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Abstract. This paper presents a real-valued negative selection algorithm with
good mathematical foundation that solves some of the drawbacks of our previ-
ous approach [11]. Specifically, it can produce a good estimate of the optimal
number of detectors needed to cover the non-self space, and the maximization
of the non-self coverage is done through an optimization algorithm with proven
convergence properties. The proposed method is a randomized algorithm based
on Monte Carlo methods. Experiments are performed to validate the assumptions
made while designing the algorithm and to evaluate its performance.3

1 Introduction

The negative selection (NS) algorithm is one of the most widely used techniques in the
field of artificial immune systems. It is primarily used to detect changes in data/behavior
patterns by generating detectors in the complementary space (given normal samples). In
the original version of the NS algorithm [8], the detectors are used directly to classify
new data as self (normal) or non-self (abnormal). Subsequent works have shown the
feasibility of combining the NS algorithm with classification algorithms [11]; in this
case, the generated detectors are used by the classification algorithm to learn high-level
anomaly detection functions. Regardless of how the detectors are used, a good coverage
of the non-self space is important for the anomaly detection process.

This paper focuses on the problem of efficient generation of detectors when a real-
valued representation of the self/non-self space is used. Other important issues con-
cerning the NS algorithm are discussed elsewhere (positive vs negative detection [6,9],
representation and matching rules [10,12], applications[3]), and thus they are not con-
sidered in this paper.

González et al. [11] proposed a Real-Valued Negative Selection (RNS) algorithm
based on heuristics that try to distribute the detectors in the non-self space in order
to maximize the coverage. This algorithm uses a real-valued representation for the
self/non-self space that differs from the binary representation used in original negative
selection algorithms [5,8]. This higher-level representation provides some advantages
such as increased expressiveness, the possibility of extracting high-level knowledge
from the generated detectors, and, in some cases, improved scalability [9,11]. However,
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this algorithm lacks the theoretical support of the binary negative selection algorithm
[5,6]. The main difficulties due to the lack of theoretical support include:

– The number of detectors needed to cover the non-self space, as well as the radius of
each detector, are not known in advance; hence, it is necessary to determine them
by a trial-and-error procedure.

– There is no guarantee that the algorithm will converge to an optimal or close-to-
optimal space coverage with minimum overlap.

This paper proposes a randomized RNS algorithm (RRNS) based on some mathemati-
cal models, which can provide specific criteria to setup the algorithmic parameters and
to assess the expected performance. The proposed algorithm is based on two main ideas:

– To estimate the volume of the self space, which, by complementarity, is also an
approximation of the volume of the non-self space. Using this volume, it is possible
to calculate how many hyper-spherical detectors (of a given radius) are needed to
cover the non-self space.

– To use a well known optimization algorithm, simulated annealing [13,16], to find
a good distribution of the detectors that maximizes the coverage of the non-self
space.

The algorithm is calledrandomizedbecause it is based on an important class of random-
ized algorithms known as Monte Carlo methods [2,7,14]. Specifically, it usesMonte
Carlo integrationto estimate the volume of the self (and non-self) space andsimulated
annealing[13,16] to optimize the distribution of detectors in the non-self space.

It is to be noted that this is not the first time that simulated annealing has been used
in an artificial immune algorithm. De Castro and Von Zuben [4] proposed a technique to
initialize feed-forward neural network weights, where the basic idea is to represent the
network weights by detectors which correspond ton-dimensional real-valued vectors.
The detectors are dispersed in the space by maximizing an energy function that takes
into account the inverse of the inter-detector affinity. De Castros’s approach is substan-
tially different from the one proposed here; his approach does not use the concept of
self/non-self distinction, and its main goal is producing diversity instead of performing
anomaly detection.

2 Randomized Real-Valued Negative Selection Algorithm (RRNS)

Similar to the RNS algorithm, the objective of this algorithm is to generate a set of
hyper-spherical detectors that cover the non-self space. The algorithm primarily con-
sists of two steps: first, it generates an initial set of detectors; second, it optimizes the
distribution of this set to maximize the non-self coverage. The input to the algorithm is
a set of samples from the self set,S′; the allowed variability in the self set,rself ; the
detector radius,rab; and a set of parameters,Π. The global structure of the algorithm
is shown in Figure 1.

