
Motivation Contributions

A randomized online learning algorithm for
better variance control

Jean-Yves Audibert

ParisTech - Ecole des Ponts
CERTIS

Conference on Learning Theory, 2006



Motivation Contributions

Outline

1 Motivation
The learning task
The progressive mixture rule
A striking sequential prediction result in least square
regression

2 Contributions
The variance function
The algorithm and its risk bound
Application to general loss function
Application to least square loss



Motivation Contributions

Outline

1 Motivation
The learning task
The progressive mixture rule
A striking sequential prediction result in least square
regression

2 Contributions
The variance function
The algorithm and its risk bound
Application to general loss function
Application to least square loss



Motivation Contributions

The learning task

A standard learning framework...

Training data Z n
1 : Zi = (Xi , Yi) i = 1, . . . , n i.i.d. ∼ P

Prediction function: g : X → Y
Loss: L(Z , g)

Risk: R(g) = EP(dZ )L(Z , g)

Model:
P = the set of proba on Z in which we assume that P is
G = a set of prediction functions

Best prediction function in G: g̃ = argminGR

The (L,P,G)-learning task:

Predict as well as g̃. More formally: find a mapping Z n
1 7→ ĝ such that

for any P ∈ P, we have
EZ n

1
R(ĝ) ≤ R(g̃)+ small term
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The (L,P,G)-learning task:

Predict as well as g̃. More formally: find a mapping Z n
1 7→ ĝ such that

for any P ∈ P, we have
EZ n

1
R(ĝ) ≤ R(g̃)+ C(log |G|)/n for L(Z , g) = [Y − g(X )]2



Motivation Contributions

The learning task

...however unusual properties

To be “optimal”, we need to choose ĝ outside the model G.
For least square loss (i.e. L(Z , g) = [Y − g(X )]2), the only
known optimal algorithm is the progressive mixture rule
(see next slides)
The proof is not based on bounds on the supremum of
empirical processes
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The progressive mixture rule

The progressive mixture rule
Notation

Cumulative loss of g up to time i: Σi(g) =
∑i

j=1 L(Zj , g)

Prior distribution on G: π

Gibbs distribution: for any h : G → R,

π−h(dg) =
e−h(g)

Eg′∼πe−h(g′)
· π(dg)∝ e−h(g) · π(dg)

Key idea:

π−h concentrates on the prediction functions for which h is minimum.

Typical example of Gibbs distribution: π−λΣi with λ > 0
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The progressive mixture rule

The progressive mixture rule
Definition and property

Definition :

Let λ > 0. Predict according to ĝ = 1
n+1

∑n
i=0 Eπ−λΣi (dg)g.

Property [Catoni (1999), Juditsky, Rigollet & Tsybakov (2005)]:

For the least square loss, under the assumptions

the output has exponential moments
(i.e. ∃α, M > 0 ∀x ∈ X E [eα|Y ||X = x ] ≤ M)

the functions of the model are uniformly bounded
∃B > 0 ∀g ∈ G, ‖g‖∞ ≤ B

λ small enough, i.e. λ ≤ C(α, M, B)

ER(ĝ) ≤ R(g̃) +
log |G|

λ(n + 1)
.
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A striking sequential prediction result in least square regression

Sequential prediction framework

G = set of prediction functions (or static experts)
No probabilistic assumption on the data
Context: At time i , you know Z1, . . . , Zi−1 and you have to
give a prediction function ĥi , which will be only used to
predict the output associated with Xi .
Target: Predict as well as the best function in terms of
cumulative loss:∑n

i=1 L(Zi , ĥi) ≤ ming∈G Σn(g) + small term
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A striking sequential prediction result in least square regression

Sequential prediction in least square setting

Key idea [Vovk (1990), Haussler, Kivinen & Warmuth (1998)]:

Assume that Y = [−B; B] (i.e. bounded outputs). Let λ = 1
2B2 .

For any i ∈ {1, . . . , n}, let ĥi be a prediction function such that

∀ z ∈ Z L(z, ĥi) ≤ − 1
λ log Eπ−λΣi−1 (dg)e−λL(z,g).

ĥi exists even if it has no simple explicit formula!

Theorem [Haussler, Kivinen & Warmuth (1998)]:

The cumulative loss on Z n
1 of the strategy in which the

prediction at time i is done according to ĥi is bounded with

ming∈G Σn(g) + 2B2 log |G|.
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A striking sequential prediction result in least square regression

Theorem [Haussler, Kivinen & Warmuth (1998)]:

The strategy in which the prediction at time i is done according to ĥi

satisfies
∑n+1

i=1 L(Zi , ĥi−1) ≤ infg∈G Σn+1(g) + 2B2 log |G|.

