▲□▶▲□▶▲□▶▲□▶ 三回日 のQ@

# A randomized online learning algorithm for better variance control

Jean-Yves Audibert

ParisTech - Ecole des Ponts CERTIS

Conference on Learning Theory, 2006

### Outline



- The learning task
- The progressive mixture rule
- A striking sequential prediction result in least square regression

#### 2 Contributions

- The variance function
- The algorithm and its risk bound
- Application to general loss function
- Application to least square loss

### Outline



- The learning task
- The progressive mixture rule
- A striking sequential prediction result in least square regression

#### 2

#### Contributions

- The variance function
- The algorithm and its risk bound
- Application to general loss function
- Application to least square loss

Motivation ••••••

The learning task

### A standard learning framework...

- Training data  $Z_1^n$ :  $Z_i = (X_i, Y_i)$  i = 1, ..., n i.i.d.  $\sim \mathbb{P}$
- Prediction function:  $g: \mathcal{X} \rightarrow \mathcal{Y}$
- Loss: *L*(*Z*, *g*)
- Risk:  $R(g) = \mathbb{E}_{\mathbb{P}(dZ)}L(Z,g)$
- Model:
  - $\mathcal{P}=$  the set of proba on  $\mathcal Z$  in which we assume that  $\mathbb P$  is
  - $\mathcal{G} = a$  set of prediction functions
- Best prediction function in G:  $\tilde{g} = \operatorname{argmin}_{G} R$

#### The $(L, \mathcal{P}, \mathcal{G})$ -learning task:

Predict as well as  $\tilde{g}$ . More formally: find a mapping  $Z_1^n \mapsto \hat{g}$  such that for any  $\mathbb{P} \in \mathcal{P}$ , we have  $\mathbb{E}_{Z_1^n} R(\hat{g}) \leq R(\tilde{g}) + small term$ 

Motivation ••••••

The learning task

### A standard learning framework...

- Training data  $Z_1^n$ :  $Z_i = (X_i, Y_i)$  i = 1, ..., n i.i.d.  $\sim \mathbb{P}$
- Prediction function:  $g: \mathcal{X} \rightarrow \mathcal{Y}$
- Loss: *L*(*Z*, *g*)
- Risk:  $R(g) = \mathbb{E}_{\mathbb{P}(dZ)}L(Z,g)$
- Model:
  - $\mathcal{P} =$  the set of proba on  $\mathcal{Z}$  in which we assume that  $\mathbb{P}$  is
  - $\mathcal{G} = a$  set of prediction functions
- Best prediction function in G:  $\tilde{g} = \operatorname{argmin}_{G} R$

#### The $(L, \mathcal{P}, \mathcal{G})$ -learning task:

Predict as well as  $\tilde{g}$ . More formally: find a mapping  $Z_1^n \mapsto \hat{g}$  such that for any  $\mathbb{P} \in \mathcal{P}$ , we have  $\mathbb{E}_{Z_1^n} R(\hat{g}) \leq R(\tilde{g}) + small term$ 

Motivation ••••••

The learning task

### A standard learning framework...

- Training data  $Z_1^n$ :  $Z_i = (X_i, Y_i)$  i = 1, ..., n i.i.d.  $\sim \mathbb{P}$
- Prediction function:  $g: \mathcal{X} \rightarrow \mathcal{Y}$
- Loss: *L*(*Z*, *g*)
- Risk:  $R(g) = \mathbb{E}_{\mathbb{P}(dZ)}L(Z,g)$
- Model:
  - $\mathcal{P} =$  the set of proba on  $\mathcal{Z}$  in which we assume that  $\mathbb{P}$  is
  - $\mathcal{G} = a$  set of prediction functions
- Best prediction function in G:  $\tilde{g} = \operatorname{argmin}_{G} R$

#### The $(L, \mathcal{P}, \mathcal{G})$ -learning task:

Predict as well as  $\tilde{g}$ . More formally: find a mapping  $Z_1^n \mapsto \hat{g}$  such that for any  $\mathbb{P} \in \mathcal{P}$ , we have  $\mathbb{E}_{Z_1^n} R(\hat{g}) \leq R(\tilde{g}) + C(\log |\mathcal{G}|)/n \quad \text{for } L(Z,g) = [Y - g(X)]^2$ 

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Motivation

The learning task

### ...however unusual properties

- To be "optimal", we need to choose  $\hat{g}$  outside the model  $\mathcal{G}$ .
- For least square loss (i.e. L(Z, g) = [Y g(X)]<sup>2</sup>), the only known optimal algorithm is the progressive mixture rule (see next slides)
- The proof is not based on bounds on the supremum of empirical processes

The progressive mixture rule

## The progressive mixture rule

- Cumulative loss of g up to time i:  $\Sigma_i(g) = \sum_{j=1}^{i} L(Z_j, g)$
- Prior distribution on  $\mathcal{G}$ :  $\pi$
- **Gibbs distribution:** for any  $h: \mathcal{G} \to \mathbb{R}$ ,

$$\pi_{-h}(dg) = rac{e^{-h(g)}}{\mathbb{E}_{g' \sim \pi} e^{-h(g')}} \cdot \pi(dg) \propto e^{-h(g)} \cdot \pi(dg)$$

#### Key idea:

 $\pi_{-h}$  concentrates on the prediction functions for which *h* is minimum.

#### • Typical example of Gibbs distribution: $\pi_{-\lambda \Sigma_i}$ with $\lambda > 0$

The progressive mixture rule

#### The progressive mixture rule Definition and property

#### Definition :

Let 
$$\lambda > 0$$
. Predict according to  $\hat{g} = \frac{1}{n+1} \sum_{i=0}^{n} \mathbb{E}_{\pi_{-\lambda \Sigma_{i}}(dg)} g$ .

