the required number of copies is no more than 323
for w ≥ 212, and no more than 102 for w ≥ 230. Since it has
been observed in [14, Section 4.4] that the block network
is topologically equivalent to the popular cube-connected-
cycles network [16], we shall often refer to the latter in our
discussion.

The network uses randomized initialization, where each
balancer is oriented either top or bottom independently and
uniformly at random in some local initialization phase; so
desideratum (4) is met. Since the block network is very sim-
ple (and, in particular, it makes no use of the AKS sorting
network), desideratum (3) is also met. The block network
has depth (exactly) lg w, so that desideratum (2) is also
met. Finally, we recall a recent improbability result due to
Mavronicolas and Sauerwald [14, Theorem 7.1 and Corol-
lary 7.2], implying that there is no O(lg w)-depth, random-
ized 1-smoothing network with constant probability. This
implies that K = 2 is the optimal smoothness one could
hope for when restricted to randomized networks guarantee-
ing smoothness with probability no smaller than constant;
hence, desideratum (1) is met.

Klugerman and Plaxton [13, Section 4.3] present an ex-
plicit construction of a 2-counter: a network guaranteeing
that its output will have the step property [4] when its in-
put is 2-smooth. (Formally, a balancing network Bw is a
2-counter if the assumption that its input vector x is 2-
smooth implies that its output vector y is step: for any pair
of indices 0 ≤ i < j ≤ w − 1, 0 ≤ yi − yj ≤ 1; so, a 2-
counter is a conditional version of a counting network [4].)
The 2-counter of Klugerman and Plaxton [13] is determin-
istic and it achieves depth Θ(lg w) and uses the AKS sort-
ing network [3] as a building block. Now, the cascade of
the (randomized) 2-smoothing network from this paper and
the 2-counter from [13] yields a randomized counting net-
work which achieves depth Θ(lg w) (and uses the AKS sort-
ing network). This complements nicely the existence result
of a counting network with Θ(lgw) depth from Klugerman
and Plaxton [13]; they provided a random construction (im-
plying the existence of a deterministic network), which was
later derandomized by Klugerman [12], thus yielding an ex-

plicit construction of a deterministic counting network with
these properties. We feel that the cascade of our randomized
2-smoothing network with the 2-counter from [13] provides
a much simpler and transparent, explicit construction of a
small-depth counting network, albeit randomized, than the
ones in [12, 13].

In the reverse direction, the Θ(lgw)-depth, 2-smoothing
network constructed in this work offers a revival to the first
vision of Klugerman and Plaxton [13]: now, a way to con-
struct a (randomized) Θ(lg w)-depth sorting network im-
proving on the AKS sorting network (in terms of the hidden
constants) is to bound the depth complexity of sorting by a
small constant times the depth complexity of 2-smoothing
(and then use the Θ(lg w)-depth 2-smoothing network from
this paper).
Our analysis uses (in Section 3) the following two ingredi-
ents.

• We use the notion of maximum-survive (minimum-
survive, resp.) path as a variant of a similar one intro-
duced recently in [7]. Roughly speaking, a maximum-
survive (resp., minimum-survive) path traverses a net-
work starting from an input wire; it continues layer by
layer as long as the maximum (resp., minimum) num-
ber of input tokens is not “destroyed” due to meet-
ing at some balancer with an input wire carrying a
sufficiently smaller (resp., larger) number of tokens.
See Definition 3.1 (resp., Definition 3.2) for the formal
details. Basic combinatorial properties of maximum-
survive and minimum-survive paths are stated in Ob-
servation 3.5.

The use of maximum- and minimum-survive paths is
essential for our analysis, since one block network may
not be alone sufficient to reduce the smoothness of its
input tokens by 1. However, we shall prove that after
each block network, the number of indices in the vector
of input tokens that have the maximum (or minimum)
number of tokens decreases significantly as tokens pro-
ceed to traverse the layers. This implies that after
sufficiently many block networks, the smoothness does
decrease by one.

• To prove that at each such maximum-survive (resp.,
minimum-survive) path, the maximum (resp., mini-
mum) number of input tokens is “destroyed” at a cer-
tain layer, we first present an improvement of the so-
called Concentration-to-Average-Lemma [14, Lemma
6.2]. This technical claim concerns the probability
that some well-determined subnetwork of the cube-
connected-cycles network receives tokens whose aver-
age number (for the particular subnetwork) is within a
small fraction (precisely, 1

4) of the average number of
tokens with respect to the entire network. The precise
improvement is recorded in Lemma 4.1.

We then continue to derive a new deviation inequality
(Lemma 4.2), establishing that with reasonable proba-
bility, the survive-maximum (resp., survive-minimum)
path will eventually terminate. Deviation inequalities
of this kind, which were previously employed in [7, 8,
14], were essentially based on Hoeffding’s Bound [10].
However, for small deviations as the ones required for
eventually establishing a smoothness of 2, such de-
viation inequalities may only provide trivial bounds:

namely, an upper bound on the probability which is
larger than 1.

The main result is established as a simple consequence
of Lemma 5.2. In more detail, this establishes that the cas-
cade of a reasonably small number of copies of the cube-
connected-cycles network suffices to reduce the smoothness
by 1 (Proposition 5.1). Repeating this cascading over and
over yields eventually a smoothness of 2 (with high proba-
bility).
The randomized O(lg w)-depth smoothing network we are
presenting is the first known network that simultaneously
meets all four desiderata for smoothing networks. A sum-
mary of all known results on smoothing networks with con-
stant smoothness appears in Table 1; this is based on [14,
Table 1], which is extended to incorporate the present result
amd a recent related result from [7].