Accordingly, the algorithm is implemented with two main functions: CALCULATE -
INIT-DETECTOR-SET (described in Section 2.1), which estimates the volume of the



RR-NEGATIVE-SELECTION(S′, rself , rab, Π)

S′ : set of self samples
rself : self variability threshold

rab : detector radius
Π : additional parameters

1: D ←CALCULATE -INIT-DETECTOR-SET(S′, rself , rab)
2: D′ ←OPTIMIZE-DETECTOR-DISTRIBUTION(D, rab, S′, rself )
3: ReturnD′

Fig. 1.Randomized real-valued negative selection (RRNS) algorithm.

non-self space in order to produce a good initial set of detectors, and OPTIMIZE-
DETECTOR-DISTRIBUTION (details in Section 2.2), which distributes the detectors uni-
formly in the non-self space based on simulated annealing optimization. These two
functions will be discussed in the following sections.

2.1 Determining the number of detectors

Let Vd be the volume covered by an individual detector and letVnon-selfbe the volume
of the non-self space. A rough approximation of the number of detectors can be given
by:

numab =
Vnon-self

Vd
. (1)

Note that this is a very optimistic approximation since it does not take into ac-
count the fact that, in general, it is impossible to cover a given volume with spherical
detectors without allowing some overlapping. If overlapping is allowed, the effective
covering volume is not anymore the volume of the hypersphere that defines a detec-
tor, but a smaller value. We define the covering volume of a detector as the volume
of the inscribed hypercube. The main reason to choose this definition is that there is a
straightforward way to cover ann-dimensional region using hypercubes without holes.

According to the previous discussion, the effective volume covered by a detectord
with radiusr is defined as:

Vd =
(

2r√
n

)n

. (2)

Using Equations (1) and (2), it is possible to calculate a good approximation of the
number of detectors with a given radius needed to cover the non-self space. This will
require, however, the knowledge of the volume of the non-self space, which will be
addressed in the remaining part of this section.

Calculating the volume of the self (non-self) setThe self/non-self space,U , corre-
sponds to the unitary hypercube,[0, 1]n. Clearly, the volume of the self/non-self space
is equal to 1.0; therefore, the volume of the non-self space is defined as:

Vnon-self= 1− Vself.



In most cases, the input to the NS algorithm is a subset of the self set. Thus, in
general, the entire volume of the self space is not known. We assume a model of the
self set,Ŝ, that is defined in terms of a set of self samples,S′. The basic assumption
in this definition is that an element that isclose enoughto a self sample is considered
as self. The closeness is specified formally by a variability threshold,rself, that defines
the minimum distance between a self sample and an elementx, such thatx can be
considered part of the self set. The model of the self set,Ŝ, is defined as follows:

Ŝ :=
{
x ∈ U | ∃s ∈ S′, ‖s− x‖ ≤ rself

}
.

We defineVself as the volume of̂S, which is calculated as:

V
Ŝ

:=
∫

U

χ
Ŝ
(x)dx ,

whereχ
Ŝ

corresponds to the characteristic function of the setŜ defined by

χ
Ŝ
(x) :=

{
1 if x ∈ Ŝ

0 if x /∈ Ŝ
.