#### Property [Catoni (1999), Juditsky, Rigollet & Tsybakov (2005)]:

For the least square loss, under the assumptions

- the output has exponential moments
   (i.e. ∃α, M > 0 ∀x ∈ X E[e<sup>α|Y|</sup>|X = x] ≤ M)
- the functions of the model are uniformly bounded  $\exists B > 0 \ \forall g \in \mathcal{G}, \|g\|_{\infty} \leq B$
- $\lambda$  small enough, i.e.  $\lambda \leq C(\alpha, M, B)$

$$\mathbb{E} {oldsymbol{\mathcal{R}}}(\hat{g}) \leq {oldsymbol{\mathcal{R}}}( ilde{g}) + rac{\log |\mathcal{G}|}{\lambda(n+1)}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

A striking sequential prediction result in least square regression

### Sequential prediction framework

- *G* = set of prediction functions (or static experts)
- No probabilistic assumption on the data
- Context: At time *i*, you know Z<sub>1</sub>,..., Z<sub>i-1</sub> and you have to give a prediction function ĥ<sub>i</sub>, which will be only used to predict the output associated with X<sub>i</sub>.
- **Target:** Predict as well as the best function in terms of cumulative loss:

 $\sum_{i=1}^{n} L(Z_i, \hat{h}_i) \leq \min_{g \in \mathcal{G}} \Sigma_n(g) + small term$ 

A striking sequential prediction result in least square regression

### Sequential prediction in least square setting

Key idea [Vovk (1990), Haussler, Kivinen & Warmuth (1998)]:

Assume that  $\mathcal{Y} = [-B; B]$  (i.e. bounded outputs). Let  $\lambda = \frac{1}{2B^2}$ . For any  $i \in \{1, ..., n\}$ , let  $\hat{h}_i$  be a prediction function such that

$$orall z \in \mathcal{Z} \qquad L(z, \hat{h}_i) \leq -rac{1}{\lambda} \log \mathbb{E}_{\pi_{-\lambda \Sigma_{i-1}}(dg)} e^{-\lambda L(z,g)}.$$

•  $\hat{h}_i$  exists even if it has no simple explicit formula!

#### Theorem [Haussler, Kivinen & Warmuth (1998)]:

The cumulative loss on  $Z_1^n$  of the strategy in which the prediction at time *i* is done according to  $\hat{h}_i$  is bounded with

$$\min_{g\in\mathcal{G}}\Sigma_n(g)+2B^2\log|\mathcal{G}|.$$

Contributions 000000000

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□▶ ◆○◆

A striking sequential prediction result in least square regression

#### Theorem [Haussler, Kivinen & Warmuth (1998)]:

The strategy in which the prediction at time *i* is done according to  $\hat{h}_i$  satisfies  $\sum_{i=1}^{n+1} L(Z_i, \hat{h}_{i-1}) \leq \inf_{g \in \mathcal{G}} \sum_{n+1} (g) + 2B^2 \log |\mathcal{G}|.$ 

#### Result

The algorithm predicting according to  $\hat{g} = \frac{1}{n+1} \sum_{i=0}^{n} \hat{h}_i$  satisfies

 $\mathbb{E} R(\hat{g}) \leq R( ilde{g}) + 2B^2 rac{\log |\mathcal{G}|}{n+1}$ 

To be compared with

 ER(progressive mixture rule) ≤ R(ğ) + C(α, M, B) <sup>log |G|</sup>/<sub>n+1</sub>

- Worst case analysis leads to
  - optimal convergence rate for our learning task
  - even better constants when the output is bounded!

Contributions 000000000

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□▶ ◆○◆

A striking sequential prediction result in least square regression

#### Theorem [Haussler, Kivinen & Warmuth (1998)]:

The strategy in which the prediction at time *i* is done according to  $\hat{h}_i$  satisfies  $\sum_{i=1}^{n+1} L(Z_i, \hat{h}_{i-1}) \leq \inf_{g \in \mathcal{G}} \sum_{n+1} (g) + 2B^2 \log |\mathcal{G}|.$ 

#### Result

The algorithm predicting according to  $\hat{g} = \frac{1}{n+1} \sum_{i=0}^{n} \hat{h}_i$  satisfies

 $\mathbb{E} R(\hat{g}) \leq R( ilde{g}) + 2B^2 rac{\log |\mathcal{G}|}{n+1}$ 

- To be compared with

   𝔅 𝑘 (progressive mixture rule) ≤ 𝑘(𝔅) + 𝔅(𝔅, 𝑘, 𝑘) <sup>log |𝔅|</sup>/<sub>𝑘+1</sub>,
- Worst case analysis leads to
  - optimal convergence rate for our learning task
  - even better constants when the output is bounded!



### The new concept: the variance function

Variance function associated with the  $(L, \mathcal{P}, \mathcal{G})$ -learning task

Let  $\overline{\mathcal{G}}$  be the set of all prediction functions (not only those in  $\mathcal{G}$ ). For any  $\lambda > 0$ , let  $v_{\lambda} : \mathcal{Z} \times \mathcal{G} \times \overline{\mathcal{G}} \to \mathbb{R}$  be such that

 $\begin{array}{l} \forall \, \rho \, \text{proba on} \, \mathcal{G} \quad \exists \, \hat{\pi}(\rho) \, \text{proba on} \, \bar{\mathcal{G}} \quad \forall \mathbb{P} \in \mathcal{P} \\ \mathbb{E}_{\hat{\pi}(\rho)(dg')} \mathbb{E}_{\mathbb{P}(dZ)} \log \mathbb{E}_{\rho(dg)} \boldsymbol{e}^{\lambda \left[ L(\boldsymbol{Z},g') - L(\boldsymbol{Z},g) - \boldsymbol{v}_{\lambda}(\boldsymbol{Z},g,g') \right]} \leq 0. \end{array}$ 