Very recently, Friedrich and Sauerwald [7] identify a large
class of smoothing networks with constant smoothness. Speci-
ficially, they prove any expander graph with w vertices in-
duces a smoothing network with depthO(lg w (lg lg w)3) that
guarantees constant smoothness (but no less than 10) with
high probability, provided that the smoothness of the input
vector is polynomial in w. This result is orthogonal to the
result presented in this paper: while it is more general in
applying to all expanders, our result provides an optimal
constant (2) for smoothness and optimal Θ(lg w)-depth for
a specific network (namely, the cascade of some copies of the
block network). Moreover, for our result, no assumption on
the initial smoothness is made.

The simple randomized two-blocks network from [14, Sec-
tion 6] achieves smoothness of 17. We consider that the im-
provement from 17 to 2 is major, especially because smooth-
ness of 2 is optimal due to the improbability result from [14,
Section 7]. Even more so, our network is the first network
with smoothness 2 that does not rely on global initialization.
An earlier construction of a 2-smoothing network by Aiello et
al. [2, Theorem 3.1] relies (partially) on global initialization,
and so it fails to meet desideratum (3); furthermore, it uses a
less simple construction involving the butterfly network and
the bitonic network due to Batcher [5], while our construc-
tion is much more simple and transparent. Finally, we re-
mark that there are known 1-smoothing networks requiring
global initialization, which either have Θ(lg2 w) depth [4] or
use the AKS sorting network [3] to achieve depth Θ(lgw) [12,
13].

2. PRELIMINARIES AND NOTATION
Our presentation follows closely the one in [14, Sections 2

& 3]. All logarithms are to the base 2. Given a fixed (power
of two) integer w = 2lg w, we identify each integer i with
0 ≤ i ≤ w − 1 with its binary representation i1i2 . . . ilg w.
Moreover, for any integer j ≥ 1, we define [j] = {0, . . . , j −
1}. For a vector x with w entries, denote xmin := mini∈[w] xi

and xmax := maxi∈[w] xi; x is γ-smooth if maxi,j∈[w] |xi −
xj | ≤ γ.

For a random variable v, we shall denote as E [v] the ex-
pectation of v. In some later proofs, we shall use the Union
Bound, Markov’s Inequality and an elementary rule about
conditional expectations.

Lemma 2.1 (Union Bound). For a finite sequence of
events E1, E2, . . ., P [∨i≥1Ei] ≤

P
i≥1 P [Ei] .

Lemma 2.2 (Markov’s Inequality). Let v be a non-
negative random variable. Then for any number c > 0,
P [v ≥ c · E [v]] ≤ 1

c .

Lemma 2.3. Let v be a random-variable, and let C1, C2, . . .
be a countable set of events such that P

ˆW∞
i=1 Ci

˜
= 1. Then,

E [v] =
P∞

i=1 P [Ci] · E [v | Ci] .

3. SMOOTHING NETWORKS
Roughly speaking, a smoothing (balancing) network [4] is

a collection of interconnected balancers. A balancer [4] is an
asynchronous switch with two input wires and two output
wires denoted as i1(b) and i2(b). Each balancer is always
in one of two states, top or bottom. During an initialization
phase, each balancer is oriented either top or bottom. Af-
ter the initialization, a stream of tokens enters the network
at the input wires in an arbitrary way. The tokens prop-
agate through the network by following the orientation of
the balancers; each time a token passes through a balancer,
the balancer instantaneously changes its orientation. This
guarantees a fair distribution on the balancer’s output wires
if the number of arriving tokens is even. However, if the
number is odd, an excess token arises which is forwarded to
the output wire the balancer is oriented to. For a balancer

b, we shall write i1(b)
b← i2(b) exactly when the excess to-

ken (if any) is forwarded to its top output wire i1(b), and

i1(b)
b→ i2(b) otherwise.

A balancing network Bw [4] is an acyclic network of bal-
ancers, where output wires of balancers are connected to in-
put wires of (other) balancers. The input wires 0, 1, . . . , w−1
may not be connected from any output wires; the output
wires 0, 1, . . . , w − 1 may not be connected to any input
wires. So, we shall consider a balancing network Bw with
the same number w of input and output wires, called the
network’s width. By the assumption of acyclicity, each bal-
ancer is assigned a unique integer called layer, which is the
length of the longest path from an input wire to that bal-
ancer. The depth, denoted as d(Bw), is the maximum layer
in the network. We denote by Bw \ ["1, "2] the restriction of
Bw to the layers "1 + 1, . . . , d(Bw) − "2.

We shall always consider a balancing network in a quies-
cent state where all tokens have exited. For any balancer
b, denote as x1 and x2 the numbers of tokens entering the
input wires i1(b) and i2(b), respectively, of b. Denote as
y1 and y2 the number of tokens exiting through the output
wires i1(b) and i2(b), respectively, of b. If reference to b is
necessary, we shall also write x1(b), x2(b), y1(b) and y2(b).
If b is oriented top (resp., bottom), then y1 =

˚
x1+x2

2

ˇ
and

y2 =
¨

x1+x2
2

˝
(resp., y1 =

¨
x1+x2

2

˝
and y2 =

˚
x1+x2

2

ˇ
).

There are three natural ways of choosing an orientation
for each balancer. The first is to allow each balancer to be
oriented arbitrarily, which was considered in [9]. A second
way is to consider a global orientation [4], where each bal-
ancer must be oriented in some certain way (for example,
all balancers must be oriented top). In this work, we con-
sider random orientation, where each balancer chooses its
orientation uniformly and independently at random [2, 7, 8,
14].