It is possible to produce an estimate ofV
Ŝ

using random sampling. The basic idea is
to generate a sequence{xi}i=1..m of random samples uniformly distributed inU . The
expected value ofχ

Ŝ
(xi) is

E
[
χ

Ŝ
(xi)

]
=

∫
U

χ
Ŝ
(x)dx = V

Ŝ
;

therefore, an estimate of E
[
χ

Ŝ
(xi)

]
is also an estimate ofV

Ŝ
. As it is well known, a

good estimate of the mean of a random variable (expected value) is the mean of a set

of samples; so, we use the average of
{

χ
Ŝ
(xi)

}
i=1..m

as an estimate,̂V
Ŝ

, of the self

volume:

V
Ŝ
≈ V̂

Ŝ
=

∑m
i=1 χ

Ŝ
(xi)

m
. (3)

The estimation of a defined integral by averaging a set of random samples is known
asMonte Carlo integration[2,14]. The main advantage of this method, in contrary to
other non-probabilistic methods, is that it is possible to calculate an interval of confi-
dence for the estimated integral. Using thecentral limit theorem[1], it is possible to
calculate such interval of confidence as:

Pr

|V̂Ŝ
− V

Ŝ
| < 3

√
V̂

Ŝ
− V̂

Ŝ

2

m

 ≈ 0.998. (4)



CALCULATE -INIT-DETECTOR-SET(S′, rself , rab, εmax, init_iter)

S′ : set of self samples εmax : maximum allowed error
rself : self variability thresholdmmin : initial number of iterations

rab : detector radius n : dimension of the self/non-self space

1: num_hits← 0
2: m← 0
3: Repeat
4: m← m + 1
5: x←uniformly distributed random sample from[1, 0]n

6: y ←NEAREST-NEIGHBOR(S′, x)
7: If ‖x− y‖ ≤ rself

8: Thennum_hits← num_hits + 1
9: EndIf
10: V̂

Ŝ
← num_hits

m
. Eq. 3

11: ε← 3

√
V̂

Ŝ
−V̂

Ŝ

2

m
. Eq. 4

12: Until m ≥ mmin andε ≤ εmax

13:numab ←
⌊

1−V̂
Ŝ(

2rab√
n

)n

⌋
. Eq. 2

14:D ← Ø
15: Repeat
16: x←uniformly distributed random sample from[1, 0]n

17: y ←NEAREST-NEIGHBOR(S′, x)
18: If ‖x− y‖ ≥ rself

19: ThenD ← D ∪ {x}
20: EndIf
21: Until |D| = numab

22: ReturnD

Fig. 2.Algorithm to calculate an initial detector set.

Algorithm to calculate an initial set of detectors Now that we know how to calcu-
late the area of the self (non-self) space, it is straightforward to calculate the number
of detectors that are needed to cover the non-self space and to generate an initial set
of detectors located in the non-self space. The pseudo-code of this algorithm is given
below (Figure 2).

The algorithm receives (as input) samples from self (S′), the variability radius of the
self (rself ), the radius of each detector (rab), the maximum allowed error (εmax), and a
minimum number of iterations that have to be performed (mmin). The purpose of the
last parameter,mmin, is to produce a good initial estimate of the error (ε) by enforcing
a minimum number of iterations. This prevents a premature stop of the algorithm due to
a poor initial estimation ofε. Notice that the algorithm can be easily modified to receive
as input the number of detectors instead of the detector radius (rab). In that case, line
13 (Figure 2) must be replaced by

rab ←
n

√
1− V̂

Ŝ

numab
·
√

n

2
. (5)



2.2 Improving the detector distribution

We describe a procedure to improve the distribution of detectors produced by theCALCULATE -
INIT-DETECTOR-SET algorithm (Figure 2) in order to optimize the coverage of the non-
self space.

The problem of finding a set with good distribution of detectors can be stated as an
optimization problem as follows:

Maximize:
V (D) = V olume {x ∈ U | ∃d ∈ D, ‖x− d‖ ≤ rab} , (6)

restricted to:

{s ∈ S′ | ∃d ∈ D, ‖s− d‖ ≤ rab} = Ø (not covering of self), (7)

where,
D : set of detectors with a fixed cardinality,numab,
rab : detector radius, and
S′ : input self set.

The function defined in Equation (6) represents the amount of the self/non-self
space covered by a set of detectors,D, which corresponds to the volume covered by
the union of hyper-spheres associated with each detector. The restriction specified in
Equation (7) tells that no detector should match any self point.