### The new concept: the variance function

Variance function associated with the  $(L, \mathcal{P}, \mathcal{G})$ -learning task

Let  $\overline{\mathcal{G}}$  be the set of all prediction functions (not only those in  $\mathcal{G}$ ). For any  $\lambda > 0$ , let  $v_{\lambda} : \mathcal{Z} \times \mathcal{G} \times \overline{\mathcal{G}} \to \mathbb{R}$  be such that

$$orall 
ho \operatorname{proba} \operatorname{on} \mathcal{G} \quad \exists \, \hat{\pi}(
ho) \operatorname{proba} \operatorname{on} \, \overline{\mathcal{G}} \quad orall \mathbb{P} \in \mathcal{P} \\ \mathbb{E}_{\hat{\pi}(
ho)(dg')} \mathbb{E}_{\mathbb{P}(dZ)} \log \mathbb{E}_{
ho(dg)} e^{\lambda \left[ L(Z,g') - L(Z,g) - v_{\lambda}(Z,g,g') 
ight]} \leq 0$$

To be compared with

$$\log \mathbb{E}_{\mathbb{P}(dZ)} e^{\lambda [\mathbb{E}_{\mathbb{P}(dZ)} L(Z,g) - L(Z,g) - \phi(\lambda) \operatorname{Var}_{\mathbb{P}(dZ)} L(Z,g)]} \leq 0$$



### The new concept: the variance function

Variance function associated with the  $(L, \mathcal{P}, \mathcal{G})$ -learning task

Let  $\overline{\mathcal{G}}$  be the set of all prediction functions (not only those in  $\mathcal{G}$ ). For any  $\lambda > 0$ , let  $v_{\lambda} : \mathcal{Z} \times \mathcal{G} \times \overline{\mathcal{G}} \to \mathbb{R}$  be such that

$$\begin{array}{l} \forall \ \rho \ \text{proba on} \ \mathcal{G} \quad \exists \ \hat{\pi}(\rho) \ \text{proba on} \ \bar{\mathcal{G}} \quad \forall \mathbb{P} \in \mathcal{P} \\ \mathbb{E}_{\hat{\pi}(\rho)(dg')} \mathbb{E}_{\mathbb{P}(dZ)} \ \text{log} \ \mathbb{E}_{\rho(dg)} e^{\lambda \left[ \mathcal{L}(\mathcal{Z},g') - \mathcal{L}(\mathcal{Z},g) - v_{\lambda}(\mathcal{Z},g,g') \right]} \le 0. \end{array}$$

$$\begin{array}{ll} \forall z \in \mathcal{Z} & L(z, \hat{h}_i) \leq -\frac{1}{\lambda} \log \mathbb{E}_{\pi_{-\lambda \Sigma_i}(dg)} e^{-\lambda L(z,g)}. \\ \forall z \in \mathcal{Z} & L(z, h_{\rho}) \leq -\frac{1}{\lambda} \log \mathbb{E}_{\rho(dg)} e^{-\lambda L(z,g)} \\ \forall \mathbb{P} & \mathbb{E}_{\delta_{h_{\rho}}(dg')} \mathbb{E}_{\mathbb{P}(dZ)} \log \mathbb{E}_{\rho(dg)} e^{\lambda [L(Z,g') - L(Z,g)]} \leq 0 \\ \Rightarrow v_{\lambda} \equiv 0 & \text{and} & \hat{\pi}(\rho) = \delta_{h_{\rho}} \end{array}$$



### The new concept: the variance function

Variance function associated with the  $(L, \mathcal{P}, \mathcal{G})$ -learning task

Let  $\overline{\mathcal{G}}$  be the set of all prediction functions (not only those in  $\mathcal{G}$ ). For any  $\lambda > 0$ , let  $v_{\lambda} : \mathcal{Z} \times \mathcal{G} \times \overline{\mathcal{G}} \to \mathbb{R}$  be such that

$$\begin{array}{l} \forall \ \rho \ \text{proba on} \ \mathcal{G} \quad \exists \ \hat{\pi}(\rho) \ \text{proba on} \ \bar{\mathcal{G}} \quad \forall \mathbb{P} \in \mathcal{P} \\ \mathbb{E}_{\hat{\pi}(\rho)(dg')} \mathbb{E}_{\mathbb{P}(dZ)} \ \text{log} \ \mathbb{E}_{\rho(dg)} e^{\lambda \left[ \mathcal{L}(\mathcal{Z},g') - \mathcal{L}(\mathcal{Z},g) - v_{\lambda}(\mathcal{Z},g,g') \right]} \le 0. \end{array}$$

$$\begin{array}{ll} \forall z \in \mathcal{Z} & L(z, \hat{h}_i) \leq -\frac{1}{\lambda} \log \mathbb{E}_{\pi_{-\lambda \Sigma_i}(dg)} e^{-\lambda L(z,g)}. \\ \forall z \in \mathcal{Z} & L(z, h_\rho) \leq -\frac{1}{\lambda} \log \mathbb{E}_{\rho(dg)} e^{-\lambda L(z,g)} \\ \forall \mathbb{P} & \mathbb{E}_{\delta_{h_\rho}(dg')} \mathbb{E}_{\mathbb{P}(dZ)} \log \mathbb{E}_{\rho(dg)} e^{\lambda [L(Z,g') - L(Z,g)]} \leq 0 \\ \Rightarrow v_\lambda \equiv 0 & \text{and} & \hat{\pi}(\rho) = \delta_{h_\rho} \end{array}$$