A path π = (i1, i2, . . . , i!) is a sequence of interconnected
wires from layer 1 to layer ", 1 ≤ " ≤ d(Bw); so, for each
layer r with 1 ≤ r ≤ " − 1, ir is connected to a balancer in
layer r which has ir+1 as one of its two output wires. For

Network Depth Type GI Smoothness AKS With Probability Reference

Bitonic Θ(lg2 w) D ! 1 X Not applicable [4, Theorem 3.6]

Periodic Θ(lg2 w) D ! 1 X Not applicable [4, Theorem 4.4]

KP Θ(lg w) D ! 1 ! Not applicable [13, Theorem 5.2]

r-Butterfly (1 + o(1)) lg w D/R ! 2 X ≥ 1 − 1
ω(wk)

[2, Theorem 3.1]

Two Blocks 2 lg w R X 17 X ≥ 1 − 2 · 4 lg lg w−39
w [14, Theorem 6.1]

Any d R X 1 X ≤ d
w−1 [14, Theorem 7.1]

Expander O(lg w (lg lg w)3) R X O(1) X ≥ 1 −O(1
w) [7, Theorem 5.19]

449 Blocks 449 lg w R X 2 X ≥ 1 −O(lg lg w
w) Theorem 5.5

Table 1: Summary of results about smoothing networks with constant smoothness. D and R stand for deterministic (that is,
globally initialized) and randomized balancers, respectively; D/R stands for a combination of deterministic and randomized
balancers. GI stands for global initialization; the corresponding column indicates whether GI is required or not. AKS stands for
the sorting network of Ajtai, Komlós and Szemerédi [3]; the corresponding column indicates whether the smoothing network
uses the AKS network or not as a block in the construction. KP stands for Klugerman and Plaxton [12, 13]. The result of [7]
requires additionally a smoothness of O(poly(w)) of the input vector.

each wire ir with 1 < r ≤ ", let br the balancer in layer r
which has input wire ir. Then, xir is the number of tokens
at the input wire to br which is connected to the output wire
ir−1 of the previous layer; bxir is defined as the other input
to br. For layers "1 ≤ "2, Πj0 ["1, "2] denotes the set of all
possible paths from a wire j0 in layer "1 to any wire in layer
"2.

A balancer b in layer " depends on balancer b′ in layer
"′ ≤ " if there is a path from an output wire of b′ to an in-
put wire of b; by convention, the balancer b depends trivially
on itself. Dependencies among wires are defined in the same
way. Two balancers b1 and b2 in layer " are independent, if
there is no balancer b in an earlier layer on which both b1

and b2 depend. More specifically, two balancers b1 and b2

are independent up to layer "′ ≤ " if there is no balancer b in
a layer between "′ and " on which both depend. The depen-
dency set of a balancer b in layer " is the set of all balancers
in previous layers on which b depends. Dependency sets of
wires (up to layers "′ ≤ ") are defined in the same way.

A randomized balancing network [2, 8] or randomized net-
work for short, is a balancing network with a random ori-
entation. So, each balancer is initialized to each of top and
bottom with probability 1

2 . To this end, we associate to
each balancer b a random variable rb taking values 1

2 and
− 1

2 with equal probability (cf. [8]). (Clearly, E [rb] = 0.)
Define also χb = Odd(xb) · rb (cf. [8]). Then, the number of
tokens at the two output wires y1 and y2 can be expressed
as y1 = x1+x2

2 + Odd(xb) · rb and y2 = x1+x2
2 −Odd(xb) · rb.

Fixing an input vector x to a randomized balancing net-
work induces a probability measure P on associated events.
In particular, it induces for each layer " with 1 ≤ " ≤ d(Bw)
a random vector y("); y(") is determined by (i) the (ran-
dom) input vector x(") and (ii) the random variables rb

corresponding to the orientation of the balancers in layer ".
Write y = y(d(Bw)) to denote the (random) output vector
of Bw; hence, Bw(x) = y.

For some integer γ ≥ 1, say that Bw is a γ-smoothing
network with probability δ [2, 8], where 0 ≤ δ ≤ 1, if for
each input vector x, P [Bw(x) is γ-smooth] ≥ δ; that is, the
probability that for each pair of output wires j, k ∈ [w],
|yj − yk| ≤ γ is at least δ.

Henceforth, denote as CCCw the cube-connected-cycles net-

work [16] of width w (where w is a power of 2) which consists
of lg w layers. In each layer " with 1 ≤ " ≤ lg w, for each wire
u ∈ {0, 1}lg w, there is a balancer b connecting wire u and
wire u("), where u(") denotes the wire obtained by flipping
the "-th bit of u. See Figure 1 for an illustration.

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

INPUT OUTPUT
3 41 2

Figure 1: The CCC16 network.

We denote by CCC2
w the sequential cascade of two CCCw

networks. We recall:

Lemma 3.1 ([14, Lemma 4.4]). Fix a pair of integers
"1 and "2 with "1 + "2 < lg w, and a corresponding pair
of binary strings l1 ∈ {0, 1}!1 and l2 ∈ {0, 1}!2 . Then,
the network CCCw \ ["1, "2] restricted to the set of wires˘
l1ul2 | u ∈ {0, 1}lg w−!1−!2

¯
is a cube-connected-cycles net-

work CCC2lg w−!1−!2 .

The cube-connected-cycles network CCCw is topologically
equivalent to the block network Blockw (cf. [14, Section 4.4]
for more details). This allows us to apply previous results
stated (and proved) for the Blockw network to the CCCw

network.
By symmetry, all random variables yj with j ∈ [w] are

identically distributed (cf. [8, proof of Theorem 10]). In
particular, for each output wire j ∈ [w] of CCCw: yj =P

x
w +

Plg w
!=1

1
2lg w−!

P
b∈v!,1

χb and E [yj] = 0. We will use

the following lemma, which is an immediate consequence of
the disjointness among dependency sets:

Lemma 3.2 (cf. [14, Lemma 3.3]). Fix an input vec-
tor x to a CCCw network. Consider any path π = (i1, . . . , i!)
from layer 1 to ". Let λ1, . . . , λ! and τ1, . . . , τ! be a collec-
tion of 2" arbitrary, fixed numbers. Then, P [bxi! = τ!] =
P
ˆ
bxi! = τ! |

`
∧!

r=1xir = λr

´
∧
`
∧!−1

r=1bxir = τr

´˜
.