⇓
Result

The algorithm predicting according to ĝ = 1
n+1

∑n
i=0 ĥi satisfies

ER(ĝ) ≤ R(g̃) + 2B2 log |G|
n+1

To be compared with
ER(progressive mixture rule) ≤ R(g̃) + C(α, M, B) log |G|

n+1 ,

Worst case analysis leads to

optimal convergence rate for our learning task
even better constants when the output is bounded!
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The variance function

The new concept: the variance function

Variance function associated with the (L,P,G)-learning task

Let Ḡ be the set of all prediction functions (not only those in G).
For any λ > 0, let vλ : Z × G × Ḡ → R be such that

∀ ρ proba on G ∃ π̂(ρ) proba on Ḡ ∀P ∈ P
Eπ̂(ρ)(dg′)EP(dZ ) log Eρ(dg)e

λ
[

L(Z ,g′)−L(Z ,g)−vλ(Z ,g,g′)
]
≤ 0.



Motivation Contributions

The variance function

The new concept: the variance function

Variance function associated with the (L,P,G)-learning task
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∀ z ∈ Z L(z, hρ) ≤ − 1
λ log Eρ(dg)e−λL(z,g)

∀P Eδhρ (dg′)EP(dZ ) log Eρ(dg)eλ[L(Z ,g′)−L(Z ,g)] ≤ 0.

⇒ vλ ≡ 0 and π̂(ρ) = δhρ
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vλ(z, g, g′) =
λ

2
[
L(z, g)− L(z, g′)

]2 and π̂(ρ) = ρ.
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The algorithm and its risk bound

The algorithm based on the variance function

Generic Algorithm:

1 Let λ > 0. Let S0(g) = 0 for any g ∈ G.
Define ρ̂0 , π̂(π) in the sense of the variance function definition.
Draw a function ĝ0 according to this distribution.

2 For any i ∈ {1, . . . , n}, iteratively define

Si(g) , Si−1(g) + L(Zi , g) + vλ(Zi , g, ĝi−1) for any g ∈ G.

and
ρ̂i , π̂(π−λSi )

and draw a function ĝi according to the distribution ρ̂i .

3 Predict with a function drawn according to the uniform
distribution on {ĝ0, . . . , ĝn}.
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The algorithm and its risk bound

Its generalization error bound

Main theorem
Let π be uniform on G finite.
Let ∆λ(g, g′) , EP(dZ )vλ(Z , g, g′) for g ∈ G and g′ ∈ Ḡ.
The expected risk of the generic algorithm satisfies

ER(ĝ) ≤ R(g̃) + E∆λ(g̃, ĝ) + log |G|
λ(n+1) ,

where E denotes the expectation w.r.t. the training data
distribution and the randomizing distributions.
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Application to general loss function

Symmetrization trick on prediction functions:

Let z ∈ Z and α(g′, g) , λ[L(z, g′)− L(z, g)]. We have

Eρ(dg′)Eρ(dg)eα(g′,g)−α2(g′,g)
2 ≤ 1

Whatever L, P and G are, we can take

vλ(z, g, g′) =
λ

2
[
L(z, g)− L(z, g′)

]2 and π̂(ρ) = ρ.

Corollary of the main theorem

Let V (g, g′) = EP(dZ )

{
[L(Z , g)− L(Z , g′)]2

}
. Our generic

algorithm applied with vλ(Z , g, g′) = λ[L(Z , g)− L(Z , g′)]2/2
and π̂(ρ) = ρ satisfies

ER(ĝ) ≤ R(g̃) + λ
2 EV (g̃, ĝ) + log |G|

λ(n+1)
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ER(ĝ) ≤ R(g̃) + λ
2 EV (g̃, ĝ) + log |G|
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Application to general loss function

Making the bound more explicit

ER(ĝ) ≤ R(g̃) + λ
2 EV (g̃, ĝ) + log |G|

λ(n+1)

Generalized Mammen and Tsybakov’s assumption

There exist 0 ≤ γ ≤ 1 and a prediction function g∗ (not necessarily in
G) such that V (g, g∗) ≤ c[R(g)− R(g∗)]γ for any g ∈ G

⇓
When γ = 1,

ER(ĝ)− R(g∗) ≤ 1+cλ
1−cλ

[
R(g̃)− R(g∗)

]
+ log |G|

(1−cλ)λ(n+1)

In particular, for λ = 1/2c, when g∗ belongs to G, we get
ER(ĝ) ≤ R(g̃) + 4c log |G|

n+1 .