### The new concept: the variance function

Variance function associated with the  $(L, \mathcal{P}, \mathcal{G})$ -learning task

Let  $\overline{\mathcal{G}}$  be the set of all prediction functions (not only those in  $\mathcal{G}$ ). For any  $\lambda > 0$ , let  $v_{\lambda} : \mathcal{Z} \times \mathcal{G} \times \overline{\mathcal{G}} \to \mathbb{R}$  be such that

$$\begin{array}{l} \forall \ \rho \ \text{proba on} \ \mathcal{G} \quad \exists \ \hat{\pi}(\rho) \ \text{proba on} \ \bar{\mathcal{G}} \quad \forall \mathbb{P} \in \mathcal{P} \\ \mathbb{E}_{\hat{\pi}(\rho)(dg')} \mathbb{E}_{\mathbb{P}(dZ)} \log \mathbb{E}_{\rho(dg)} e^{\lambda \left[ \mathcal{L}(\mathcal{Z},g') - \mathcal{L}(\mathcal{Z},g) - v_{\lambda}(\mathcal{Z},g,g') \right]} \leq 0. \end{array}$$

$$\begin{array}{ll} \forall z \in \mathcal{Z} & L(z, \hat{h}_i) \leq -\frac{1}{\lambda} \log \mathbb{E}_{\pi_{-\lambda \Sigma_i}(dg)} e^{-\lambda L(z,g)} \\ \forall z \in \mathcal{Z} & L(z, h_\rho) \leq -\frac{1}{\lambda} \log \mathbb{E}_{\rho(dg)} e^{-\lambda L(z,g)} \\ \forall \mathbb{P} & \mathbb{E}_{\delta h_\rho(dg')} \mathbb{E}_{\mathbb{P}(dZ)} \log \mathbb{E}_{\rho(dg)} e^{\lambda [L(Z,g') - L(Z,g)]} \leq 0 \\ \Rightarrow v_\lambda \equiv 0 & \text{and} \quad \hat{\pi}(\rho) = \delta_{h_\rho} \end{array}$$



### The new concept: the variance function

Variance function associated with the  $(L, \mathcal{P}, \mathcal{G})$ -learning task

Let  $\overline{\mathcal{G}}$  be the set of all prediction functions (not only those in  $\mathcal{G}$ ). For any  $\lambda > 0$ , let  $v_{\lambda} : \mathcal{Z} \times \mathcal{G} \times \overline{\mathcal{G}} \to \mathbb{R}$  be such that

$$\begin{array}{l} \forall \ \rho \ \text{proba on} \ \mathcal{G} \quad \exists \ \hat{\pi}(\rho) \ \text{proba on} \ \bar{\mathcal{G}} \quad \forall \mathbb{P} \in \mathcal{P} \\ \mathbb{E}_{\hat{\pi}(\rho)(dg')} \mathbb{E}_{\mathbb{P}(dZ)} \log \mathbb{E}_{\rho(dg)} e^{\lambda \left[ \mathcal{L}(\mathcal{Z},g') - \mathcal{L}(\mathcal{Z},g) - v_{\lambda}(\mathcal{Z},g,g') \right]} \leq 0. \end{array}$$

$$\begin{array}{ll} \forall z \in \mathcal{Z} & L(z, \hat{h}_i) \leq -\frac{1}{\lambda} \log \mathbb{E}_{\pi_{-\lambda \Sigma_i}(dg)} e^{-\lambda L(z,g)}. \\ \forall z \in \mathcal{Z} & L(z, h_\rho) \leq -\frac{1}{\lambda} \log \mathbb{E}_{\rho(dg)} e^{-\lambda L(z,g)} \\ \forall \mathbb{P} & \mathbb{E}_{\delta_{h_\rho}(dg')} \mathbb{E}_{\mathbb{P}(dZ)} \log \mathbb{E}_{\rho(dg)} e^{\lambda [L(Z,g') - L(Z,g)]} \leq 0 \\ \Rightarrow v_\lambda \equiv 0 & \text{and} & \hat{\pi}(\rho) = \delta_{h_\rho} \end{array}$$



### The new concept: the variance function

Variance function associated with the  $(L, \mathcal{P}, \mathcal{G})$ -learning task

Let  $\overline{\mathcal{G}}$  be the set of all prediction functions (not only those in  $\mathcal{G}$ ). For any  $\lambda > 0$ , let  $v_{\lambda} : \mathcal{Z} \times \mathcal{G} \times \overline{\mathcal{G}} \to \mathbb{R}$  be such that

$$\begin{array}{l} \forall \ \rho \ \text{proba on} \ \mathcal{G} \quad \exists \ \hat{\pi}(\rho) \ \text{proba on} \ \bar{\mathcal{G}} \quad \forall \mathbb{P} \in \mathcal{P} \\ \mathbb{E}_{\hat{\pi}(\rho)(dg')} \mathbb{E}_{\mathbb{P}(dZ)} \log \mathbb{E}_{\rho(dg)} \boldsymbol{e}^{\lambda \left[ L(\mathcal{Z},g') - L(\mathcal{Z},g) - v_{\lambda}(\mathcal{Z},g,g') \right]} \le \mathbf{0} \end{array}$$

Whatever L,  $\mathcal{P}$  and  $\mathcal{G}$  are, we can take

$$v_{\lambda}(z,g,g') = rac{\lambda}{2} \left[ L(z,g) - L(z,g') \right]^2$$
 and  $\hat{\pi}(\rho) = \rho$ 

The algorithm and its risk bound

### The algorithm based on the variance function

#### **Generic Algorithm:**

- Let λ > 0. Let S<sub>0</sub>(g) = 0 for any g ∈ G.
   Define ρ̂<sub>0</sub> ≜ π̂(π) in the sense of the variance function definition.
   Draw a function ĝ<sub>0</sub> according to this distribution.
- 2 For any  $i \in \{1, \ldots, n\}$ , iteratively define

$$S_i(g) riangleq S_{i-1}(g) + L(Z_i,g) + v_\lambda(Z_i,g,\hat{g}_{i-1}) \qquad ext{for any } g \in \mathcal{G}.$$

and

$$\hat{\rho}_i \triangleq \hat{\pi}(\pi_{-\lambda S_i})$$

and draw a function  $\hat{g}_i$  according to the distribution  $\hat{\rho}_i$ .