So, roughly speaking, the claim asserts that bxi! is inde-
pendent of any events associated to all previous inputs to
the path; note, however, that xi1 and xi2 could be depen-
dent. We shall use the following previous results:

Theorem 3.3 ([14, Thm. 5.1]). The CCCw network is
a (*lg lg w+ + 3)-smoothing network with probability at least
1 − 4

w3 .

Theorem 3.4 ([14, Thm. 6.7]). The CCC2
w network is

a 17-smoothing network with prob. at least 1−2 · 4 lg lg w−39
w .

We now define certain paths in a network that can be
seen as maximal trajectories of the maximum number and
minimum number of tokens on the network’s input wires,
respectively. The next definition is a variant of one from [7].

Definition 3.1. Let Bw be a smoothing network. For
each wire j1 ∈ [w] in layer 1 with xj1(1) = xmax(1), a
maximum-survive path πmax

j1 is defined by induction:

• For the basis case where " = 1, πmax
j1 := (j1).

• Assume πmax
j1 = (j1, j2, . . . , j!) is a maximum-survive

path from layer 1 to layer ".
For the induction step, consider layer " + 1.

– If bxj! = xmax(1) − 1, then

j!+1 :=

(
j!, if j!

b← j!("),

j!("), if j!
b→ j!("),

.

– If bxj! = xmax(1), then j!+1 := j!.

– Otherwise, the path πmax
j1 terminates at layer "

(with length |πmax
j1 | = ").

An illustration of the definition for the CCCw network is
given in Figure 2. We continue to define:

Definition 3.2. Let Bw be a smoothing network. For
each wire j1 ∈ [w] in layer 1 with xj1(1) = xmin(1), a
minimum-survive path πmin

j1 is defined by induction:

• For the basis case where " = 1, πmin
j1 := (j1).

• Assume πmin
j1 = (j1, j2, . . . , j!) is a minimum-survive

path from layer 1 to layer ".
For the induction step, consider layer " + 1.

– If bxj! = xmin(1) + 1, then

j!+1 :=

(
j!, if j!

b→ j!("),

j!("), if j!
b← j!("),

.

– If bxj! = xmin(1), then j!+1 := j!.

– Otherwise, the path πmin
j1 terminates at layer "

(with length |πmin
j1 | = ").

So, a path πmax
j1 (resp., πmin

j1) is a sequence of wires which
receive the maximum (resp., minimum) number of tokens;
the maximum (resp., minimum) is with respect to the input
vector to the first layer. If the last input wire of the path is
connected to a balancer which receives less than xmax(1)−1
(resp., more than xmin(1) + 1) tokens, the path terminates;
this happens because, by definition of a balancer both out-
puts of a balancer will then be less than xmax(1) (resp., more
than xmin(1)). Moreover, we define:

Definition 3.3. Let Bw be a smoothing network. For
any layer " with 1 ≤ " ≤ d(Bw), define

|Πmax(")| :=
˛̨
˛
n

i ∈ [w] : |πmax
i | > "

o˛̨
˛,

and

|Πmin(")| :=
˛̨
˛
n

i ∈ [w] : |πmin
i | > "

o˛̨
˛ .

So, |Πmax(")| (|Πmin(")|) counts the number of maximum-
survive paths πmax (resp., minimum-survive paths πmin) sur-
viving layer ", i.e., reaching layer "+1 (if "+1 = d(Bw) this
means that the maximum (resp., minimum) reaches an out-
put wire of Bw). By Definition 3.1, for each wire i ∈ [w]
in a layer " with xi(") = xmax(1), there is exactly one wire
j(i) ∈ [w] which induces (exactly one) path πmax

j , j ∈ [w],
starting at layer 1 that reaches i(") at layer ". Hence, we
obtain:

Observation 3.5. Let Bw be a smoothing network. For
every layer " with 1 ≤ " ≤ d(Bw) it holds that

|{i ∈ [w] : xi(") = xmax(1)}| = |Πmax(")|

and

|{i ∈ [w] : xi(") = xmin(1)}| = |Πmin(")|.

4. IMPROVED CONCENTRATION
We shall use the following definition slightly adapted from

[14]; we shall require a stronger concentration by replacing
the constant 2 in [14, Definition 6.1] with 1

4 , while slightly
increasing ζ.

Definition 4.1 (Concentration-to-Average). Fix
an input vector x and a layer " with lg w + 1 ≤ " ≤ 2 lg w
in the network CCC2

w. Denote as E(x, ") the event that for
all integers ζ with 6 ≤ ζ ≤ 2 lg w − *lg lg w+ − " + 1, and
for all pairs of binary strings u1 ∈ {0, 1}!−lg w−1 and u2 ∈
{0, 1}2 lg w−!−&lg lg w'−ζ+1,

˛̨
˛̨
˛

P
{u1uu2|u∈{0,1}"lg lg w#+ζ} x(")

2&lg lg w'+ζ
−
P

x
w

˛̨
˛̨
˛ ≤ 1

4
.