When γ < 1, for any 0 < β < 1 and for R̃ , R(g̃)− R(g∗),

ER(ĝ)− R(g∗) ≤
{

1
β

(
[R̃ + cλR̃γ ] + log |G|

λ(n+1)

)}
∨

( cλ
1−β

) 1
1−γ .
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Application to general loss function

Comparaison with standard-style risk bounds

Recall V (g, g′) = EP(dZ )

{
[L(Z , g)− L(Z , g′)]2

}
.

Symmetrization on the prediction functions space leads to ĝ
such that ER(ĝ) ≤ R(g̃) + λ

2 EV (g̃, ĝ) + log |G|
λ(n+1)

Vapnik-Cervonenkis’ symmetrization (i.e. use of a second
sample) leads to ĝERM such that

ER(ĝERM) ≤ R(g̃) + λEV (g̃, ĝERM) + log(e|G|)
λn

+λE 1
n

∑n
i=1[L(Zi , g̃)− L(Zi , ĝERM)]2.

Straightforward approach without symmetrizing but requiring

supg∈G,g′∈G |L(Z , g′)− L(Z , g)| ≤ A

leads to ĝERM such that

ER(ĝERM) ≤ R(g̃) + λϕ(λA)EV (g̃, ĝERM) + log(e|G|)
λn ,

where ϕ(t) , et−1−t
t2 and ϕ(0) = 1

2 by continuity.
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such that ER(ĝ) ≤ R(g̃) + λ

2 EV (g̃, ĝ) + log |G|
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Application to least square loss

Application to least square loss
Study of the influence of the tail distribution

Framework:
L(Z , g) = [Y − g(X )]2

∃B > 0 ∀g ∈ G ‖g‖∞ ≤ B
Predict as well as the best function in G

Three cases:
Bounded output : |Y | ≤ B a.s.
Output with finite exponential moments :

∃α, M > 0 ∀x ∈ X E [eα|Y ||X = x ] ≤ M
Output with finite moments :

E|Y |s ≤ A for some s ≥ 2 and A > 0
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Application to least square loss

Bounded output : |Y | ≤ B a.s.

The variance function (recall):

vλ : Z × G × Ḡ → R is s.t. ∀ ρ proba on G,∃ π̂(ρ) proba on Ḡ,∀P ∈ P,

Eπ̂(ρ)(dg′)EP(dZ ) log Eρ(dg)e
λ
[

L(Z ,g′)−L(Z ,g)−vλ(Z ,g,g′)
]
≤ 0.

Theorem
One can choose v1/(2B2) ≡ 0. The corresponding generic algorithm
satisfies

R(ĝ) ≤ R(g̃) + 2B2 log |G|
n + 1

v1/(2B2) can be associated with π̂(ρ) = δhρ
, where hρ ∈ Ḡ is taken s.t.

∀ (x , y) ∈ Z [y − hρ(x)]2 ≤ −2B2 log Eρ(dg)e−[y−g(x)]2/(2B2).
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Application to least square loss

Output with finite exponential moments:
∃α, M > 0 ∀x ∈ X E [eα|Y ||X = x ] ≤ M

The variance function (recall):

vλ : Z × G × Ḡ → R is s.t. ∀ ρ proba on G,∃ π̂(ρ) proba on Ḡ,∀P ∈ P,

Eπ̂(ρ)(dg′)EP(dZ ) log Eρ(dg)e
λ
[

L(Z ,g′)−L(Z ,g)−vλ(Z ,g,g′)
]
≤ 0.

Theorem
For an appropriate λ = C(α, M, B), we can choose vλ ≡ 0.
The corresponding generic algorithm satisfies

R(ĝ) ≤ R(g̃) + 1
λ

log |G|
n+1

vλ can be associated with π̂(ρ) = δEρ(dg)g .
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Application to least square loss

Output with finite moments:
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Motivation Contributions

Conclusion

Define the concept of variance function
Obtain a randomized algorithm that

allows to recover recent model selection type results from
Juditsky, Rigollet and Tsybakov (2005)
benefits from worst-case analysis type arguments

Propose a new symmetrization trick on the prediction
function space that improves

a standard-style statistical bound
bounds in heavy noise setting



Appendix

For Further Reading

More details in ...

D. Haussler, J. Kivinen and M. K. Warmuth,
Sequential prediction of individual sequences under general loss
functions,
IEEE Trans. on Information Theory, 44(5):1906–1925, 1998.

J. Kivinen and M. K. Warmuth,
Averaging Expert Predictions,
Lecture Notes in Computer Science, 1572:153–167, 1999.

A. Juditsky, P. Rigollet and A. B. Tsybakov,
Learning by mirror averaging,
Technical report available from ArXiv website, 2005.

J.-Y. Audibert,
Model selection type aggregation with better variance control,
Technical report available from my webpage, 2006.
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