Predict with a function drawn according to the uniform distribution on { \u03c3 g\_0, ..., \u03c3 g\_n }.



The algorithm and its risk bound

### Its generalization error bound

#### Main theorem

Let  $\pi$  be uniform on  ${\mathcal G}$  finite.

Let  $\Delta_{\lambda}(g,g') \triangleq \mathbb{E}_{\mathbb{P}(dZ)} v_{\lambda}(Z,g,g')$  for  $g \in G$  and  $g' \in \overline{\mathcal{G}}$ . The expected risk of the generic algorithm satisfies

$$\mathbb{E} {m R}(\hat{g}) \leq {m R}( ilde{g}) + \mathbb{E} \Delta_\lambda( ilde{g}, \hat{g}) + rac{\log |\mathcal{G}|}{\lambda(n+1)},$$

where  $\mathbb{E}$  denotes the expectation w.r.t. the training data distribution and the randomizing distributions.

#### Symmetrization trick on prediction functions:

Let  $z \in \mathcal{Z}$  and  $\alpha(g', g) \triangleq \lambda[L(z, g') - L(z, g)]$ . We have

$$\mathbb{E}_{
ho(dg')}\mathbb{E}_{
ho(dg)}e^{lpha(g',g)-rac{lpha^2(g',g)}{2}}\leq 1$$

• Whatever L,  $\mathcal{P}$  and  $\mathcal{G}$  are, we can take

$$v_{\lambda}(z,g,g') = rac{\lambda}{2} ig[ L(z,g) - L(z,g') ig]^2$$
 and  $\hat{\pi}(
ho) = 
ho.$ 

#### Corollary of the main theorem

Let  $V(g,g') = \mathbb{E}_{\mathbb{P}(dZ)} \{ [L(Z,g) - L(Z,g')]^2 \}$ . Our generic algorithm applied with  $v_{\lambda}(Z,g,g') = \lambda [L(Z,g) - L(Z,g')]^2/2$  and  $\hat{\pi}(\rho) = \rho$  satisfies

$$\mathbb{E} m{R}(\hat{g}) \leq m{R}( ilde{g}) + rac{\lambda}{2} \mathbb{E} m{V}( ilde{g}, \hat{g}) + rac{\log |\mathcal{G}|}{\lambda(n+1)}$$

#### Symmetrization trick on prediction functions:

Let  $z \in \mathcal{Z}$  and  $\alpha(g',g) \triangleq \lambda[L(z,g') - L(z,g)]$ . We have

$$\mathbb{E}_{
ho(dg')}\mathbb{E}_{
ho(dg)}e^{lpha(g',g)-rac{lpha^2(g',g)}{2}}\leq 1$$

• Whatever L,  $\mathcal{P}$  and  $\mathcal{G}$  are, we can take

$$v_{\lambda}(z,g,g') = rac{\lambda}{2} ig[ L(z,g) - L(z,g') ig]^2$$
 and  $\hat{\pi}(
ho) = 
ho.$ 

#### Corollary of the main theorem

Let  $V(g,g') = \mathbb{E}_{\mathbb{P}(dZ)} \{ [L(Z,g) - L(Z,g')]^2 \}$ . Our generic algorithm applied with  $v_{\lambda}(Z,g,g') = \lambda [L(Z,g) - L(Z,g')]^2/2$  and  $\hat{\pi}(\rho) = \rho$  satisfies

$$\mathbb{E} R(\hat{m{g}}) \leq R( ilde{g}) + rac{\lambda}{2} \mathbb{E} V( ilde{g}, \hat{m{g}}) + rac{\log |\mathcal{G}|}{\lambda(n+1)}$$



Application to general loss function

### Making the bound more explicit

$$\mathbb{E} {\it R}(\hat{{\it g}}) \leq {\it R}( ilde{g}) + rac{\lambda}{2} \mathbb{E} {\it V}( ilde{g}, \hat{{\it g}}) + rac{\log |\mathcal{G}|}{\lambda(n+1)}$$

Generalized Mammen and Tsybakov's assumption

There exist  $0 \le \gamma \le 1$  and a prediction function  $g^*$  (not necessarily in  $\mathcal{G}$ ) such that  $V(g, g^*) \le c[R(g) - R(g^*)]^{\gamma}$  for any  $g \in \mathcal{G}$ 

• When  $\gamma = 1$ ,

$$\mathbb{E}R(\hat{g}) - R(g^*) \leq rac{1+c\lambda}{1-c\lambda} ig[R( ilde{g}) - R(g^*)ig] + rac{\log|\mathcal{G}|}{(1-c\lambda)\lambda(n+1)}$$

In particular, for  $\lambda = 1/2c$ , when  $g^*$  belongs to  $\mathcal{G}$ , we get  $\mathbb{E}R(\hat{g}) \leq R(\tilde{g}) + \frac{4c \log |\mathcal{G}|}{n+1}$ .