Lemma 3.1 implies that for each integer ζ with 6 ≤ ζ ≤
2 lg w − *lg lg w+ − " + 1, and for each pair of binary strings
u1 ∈ {0, 1}!−lg w−1 and u2 ∈ {0, 1}2 lg w−!−&lg lg w'−ζ+1, the
network CCC2

w \ [" − 1, lg w − *lg lg w+ − ζ + 1] restricted

to the set of wires
n

u1uu2 | u ∈ {0, 1}&lg lg w'+ζ
o

is a cube-

connected-cycles network CCC2"lg lg w#+ζ . Hence, observe that
the event E(x, ") refers to each separate restriction of the
inputs (to CCC2

w) on the input wires of such a smaller cube-
connected-cycles network; it asserts that each such cube-
connected-cycles network receives an average number of to-
kens (over its input wires) which is within 1

4 of the averageP
x

w . We continue to establish that the event E(x, ") occurs
with high probability. As in [14, Lemma 6.1], we prove:

OUTPUTINPUT

110

101

100

011

010

001

000

111

3

2

2

3

4

3

3

4

3

3

3

2

4

4

2

3 4

2

3

3

4

3

3

2 3

2

4

3

3

3

3

3

OUTPUTINPUT

110

101

100

011

010

001

000

111

4

2

3

2

3

2

4

4

3

3

4

2

4

3

3

2 3

3

3

2

4

2

4

3 4

3

3

3

3

2

3

3

Figure 2: An illustration of maximum- and minimum-survive paths for two particular inputs to the CCC8 network. The three
maximum-survive paths on the left side are πmax

000 = (000, 100, 100), πmax
110 = (110, 110, 110, 111) and πmax

111 = (111). The two
minimum-survive paths on the right side are πmin

001 = (001, 101, 111, 110) and πmin
010 = (010, 010, 000). All inputs and outputs

to balancers are indicated. Balancers are depicted as oriented vertical line segments joining two wires; wires are depicted as
horizontal lines.

Lemma 4.1 (Concentration-to-Average Lemma).
Consider the randomized CCC2

w network. Fix an input vec-
tor x and a layer " with lg w + 1 ≤ " ≤ 2 lg w. Then,
P [E(x, ")] ≥ 1 − 4

w3 .

The convenience provided by above Lemma is revealed in
the following conditional concentration property.

Lemma 4.2. Consider the randomized CCCw network and
fix a layer " with 1 ≤ " ≤ lg w − *lg lg w+, an integer ζ
with 6 ≤ ζ ≤ lg w − *lg lg w+ − " + 1, and a pair of binary
strings u1 ∈ {0, 1}!−1 and u2 ∈ {0, 1}lg w−&lg lg w'−!−ζ+1.
Fix an input vector x such that the event E(x, ") is satisfied.
Consider a balancer b in layer "(b) = " + *lg lg w+ + ζ with
input wires i = u1buu2 and i("(b)), for some binary string
bu ∈ {0, 1}&lg lg w'+ζ . Then, for any integer δ > xmin("),

P [x(b) ≥ δ] ≤
P

x
w − xmin(") + 1

4

δ − xmin(")
,

and for any integer δ < xmax(")

P [x(b) ≤ δ] ≤
xmax(") −

P
x

w + 1
4

xmax(") − δ
.

Proof. First observe that x(b) is connected to the output of
a CCC subnetwork of depth *lg lg w+ + ζ with input wiresn

u1uu2 | u ∈ {0, 1}&lg lg w'+ζ
o
, and hence

E
"
x(b) −

P
{u1uu2|u∈{0,1}"lg lg w#+ζ} x

2&lg lg w'+ζ

#
= 0.

Using that x satisfies E(x, ") and linearity of expectations

we obtain that

E
"
x(b) −

P
{u1uu2|u∈{0,1}"lg lg w#+ζ}} x

2&lg lg w'+ζ

#

≥ E
»
x(b) −

P
x

w

–
−

1

4

=
δ−1X

k=xmin(!)

k · P [x(b) = k] +

xmax(!)X

k=δ

k · P [x(b) = k] −
P

x

w
−

1

4
.

Clearly,

δ−1X

k=xmin(!)

k · P [x(b) = k]

+
xmax(!)X

k=δ

k · P [x(b) = k] −
P

x
w

− 1
4

≥
δ−1X

k=xmin(!)

xmin(") · P [x(b) = k]

+

xmax(!)X

k=δ

δ · P [x(b) = k] −
P

x
w

− 1
4

= xmin(") · (1 − P [x(b) ≥ δ]) + δ · P [x(b) ≥ δ] −
P

x
w

− 1
4

= (δ − xmin(")) · P [x(b) ≥ δ] + xmin(") −
P

x
w

− 1
4
.

Combining this inequality with the equality above yields

(δ − xmin(")) · P [x(b) ≥ δ] + xmin(") −
P

x
w

− 1
4

≤ E
"
x(b) −

P
{u1uu2|u∈{0,1}"lg lg w#+ζ}} x

2&lg lg w'+ζ

#
= 0

Rearranging gives P [x(b) ≥ δ] ≤
P

x
w −xmin(!)+ 1

4
δ−xmin(!) , as needed.

The second claim is established by identical arguments.

The proof used an elementary argument based on the ex-
pectation of x(b); this argument is essential since claims
based on Hoeffding bound (as those used in [7, 8] and [14,
Lemma 4.3, Lemma 4.7]) could only yield a probability larger
than 1 for very small δ. However, as it will turn out in the
proof of Lemma 5.2, Lemma 4.2 still gives non-trivial bounds
for δ very close to

P
x

w .

5. MAIN RESULT
We first prove:

Proposition 5.1 (Smoothness Reduction Lemma).
Fix an integer γ ≥ 3. Consider the cascade of

1 +

‰„
lg 2 / lg

„
γ − 1
γ
2 + 1

4

««
·
„

2 lg w
lg w − *lg lg w+ − 6

«ı

CCCw networks. Assume that the input vector x is γ-smooth.
Then, the output vector y is (γ − 1)-smooth with probability
at least 1 − 2

w .

Proof. We start with a technical claim:

Lemma 5.2. Fix an arbitrary integer γ ≥ 3. Consider a
CCCw network with an input vector x which is γ-smooth and
satisfies E(x, 1). Then, for any pair of a wire j1 ∈ [w], and
a layer " with *lg lg w+ + 7 ≤ " ≤ lg w it holds that

P
ˆ
|πmax

j1 | > "
˜

≤
 P

x
w − xmin(1) + 1

4

γ − 1

!!−&lg lg w'−6

,

and

P
h
|πmin

j1 | > "
i

≤

xmax(1) −
P

x
w + 1

4

γ − 1

!!−&lg lg w'−6

.