The evaluation of the functionV (D) can be a costly process; in fact, the only prac-
tical way to compute it is to use a Monte Carlo integration method similar to the one
used in the previous section (2.1). Instead, we will use a simplified version of this opti-
mization problem, which we will show, experimentally, to be an equivalent.

Next we describe an optimization algorithm to solve this problem. The technique
uses a very well known Monte Carlo based optimization method,simulated annealing,
which is adapted to solve this particular problem.

Simulated annealing The simulated annealing technique was initially proposed by
Kirkpatrick et al. [13] borrowing inspiration from the physical annealing of solids. The
physical process can be described as follows: a solid is heated to a high temperature,
then, it is slowly made to cool down until some desired properties of the solid are
obtained; these properties are related to a low energy state.

In the algorithm, the energy corresponds to the function to minimize,C(s), whose
domain is the space of states of a system. The system is randomly perturbed by moving
it from the current state,si, to a new state,sj . If C(sj) < C(si), the transition is
accepted; otherwise, its acceptance is defined by a random process. The probability of
accepting this transition is a function of the temperature: the higher the temperature,
the higher the probability of accepting a worse state. This step is repeated a number of
times until the system reachesthermal equilibrium. This perturbation process is known
as the Metropolis algorithm [14,15], and it belongs to a broader class of algorithms
called Monte Carlo methods [14].

In our particular problem, we are searching for a set of detectors that optimizes the
coverage of non-self space. In consequence, the configuration of the system is given by



the coordinates of the detector set. Notice that the number of detectors is fixed (based
on the estimate produced byCALCULATE -INIT-DETECTOR-SET, Figure 2), no detectors
are created or eliminated in this algorithm.

The original function to optimize corresponds to the volume covered by the detec-
tor set (Equation (6)); however, to calculate it can be very costly. Therefore, we need
another function which is easier to calculate, and such that its optimization corresponds
to the optimization of the covered volume. Intuitively, to maximize the coverage pro-
duced by a set of detectors, it is necessary to reduce their overlapping, i.e., to increase
the inter-detector distance. The following equation defines an approximate measure of
overlapping between two detectors:

Overlapping(di, dj) = e

−‖di−dj‖2

r2
ab . (8)

The maximum value, 1, is reached when the distance between the two detectors is
0. When the distance is equal to2rab, the value of the function is very close to 0. Notice
that this function can be interpreted as the matching function of the detector.

Based on Equation (8), the amount of overlapping of a set,D = {d1, . . . , dnumab
},

of detectors is defined as

Overlapping(D) =
∑
i 6=j

e

−‖di−dj‖2

r2
ab , i, j = 1, . . . numab. (9)

Now, the question is if minimizingOverlapping(D) is the same as maximizing
V (D) (Equation (6)). In general, it is not true; however, we will show in the next section
that in the practice they are equivalent.

The original optimization problem includes a restriction that prevents detectors from
covering the self (Equation (7)). Simulated annealing does not provide a direct way to
include such restrictions; therefore, it is necessary to include a term in the cost func-
tion that penalizes configurations which violate this restriction. Then, the function to
optimize is defined as follows:

C(D) = Overlapping(D) + β · SelfCovering(D), (10)

where, the second term corresponds to the penalization factor for violating the self-
covering restriction, and is defined by

SelfCovering(D) =
∑
s∈S′

∑
d∈D

e

−‖d−s‖2( rab+rself
2

)2

. (11)

Notice that this function is based on the same principle used to define theOverlap-
ping function (Equation (9)). Each individual term on the sum measures the amount of
matching between a detector and a self element.

The termβ in Equation (10) specifies the relative importance of self-covering with
respect to the inter-detector overlapping. It controls the amount of penalization in the
cost function caused by violating the self-covering restriction.



An advantage of this cost function is that in each step of the algorithm it is not nec-
essary to calculate all the terms in Equations (9) and (10). It is only required to evaluate
the terms that involve the detectors affected by the transition (detector movement).