• When  $\gamma < 1$ , for any  $0 < \beta < 1$  and for  $\tilde{R} \triangleq R(\tilde{g}) - R(g^*)$ ,

$$\mathbb{E}R(\hat{g}) - R(g^*) \leq \left\{ \frac{1}{\beta} \left( [\tilde{R} + c\lambda \tilde{R}^{\gamma}] + \frac{\log |\mathcal{G}|}{\lambda(n+1)} \right) \right\} \vee \left( \frac{c\lambda}{1-\beta} \right)^{\frac{1}{1-\gamma}}.$$



Application to general loss function

### Making the bound more explicit

$$\mathbb{E} R(\hat{m{g}}) \leq R( ilde{g}) + rac{\lambda}{2} \mathbb{E} V( ilde{g}, \hat{m{g}}) + rac{\log |\mathcal{G}|}{\lambda(n+1)}$$

#### Generalized Mammen and Tsybakov's assumption

There exist  $0 \le \gamma \le 1$  and a prediction function  $g^*$  (not necessarily in  $\mathcal{G}$ ) such that  $V(g, g^*) \le c[R(g) - R(g^*)]^{\gamma}$  for any  $g \in \mathcal{G}$ 

• When  $\gamma = 1$ ,

$$\mathbb{E} R(\hat{m{g}}) - R(m{g}^*) \leq rac{1+c\lambda}{1-c\lambda} ig[ R( ilde{g}) - R(m{g}^*) ig] + rac{\log |\mathcal{G}|}{(1-c\lambda)\lambda(n+1)}$$

In particular, for  $\lambda = 1/2c$ , when  $g^*$  belongs to  $\mathcal{G}$ , we get  $\mathbb{E}R(\hat{g}) \leq R(\tilde{g}) + \frac{4c \log |\mathcal{G}|}{n+1}$ .

• When  $\gamma < 1$ , for any  $0 < \beta < 1$  and for  $\tilde{R} \triangleq R(\tilde{g}) - R(g^*)$ ,

$$\mathbb{E}R(\hat{g}) - R(g^*) \leq \left\{ \frac{1}{\beta} \left( [\tilde{R} + c\lambda \tilde{R}^{\gamma}] + \frac{\log |\mathcal{G}|}{\lambda(n+1)} \right) \right\} \vee \left( \frac{c\lambda}{1-\beta} \right)^{\frac{1}{1-\gamma}}.$$

### Comparaison with standard-style risk bounds

 $\text{Recall } V(g,g') = \mathbb{E}_{\mathbb{P}(dZ)} \big\{ [L(Z,g) - L(Z,g')]^2 \big\}.$ 

- Vapnik-Cervonenkis' symmetrization (i.e. use of a second sample) leads to g<sub>ERM</sub> such that

$$\mathbb{E}R(\hat{g}_{\mathsf{ERM}}) \leq R(\tilde{g}) + \lambda \mathbb{E}V(\tilde{g}, \hat{g}_{\mathsf{ERM}}) + rac{\log(e|\mathcal{G}|)}{\lambda n} + \lambda \mathbb{E}rac{1}{n} \sum_{i=1}^{n} [L(Z_i, \tilde{g}) - L(Z_i, \hat{g}_{\mathsf{ERM}})]^2.$$

Straightforward approach without symmetrizing but requiring

$$\sup_{g\in \mathcal{G},g'\in \mathcal{G}} |L(Z,g') - L(Z,g)| \leq A$$

leads to  $\hat{g}_{\text{ERM}}$  such that

 $\mathbb{E}R(\hat{g}_{\mathsf{ERM}}) \leq R(\tilde{g}) + \lambda \varphi(\lambda A) \mathbb{E}V(\tilde{g}, \hat{g}_{\mathsf{ERM}}) + \frac{\log(e|\mathcal{G}|)}{\lambda n},$ 

where  $\varphi(t) \triangleq \frac{e^t - 1 - t}{t^2}$  and  $\varphi(0) = \frac{1}{2}$  by continuity.

### Comparaison with standard-style risk bounds

 $\text{Recall } V(g,g') = \mathbb{E}_{\mathbb{P}(dZ)} \big\{ [L(Z,g) - L(Z,g')]^2 \big\}.$ 

- Vapnik-Cervonenkis' symmetrization (i.e. use of a second sample) leads to g<sub>ERM</sub> such that

$$\mathbb{E} R(\hat{g}_{\mathsf{ERM}}) \leq R( ilde{g}) + \lambda \mathbb{E} V( ilde{g}, \hat{g}_{\mathsf{ERM}}) + rac{\log(e|\mathcal{G}|)}{\lambda n} \ + \lambda \mathbb{E} rac{1}{n} \sum_{i=1}^{n} [L(Z_i, ilde{g}) - L(Z_i, \hat{g}_{\mathsf{ERM}})]^2.$$

Straightforward approach without symmetrizing but requiring

$$\sup_{g\in\mathcal{G},g'\in\mathcal{G}}|L(Z,g')-L(Z,g)|\leq A$$

leads to  $\hat{g}_{\text{ERM}}$  such that

 $\mathbb{E}R(\hat{g}_{\mathsf{ERM}}) \leq R(\tilde{g}) + \lambda \varphi(\lambda A) \mathbb{E}V(\tilde{g}, \hat{g}_{\mathsf{ERM}}) + \frac{\log(e|\mathcal{G}|)}{\lambda n},$ 

where  $\varphi(t) \triangleq \frac{e^t - 1 - t}{t^2}$  and  $\varphi(0) = \frac{1}{2}$  by continuity.