Proof. We start with the first claim. We may assume that
xmax(1) − xmin(1) = γ; otherwise, the claim holds trivially,
as in this case x(1) is already (γ − 1)-smooth. To shorten
the notation, we define π := πmax

j1 ; recall that π is a random
path depending on the load vector x(1) and the balancers’
orientation. Clearly,

P [|π| > "] =
!Y

r=&lg lg w'+7

P [||π| > r | |π| ≥ r]

=
!Y

r=&lg lg w'+7

P [|π| > r ∧ |π| ≥ r]
P [|π| ≥ r]

.

Recall that Πj1 [1, r] is the set of all paths from wire j1
in layer 1 to any wire in layer r. For a specific path bπ ∈
Πj1 [1, r], we write bπ ⊆ π to denote event that the (random
path) π coincides with the (specific) path bπ on the layers 1

to r. It follows by the law of Conditional Probabilities that

P [|π| > r ∧ |π| ≥ r]
P [|π| ≥ r]

=

P
bπ∈Πj1 [1,r]

P [|π| > r ∧ |π| ≥ r ∧ bπ ⊆ π]

P [|π| ≥ r]

=
1

P [|π| ≥ r]
·

X

bπ∈Πj1 [1,r]

“
P [|π| > r | bπ ⊆ π ∧ |π| ≥ r] ·

· P [|π| ≥ r | bπ ⊆ π] · P [bπ ⊆ π]
”
.

By definition, the event bπ ⊆ π implies |π| ≥ r and hence

1
P [|π| ≥ r]

·
X

bπ∈Πj1 [1,r]

“
P [|π| > r | bπ ⊆ π ∧ |π| ≥ r]

· P [|π| ≥ r | bπ ⊆ π] · P [bπ ⊆ π]
”

=
1

P [|π| ≥ r]
·

X

bπ∈Πj1 [1,r]

“
P [|π| > r | bπ ⊆ π]

· P [|π| ≥ r | bπ ⊆ π] · P [bπ ⊆ π]
”
.

Conditioned on the event bπ ⊆ π, the path π = (j1, . . . , jr)
survives layer r (that is, π extended to layer r + 1) if and
only if bxjr ≥ xmax(1)−1. Hence Lemma 3.2 and Lemma 4.2
imply together that

P [|π| > r | bπ ⊆ π] = P [bxjr ≥ xmax(1) − 1]

≤
P

x
w − xmin(1) + 1

4

xmax(1) − 1 − xmin(1)

=

P
x

w − xmin(1) + 1
4

γ − 1
.

Hence, it follows that

!Y

r=&lg lg w'+7

1

P [|π| ≥ r]
·

X

bπ∈Πj1 [1,r]

“
P [|π| > r | bπ ⊆ π] ·

· P [|π| ≥ r | bπ ⊆ π] · P [bπ ⊆ π]
”!

≤
 P

x
w − xmin(1) + 1

4

γ − 1

!!−&lg lg w'−6

·
!Y

r=&lg lg w'+6

P
bπ∈Πj1 [1,r] P [bπ ⊆ π] · P [|π| ≥ r | bπ ⊆ π]

P [|π| ≥ r]

=

 P
x

w − xmin(1) + 1
4

γ − 1

!!−&lg lg w'−6

·
!Y

r=&lg lg w'+6

P
bπ∈Πj1 [1,r] P [|π| ≥ r ∧ bπ ⊆ π]

P [|π| ≥ r]

=

 P
x

w − xmin(1) + 1
4

γ − 1

!!−&lg lg w'−6

,

which immediately implies that

P [|π| > "] ≤
 P

x
w − xmin(1) + 1

4

γ − 1

!!−&lg lg w'−6

.

Using identical arguments, we prove the second claim.

Consider now the cascade of

1 +

‰„
lg 2 / lg

„
γ − 1
γ
2 + 1

4

««
·
„

2 lg w
lg w − *lg lg w+ − 6

«ı

CCCw networks. It follows by linearity of expectation and
Lemma 2.3 that for any layer " with lg w+1 ≤ " ≤ 2 lg w+1,

E [|Πmax(!)|]
= P [E(x, lg w + 1)] · E [|Πmax(!)| | E(x, lg w + 1)]

+ (1 − P [E(x, lg w + 1)]) · E [|Πmax(!)| | ¬E(x, lg w + 1)]

≤ E [|Πmax(!)| | E(x, lg w + 1)] +
4

w3
· w,

where the last inequality is due to Lemma 4.1.
As before, we may assume that xmax(1) − xmin(1) = γ,

since otherwise xmax(1) − xmin(1) ≤ γ − 1 and Proposi-

tion 5.1 holds trivially. Furthermore, we assume that
P

x
w −

xmin(1) ≤ γ
2 (otherwise, xmax(1) −

P
x

w ≤ γ
2 and we pro-

ceed by identical arguments bounding |Πmin(")| instead of
|Πmax(")|). Linearity of expectations, Observation 3.5 and
Lemma 5.2 imply that for every layer " with lg w+*lg lg w++
7 ≤ " ≤ 2 lg w + 1,

E [|Πmax(")|]

≤ E [|Πmax(")| | E(x, lg w + 1)] +
4

w2

=
X

j1 :
xj1 (1)=xmax(1)

P
ˆ
|πmax

j1 | > " | E(x, lg w + 1)
˜
+

4
w2

≤ |Πmax(1)| ·
„ γ

2 + 1
4

γ − 1

«!−lg w−&lg lg w'−6

+
4

w2
.

More generally, we obtain this way for any integer α ≥ 2,

E [|Πmax(α lg w + 1)|]

≤ |Πmax((α − 1) lg w + 1)| ·

γ
2 + 1

4

γ − 1

!lg w−&lg lg w'−6

+
4

w2
.