Optimization algorithm for detector distribution The detector distribution algorithm
is shown in Figure 3. The main inputs to the algorithm are the initial detector set (gen-
erated by theCALCULATE -INIT-DETECTOR-SET algorithm, Figure 2),D; the set of self
samples,S′; and the number of iterations,numiter. The shape of detectors (and self ele-
ments) is determined by the detector radius,rab, and the self variability threshold,rself ,
respectively. The number of iterations on the inner loop (lines 5 to 20) is controlled by
the parameter,ηmin, which expresses the minimum number of accepted transitions as
a percentage of the number of detectors. The temperature decay rate,α, and the neigh-
borhood radius decay rate,αpert, control how the temperature and the neighborhood
radius are going to be changed in each iteration of the outer loop. Finally, the parame-
terβ specifies the relative importance of covering self points when calculating the cost
function.

3 RRNS experimentation

3.1 Overlapping vs non-self coverage

Section 2.2 formulates the problem of detector distribution as an optimization problem
corresponding to maximizing the non-self volume covered by a set of detectors (V (D),
Equations (6) and (7)). TheOPTIMIZE-DETECTOR-DISTRIBUTION algorithm (Figure 3)
solves a modified optimization problem: to minimize the functionC(D) defined by
Equation (10). This function is composed of two terms: one measures the amount of
overlapping between detectors and the other penalizes the covering of self points. The
main assumption is that minimizingC(D) is approximately equivalent to maximizing
V (D). The intuition behind this assumption is that the lesser the overlapping of a set of
detectors, the larger the volume they can cover.

Figure 4 shows the evolution of the area covered by a set of detectors and their
overlapping, when the OPTIMIZE-DETECTOR-DISTRIBUTION (Figure 3) is applied to
an initial set of random detectors in a unitary square. The overlapping, which is the
objective function minimized by the algorithm, goes down with the successive itera-
tions. This means that the detectors are moving apart resulting in an increase in the area
covered by them, as shown in Figure 4(a). The area curve is not as smooth as the over-
lapping curve; this can be explained by the fact that the area is estimated (using Monte
Carlo integration,ε = 0.01), whereas the amount of overlapping is calculated exactly.

This experiment suggests that, in fact, the algorithm is able to maximize the area
covered by minimizing the inter-detector overlapping. However, this experiment in a
2-dimensional space is not significant enough to evaluate the algorithmic performance.
In order to build a stronger experimental evidence, we performed the following experi-
ment: a random set of detectors is generated close to the center of the unitary hypercube,
then the functionOPTIMIZE-DETECTOR-DISTRIBUTION (Figure 3) is applied for a given
number of iterations, the volume covered and the inter-detector overlapping (Equation



OPTIMIZE-DETECTOR-DISTRIBUTION(D, rab, S′, rself , numiter, ηcoef , , α, αpert, β)

D = {d1, . . . , dnumab} : initial detector set ηmin : minimum accepted transitions %
S′ : set of self samples α : Temperature decay rate

numiter : number of iterations αpert : Neighborhood radius decay rate
rab : detector radius β : Self covering importance coefficient

rself : self variability threshold

1: rpert ← 2 · rab

2: T ← CALCULATE -INIT-T(D, rab, S′, rself , rpert, β)
3: Fori← 1 to numiter

4: η ← 0, steps← 0
5: Repeat
6: index← random element{1, .., numab}
7: d← random element{v ∈ [0, 1]n | ‖dindex − v‖ ≤ rpert}
8: ∆C ← CALCULATE -COST-DIFFERENCE(D, index, d, rab, S′, rself , β)
9: If ∆C < 0
10: Then. accept transition
11: η ← η + 1
12: dindex ← d
13: Else
14: If e

−∆C
T > random[0, 1)

15: Then. accept transition
16: η ← η + 1
17: dindex ← d
18: EndIf
19: EndIf
20: Until η ≥ ηmin · numab or steps > 2 · ηmin · numab

21: T ← α · T
22: rpert ← αpert · rpert

23: EndFor
24: ReturnD

Fig. 3. Algorithm to optimize the distribution of detectors in order to improve the coverage of
non-self space.