### Comparaison with standard-style risk bounds

 $\text{Recall } V(g,g') = \mathbb{E}_{\mathbb{P}(dZ)} \big\{ [L(Z,g) - L(Z,g')]^2 \big\}.$ 

- Vapnik-Cervonenkis' symmetrization (i.e. use of a second sample) leads to g<sub>ERM</sub> such that

$$\begin{split} \mathbb{E} R(\hat{g}_{\mathsf{ERM}}) &\leq R(\tilde{g}) + \lambda \mathbb{E} V(\tilde{g}, \hat{g}_{\mathsf{ERM}}) + \frac{\mathsf{log}(e|\mathcal{G}|)}{\lambda n} \\ &+ \lambda \mathbb{E} \frac{1}{n} \sum_{i=1}^{n} [L(Z_i, \tilde{g}) - L(Z_i, \hat{g}_{\mathsf{ERM}})]^2. \end{split}$$

Straightforward approach without symmetrizing but requiring

$$\sup_{g\in\mathcal{G},g'\in\mathcal{G}} |L(Z,g') - L(Z,g)| \leq A$$

leads to  $\hat{g}_{\text{ERM}}$  such that

$$\mathbb{E} R(\hat{g}_{\mathsf{ERM}}) \leq R(\tilde{g}) + \lambda \varphi(\lambda A) \mathbb{E} V(\tilde{g}, \hat{g}_{\mathsf{ERM}}) + \frac{\log(e|\mathcal{G}|)}{\lambda n},$$

where  $\varphi(t) \triangleq \frac{e^t - 1 - t}{t^2}$  and  $\varphi(0) = \frac{1}{2}$  by continuity.

Contributions

Application to least square loss

#### Application to least square loss Study of the influence of the tail distribution

#### Framework:

- $L(Z,g) = [Y g(X)]^2$
- $\exists B > 0 \quad \forall g \in \mathcal{G} \quad \|g\|_{\infty} \leq B$
- $\bullet\,$  Predict as well as the best function in  ${\cal G}$

#### Three cases:

- Bounded output :  $|Y| \leq B$  a.s.
- Output with finite exponential moments :

 $\exists \alpha, M > 0 \quad \forall x \in \mathcal{X} \quad E[e^{\alpha |Y|} | X = x] \leq M$ 

• Output with finite moments :

 $\mathbb{E}|Y|^s \leq A$  for some  $s \geq 2$  and A > 0



Application to least square loss

### Bounded output : $|Y| \leq B$ a.s.

#### The variance function (recall):

 $v_{\lambda}: \mathcal{Z} \times \mathcal{G} \times \overline{\mathcal{G}} \to \mathbb{R} \text{ is s.t. } \forall \rho \text{ proba on } \mathcal{G}, \exists \hat{\pi}(\rho) \text{ proba on } \overline{\mathcal{G}}, \forall \mathbb{P} \in \mathcal{P},$ 

$$\mathbb{E}_{\hat{\pi}(
ho)(dg')}\mathbb{E}_{\mathbb{P}(dZ)}\log\mathbb{E}_{
ho(dg)}e^{\lambda\left[L(Z,g')-L(Z,g)-v_{\lambda}(Z,g,g')
ight]}\leq 0.$$

#### Theorem

One can choose  $v_{1/(2B^2)} \equiv 0$ . The corresponding generic algorithm satisfies

$$R(\hat{g}) \leq R( ilde{g}) + 2B^2rac{\log|\mathcal{G}|}{n+1}$$

 $v_{1/(2B^2)}$  can be associated with  $\hat{\pi}(\rho) = \delta_{h_{\rho}}$ , where  $h_{\rho} \in \overline{\mathcal{G}}$  is taken s.t.

 $orall (x,y) \in \mathcal{Z} \quad [y - h_{
ho}(x)]^2 \leq -2B^2 \log \mathbb{E}_{
ho(dg)} e^{-[y - g(x)]^2/(2B^2)}$ 



Application to least square loss

### Bounded output : $|Y| \leq B$ a.s.

#### The variance function (recall):

 $v_{\lambda}: \mathcal{Z} \times \mathcal{G} \times \overline{\mathcal{G}} \to \mathbb{R} \text{ is s.t. } \forall \rho \text{ proba on } \mathcal{G}, \exists \hat{\pi}(\rho) \text{ proba on } \overline{\mathcal{G}}, \forall \mathbb{P} \in \mathcal{P},$ 

$$\mathbb{E}_{\hat{\pi}(\rho)(dg')}\mathbb{E}_{\mathbb{P}(dZ)}\log\mathbb{E}_{\rho(dg)}e^{\lambda\left[L(Z,g')-L(Z,g)-v_{\lambda}(Z,g,g')\right]}\leq 0$$

#### Theorem

One can choose  $v_{1/(2B^2)} \equiv 0$ . The corresponding generic algorithm satisfies

$$R(\hat{g}) \leq R( ilde{g}) + 2B^2rac{\log|\mathcal{G}|}{n+1}$$

 $v_{1/(2B^2)}$  can be associated with  $\hat{\pi}(\rho) = \delta_{h_{\rho}}$ , where  $h_{\rho} \in \bar{\mathcal{G}}$  is taken s.t.

$$orall \left(x,y
ight)\in\mathcal{Z} \quad [y-h_{
ho}(x)]^2\leq -2B^2\log\mathbb{E}_{
ho(dg)}e^{-[y-g(x)]^2/(2B^2)}$$



Application to least square loss

Output with finite exponential moments:  $\exists \alpha, M > 0 \quad \forall x \in \mathcal{X} \quad E[e^{\alpha |Y|} | X = x] \leq M$ 