We continue to prove:

Lemma 5.3. For each integer α ∈ N, it holds that

E [|Πmax(α lg w + 1)|] ≤ w ·
„ γ

2 + 1
4

γ − 1

«(α−1) (lg w−&lg lg w'−6)

+
4(α − 1)

w2
.

Proof. By induction on α. The basis case α = 1 holds vac-
uously. Assume inductively that the claim holds for α − 1.

For the induction step, Lemma 2.3 gives

E [|Πmax((α + 1) lg w + 1)|]

=
wX

j=1

P [|Πmax(α lg w + 1)| = j]

· E [|Πmax((α + 1) lg w + 1)| | |Πmax(α lg w + 1)| = j]

≤
wX

j=1

P [|Πmax(α lg w + 1)| = j]

·

0

@j ·

γ
2 + 1

4

γ − 1

!lg w−&lg lg w'−6

+
4

w2

1

A

=

γ
2 + 1

4

γ − 1

!lg w−&lg lg w'−6

· E [|Πmax(α lg w + 1)|] +
4

w2

≤

γ
2 + 1

4

γ − 1

!lg w−&lg lg w'−6

·

0

@w ·

γ
2

+ 1
4

γ − 1

!(α−1) (lg w−&lg lg w'−6)

+
4(α − 1)

w2

1

A+
4

w2

≤ w ·

γ
2 + 1

4

γ − 1

!α (lg w−&lg lg w'−6)

+
4(α − 1)

w2
+

4

w2

= w ·

γ
2 + 1

4

γ − 1

!α (lg w−&lg lg w'−6)

+
4α

w2
,

where the second last inequality holds due to the induction
hypothesis.

For any 3 ≤ γ ≤ 17, fix now the value α = α(γ) :=

1 +
l“

lg 2 / lg
“

γ−1
γ
2 + 1

4

””
·
“

2 lg w
lg w−&lg lg w'−6

”m
. We observe:

Observation 5.4. For any w ≥ 212 and any γ ≥ 3, it
holds that 4(α − 1) ≤ w.

By the choice of α and Lemma 5.3,

E [|Πmax(α lg w + 1)|]

≤ w ·
„ γ

2 + 1
4

γ − 1

«(α−1) (lg w−&lg lg w'−6)

+
4(α − 1)

w2

≤ w · 2− 2 lg w
lg w−"lg lg w#−6 (lg w−&lg lg w'−6)

+
4(α − 1)

w2

≤ w · 1
w2

+
w
w2

= 2 · 1
w

,

where the last inequality is due to Observation 5.4. Since
|Πmax(α lg w + 1)| is an integer random variable, Markovs
inequality (Lemma 2.2) implies P [|Πmax(α lg w + 1)| > 0] ≤
2
w . By Observation 3.5, |Πmax(α lg w + 1)| = 0 implies that
the output vector y(α lg w+1) is (γ−1)-smooth, as needed.

We are now ready to prove:

Theorem 5.5. Fix a value w ≥ 212. Then the cascade of

2+
P17

γ=3 1+
l“

lg 2 / lg
“

γ−1
γ
2 + 1

4

””
·
“

2 lg w
lg w−&lg lg w'−6

”m
CCCw

networks is a 2-smoothing network with probability at least
1 − 30 w−1 − max

˘
4w−3, 2 4 lg lg w−39

w

¯
.

w 212 213 214 215 216 217 218 219 220 225 230

CCCw 323 240 200 174 157 165 153 142 137 114 102

Table 2: Number of required CCCw networks to get a 2-smoothing network for various w. Note that due to rounding issues,
the given upper bound is not strictly decreasing in w.

Proof. We shall prove by backward induction on k with 2 ≤
k ≤ 17 that the cascade of

2+
17X

γ=k+1

1+

‰„
lg 2 / lg

„
γ − 1
γ
2 + 1

4

««
·
„

2 lg w
lg w − *lg lg w+ − 6

«ı

CCCw networks is a k-smoothing network with probability
1− 2(17− k)w−1 −max

˘
4w−3, 2 4 lg lg w−39

w

¯
. For the basis

case where k = 17, we distinguish between two cases on w.

First assume that w ≤ 2213
. By Theorem 3.3, a single

CCCw network is a (*lg lg w+ + 3)-smoothing network with
probability at least 1 − 4w−3. Observe that by assumption
on w, *lg lg w+ + 3 ≤ 17. For the second case, assume that

w > 2213
. Then, Theorem 3.4 implies that the output of the

cascade of two CCCw networks is a 17-smoothing network
with probability at least 1 − 2 4 lg lg w−39

w . This completes
the basis case.

For the induction step, consider the cascade of 2+
P17

γ=k 1+l“
lg 2 / lg

“
γ−1
γ
2 + 1

4

””
·
“

2 lg w
lg w−&lg lg w'−6

”m
CCCw networks. By

induction hypothesis, we obtain that the cascade of 2 +
P17

γ=k+1 1 +
l“

lg 2 / lg
“

γ−1
γ
2 + 1

4

””
·
“

2 lg w
lg w−&lg lg w'−6

”m
CCCw

networks is a k-smoothing network with probability at least
1 − 2(17 − k)w−1 − max

˘
4w−3, 2 4 lg lg w−39

w

¯
. By an ap-

plication of Proposition 5.1, it follows that the cascade of

1 +
l“

lg 2 / lg
“

k−1
k
2 + 1

4

””
·
“

2 lg w
lg w−&lg lg w'−6

”m
CCCw networks

reduces the smoothness from k to k − 1 with probability at
least 1 − 2 w−1. Hence by the Union Bound, the cascade of

2+
P17

γ=k 1+
l“

lg 2 / lg
“

γ−1
γ
2 + 1

4

””
·
“

2 lg w
lg w−&lg lg w'−6

”m
CCCw

networks is a (k−1)-smoothing network with probability at
least 1−2 w−1−2(17−k)w−1−max

˘
4w−3, 2 4 lg lg w−39

w

¯
=

1 − 2 (17 − (k − 1))w−1 − max
˘
4w−3, 2 4 lg lg w−39

w

¯
.