(9)) are measured; this process is repeated 30 times, each time starting with a new ran-
dom set of detectors (around the center).

Figure 5 shows the overlapping-versus-volume graphics corresponding to the data
generated by the experiment for space dimension 5 and 10. It is easy to see that there
is a clear inverse relationship between the volume covered by a set of detectors and
their inter-detector overlapping. As it is shown in Figure 5, the relationship is not nec-
essarily linear; however, it does not affect the algorithmic performance as the results
demonstrate that the volume increases monotonically while the amount of overlapping
decreases.

3.2 RRNS vs RNS

An interesting question is: how does the new algorithm (RRNS) compare to the previ-
ous algorithm (RNS) in terms of the optimization of the volume covered by the set of
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Fig. 4. The RRNS is applied to spread a set of detectors in an unitary square. (a) Progress in the
area covered by the detectors. (b) Evolution of the inter-detector overlapping calculated using
Equation (9).
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Fig. 5. The graphics show the overlapping-versus-volume relation for a set of detectors pro-
duced by the successive application of OPTIMIZE-DETECTOR-DISTRIBUTION function (Figure
3). (a) Dimension = 5. (b) Dimension = 10.

detectors? It is important to take into account that the RNS algorithm was not developed
to optimize explicitly the volume or the overlapping. The RNS algorithm is based on
heuristic rules that try to move the detectors away from each other and from the self
points. An indirect result of this is an increase in the non-self space covered by the set
of detectors. Therefore, we expect the RRNS algorithm to perform better than the RNS
algorithm in terms of the optimization of the volume covered by the generated set of
detectors.

To perform a comparison, we used two data sets based on the Mackey-Glass time
series (as described in [9]) having two and four features respectively. Notice that the
RRNS is able to calculate the detector radius if the number of detectors is given (Equa-
tion (5)); this is not the case for RNS. Therefore, to make a meaningful comparison,
we used the detector radius calculated by the RRNS algorithm as input to the RNS
algorithm.

Both algorithms are run for a fixed number of iterations. After each iteration, the
volume covered by the set of detectors is calculated using a Monte Carlo integration
method similar to the one described in theCALCULATE -INIT-DETECTOR-SET algorithm



(Figure 2). In this case, the value of the error isε=0.005. The process is repeated 30
times (i.e. 30 experiments). Figure 6 shows the evolution of the covered volume for
each algorithm and for both data sets.

The points in the curve represent the average volume of 30 experiments, and the
length of vertical lines correspond to three times the standard deviation. In both cases,
the covered volume increases in successive iterations. The RRNS algorithm produces a
larger covering volume, as was expected because of its optimization components. The
results are encouraging , which suggest that the theoretical foundation of the RRNS also
provides a more efficient coverage of the non-self; however, a more extensive testing
(with different data sets) is needed in order to assess the real strength of the RRNS
algorithm.
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Fig. 6.Evolution of the non-self covered volume against the time for RNS and RRNS algorithms.
(a) 2-dimensional data set; (b) 4-dimensional data set.

4 Conclusions

This paper presented a NS algorithm to generate detectors in a real-valued non-self
space, called Randomized Real-Valued Negative Selection (RRNS) algorithm. The al-
gorithm is based on Monte Carlo simulation techniques; this gives it the appellative of
randomized. The algorithm improves the RNS algorithm by providing a mathematical
support that facilitates:

– the production of a good estimate of the number of detectors (of a given radius)
needed to cover the non-self space, and

– the provision of a guarantee, at least theoretically, that the algorithm can converge
to an optimal configuration.

The RRNS algorithm appears to be better than the RNS algorithm in providing a theo-
retical basis for analyzing its performance. However, this does not mean to claim that
it can produce better empirical results. In some cases, heuristic algorithms outperform
other algorithms with better theoretical foundation. Preliminary experiments presented
in this paper suggest that the RRNS algorithm can offer an improved performance. It is



necessary, however, to perform extensive experimentation to measure the real strength
of the RRNS algorithm as well as the impact of the improved non-self coverage on the
anomaly detection performance.
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