#### The variance function (recall):

 $v_{\lambda}: \mathcal{Z} imes \mathcal{G} imes \overline{\mathcal{G}} o \mathbb{R}$  is s.t.  $\forall \rho \text{ proba on } \mathcal{G}, \exists \hat{\pi}(\rho) \text{ proba on } \overline{\mathcal{G}}, \forall \mathbb{P} \in \mathcal{P},$ 

$$\mathbb{E}_{\hat{\pi}(
ho)(dg')}\mathbb{E}_{\mathbb{P}(dZ)}\log\mathbb{E}_{
ho(dg)}oldsymbol{e}^{\lambda\left[L(Z,g')-L(Z,g)-v_{\lambda}(Z,g,g')
ight]}\leq 0.$$

#### Theorem

For an appropriate  $\lambda = C(\alpha, M, B)$ , we can choose  $v_{\lambda} \equiv 0$ . The corresponding generic algorithm satisfies

$$R(\hat{g}) \leq R( ilde{g}) + rac{1}{\lambda} rac{\log |\mathcal{G}|}{n+1}$$

 $v_{\lambda}$  can be associated with  $\hat{\pi}(\rho) = \delta_{\mathbb{E}_{o(da)}g}$ 



Application to least square loss

Output with finite exponential moments:  $\exists \alpha, M > 0 \quad \forall x \in \mathcal{X} \quad E[e^{\alpha |Y|} | X = x] \leq M$ 

#### The variance function (recall):

 $v_{\lambda}: \mathcal{Z} \times \mathcal{G} \times \overline{\mathcal{G}} \to \mathbb{R}$  is s.t.  $\forall \rho \text{ proba on } \mathcal{G}, \exists \hat{\pi}(\rho) \text{ proba on } \overline{\mathcal{G}}, \forall \mathbb{P} \in \mathcal{P},$ 

$$\mathbb{E}_{\hat{\pi}(
ho)(dg')}\mathbb{E}_{\mathbb{P}(dZ)}\log\mathbb{E}_{
ho(dg)}oldsymbol{e}^{\lambda\left[L(Z,g')-L(Z,g)-oldsymbol{v}_{\lambda}(Z,g,g')
ight]}\leq 0.$$

#### Theorem

For an appropriate  $\lambda = C(\alpha, M, B)$ , we can choose  $v_{\lambda} \equiv 0$ . The corresponding generic algorithm satisfies

$$R(\hat{g}) \leq R( ilde{g}) + rac{1}{\lambda} rac{\log |\mathcal{G}|}{n+1}$$

 $v_{\lambda}$  can be associated with  $\hat{\pi}(\rho) = \delta_{\mathbb{E}_{\rho(d\alpha)}g}$ .



◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□▶ ◆○◆

Application to least square loss

### Output with finite moments: $\mathbb{E}|Y|^{s} \leq A$ for some $s \geq 2$ and A > 0

#### Theorem

Let 
$$N = \frac{n+1}{\log |\mathcal{G}|}$$
. For  $\lambda = \frac{C}{B^2} N^{-\frac{2}{s+2}}$ , we can choose

$$v_{\lambda}(z,g,g') = C \Big[ B|y| \mathbf{1}_{|y| \ge CBN^{rac{2}{s+2}}} + N^{-rac{2}{s+2}}y^2 \mathbf{1}_{CBN^{rac{1}{s+2}} \le |y| < CBN^{rac{2}{s+2}}}$$

The corresponding generic algorithm satisfies

 $R(\hat{g}) \leq R(\tilde{g}) + CB^2 N^{-rac{s}{s+2}}.$ 

 $u_\lambda$  can be associated with  $\hat{\pi}(
ho)=\delta_{\mathbb{E}_{
ho(dg)}g}.$ 



◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□▶ ◆○◆

Application to least square loss

### Output with finite moments: $\mathbb{E}|Y|^{s} \leq A$ for some $s \geq 2$ and A > 0

#### Theorem

Let 
$$N = \frac{n+1}{\log |\mathcal{G}|}$$
. For  $\lambda = \frac{C}{B^2} N^{-\frac{2}{s+2}}$ , we can choose

$$v_{\lambda}(z, g, g') = C \Big[ B|y| \mathbf{1}_{|y| \ge CBN^{rac{2}{s+2}}} + N^{-rac{2}{s+2}}y^2 \mathbf{1}_{CBN^{rac{1}{s+2}} \le |y| < CBN^{rac{2}{s+2}}}$$

The corresponding generic algorithm satisfies

$$R(\hat{g}) \leq R( ilde{g}) + CB^2 N^{-rac{s}{s+2}}.$$

 $v_{\lambda}$  can be associated with  $\hat{\pi}(\rho) = \delta_{\mathbb{E}_{\rho(dg)}g}$ .

▲□▶▲□▶▲□▶▲□▶ 三回▲ のの⊙

### Conclusion

- Define the concept of variance function
- Obtain a randomized algorithm that
  - allows to recover recent model selection type results from Juditsky, Rigollet and Tsybakov (2005)
  - benefits from worst-case analysis type arguments
- Propose a new symmetrization trick on the prediction function space that improves
  - a standard-style statistical bound
  - bounds in heavy noise setting

Appendix

For Further Reading

### More details in ...

#### D. Haussler, J. Kivinen and M. K. Warmuth,

Sequential prediction of individual sequences under general loss functions,

IEEE Trans. on Information Theory, 44(5):1906–1925, 1998.

J. Kivinen and M. K. Warmuth,

Averaging Expert Predictions,

Lecture Notes in Computer Science, 1572:153–167, 1999.



A. Juditsky, P. Rigollet and A. B. Tsybakov,

#### Learning by mirror averaging,

Technical report available from ArXiv website, 2005.

#### J.-Y. Audibert,

Model selection type aggregation with better variance control, *Technical report available from my webpage*, 2006.