To present a more concrete upper bound on the number of
cascaded CCCw networks, we calculate:

Observation 5.6. We have (i)

17X

γ=3

‰„
lg 2 / lg

„
γ − 1
γ
2 + 1

4

««ı
≤ 36,

and (ii), for any w ≥ 212,
‰

2 lg w
lg w − *lg lg w+ − 6

ı
≤ 12.

Proof. The first estimate is independent of w, so it can be
verified numerically. For the second estimate, we observe
that for any w ≥ 212, *lg lg w+ ≤ 1

3 lg w and 6 ≤ 1
2 lg w.

Hence, 2 lg w
lg w−&lg lg w'−6 ≤ 12.

Using Theorem 5.5 and Observation 5.6 we immediately ob-
tain:

Corollary 5.7. For any w ≥ 212, the cascade of 449
CCCw networks is a 2-smoothing network with probability at
least 1 − 30w−1 − max

˘
4w−3, 2 4 lg lg w−39

w

¯
.

Proof. Theorem 5.5 and Observation 5.6 imply that the cas-
cade of

2 +
17X

γ=3

1 +

&
lg 2 / lg

γ − 1
γ
2 + 1

4

!!
·
„

2 lg w

lg w − $lg lg w% − 6

«’

≤ 17 +
17X

γ=3

&

lg 2 / lg

γ − 1
γ
2 + 1

4

!!’

·
‰„

2 lg w

lg w − $lg lg w% − 6

«ı

≤ 17 + 36 · 12 = 449.

CCCw networks is a 2-smoothing network with probability
at least 1 − 30 w−1 − max

˘
4w−3, 2 4 lg lg w−39

w

¯
.

For larger w and a more careful calculation, we can obtain
much smaller upper bounds on the required number of CCCw

networks to achieve 2-smoothness (Table 2).

6. EPILOGUE
In this work we presented a simple, randomized Θ(lg w)-

depth 2-smoothing network which meets all four desiderata
on smoothing network, thus resolving a long-standing open
problem dating back at least to the early work of Klugerman
and Plaxton [12, 13]. Improving the constant number of re-
quired block networks remains an interesting open problem;
the current record is about 150 for reasonably large w.

7. REFERENCES
[1] E. Aharonson and H. Attiya, “Counting Networks

with Arbitrary Fan-Out,”Distributed Computing,
Vol. 8, No. 4, pp. 163–169, 1995.

[2] W. Aiello, R. Venkatesan and M. Yung, “Coins,
Weights and Contention in Balancing Networks,”
Proceedings of the 13th Annual ACM Symposium on
Principles of Distributed Computing, pp. 193–205,
1994.

[3] M. Ajtai, J. Komlós and E. Szemerédi, “Sorting in
c log n Parallel Steps,” Combinatorica, Vol. 3, pp.
1–19, 1983.

[4] J. Aspnes, M. Herlihy and N. Shavit, “Counting
Networks,” Journal of the ACM, Vol. 41, No. 5, pp.
1020–1048, 1994.

[5] K. E. Batcher, “Sorting Networks and their
Applications,” Proceedings of the AFIPS Joint
Computer Conference, pp. 334–338, 1968.

[6] M. Dowd, Y. Perl, L. Rudoplh, and M. Saks, “The
Periodic Balanced Sorting Network,” Journal of the
ACM, Vol. 36, No. 4, pp. 738–757, 1989.

[7] T. Friedrich and T. Sauerwald, “Near-Perfect Load
Balancing by Randomized Rounding,”Proceedings of
the 41st Annual ACM Symposium on Theory of
Computing, to appear, 2009.

[8] M. Herlihy and S. Tirthapura, “Randomized
Smoothing Networks,” Journal of Parallel and
Distributed Computing, Vol. 66, No. 5, pp. 626–632,
2006.

[9] M. Herlihy and S. Tirthapura, “Self-Stabilizing
Smoothing and Counting Networks,” Distributed
Computing, Vol. 18, No. 5, pp. 345–357, 2006.

[10] W. Hoeffding. “Probability Inequalities for Sums of
Bounded Random Variables,” Journal of the American
Statistical Association, Vol. 53, No. 301, pp. 13–30,
1963.

[11] S. Kapidakis and M. Mavronicolas, “Distributed, Low
Contention Task Allocation,” Proceedings of the 8th
IEEE Symposium on Parallel and Distributed
Processing, pp. 358–365, 1996.

[12] M. Klugerman, Small-Depth Counting Networks and
Related Topics, Ph.D. Thesis, Department of
Mathematics, Massachusetts Institute of Technology,
1994.

[13] M. Klugerman and C. G. Plaxton, “Small-Depth
Counting Networks,” Proceedings of the 24th Annual
ACM Symposium on Theory of Computing, pp.
417–428, 1992.

[14] M. Mavronicolas and T. Sauerwald, “The Impact of
Randomization in Smoothing Networks,” Proceedings
of the 27th Annual ACM Symposium on Principles of
Distributed Computing, pp. 345–354, 2008.
available at http://www.cs.ucy.ac.cy/∼mavronic

[15] S. Moran and G. Taubenfeld “A Lower Bound on
Wait-Free Counting,” Journal of Algorithms. Vol. 24,
No. 1, pp. 1–17, 1997.

[16] F. Preparata and J. Vuillemin, “The
Cube-Connected-Cycles: A Versatile Network for
Parallel Computation,” Communications of the ACM.
Vol. 24, No. 5, pp. 300–309, 1981.

