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Abstract

This work presents an optimized implementation of the Computer-Aided Speckle Interferometry algorithm which enables 

full-field determination of displacements and strains on commodity Graphics Processing Units at high resolution and frame 

rates. By combining careful control of the average speckle size in a laser speckle pattern with a simple sampling rate conver-

sion scheme, a compact representation of the optical speckle is achieved. This allows for optimal use of Graphics Processing 

Unit architecture with robust range extension. The optimal mapping of the Computer-Aided Speckle Interferometry algorithm 

to Graphics Processing Unit architecture is shown in detail, and a straightforward method for disambiguating large displace-

ments is illustrated. Lastly, this paper demonstrates a two-step subimage-tapering modification to the original algorithm that 

enables robust range enhancement while maintaining resolution. Results from numerical simulations on synthetic speckle 

patterns are shown, and runtime performance metrics are provided, with performance ranging up to 60 frames per second in 

some cases. The method is suitable for interactive experimental mechanics research, process and testing or any application 

where real-time high-resolution displacement-strain monitoring is needed. A .NET Framework class library enabling the 

incorporation of the algorithm into 3rd -party applications is available for download.

Keywords Computer-aided Speckle Interferometry · General-purpose Graphics Processing Unit · GPGPU · Speckle 

Interferometry · Digital image correlation · Experimental mechanics

Introduction

The application of optical methods for resolving full-field 

displacements and strains is a mature field. Two primary 

approaches – one statistical and one interferometric – are 

commonly chosen for this purpose. The Digital Image Cor-

relation (DIC) approach involves direct spatial-statistical 

analysis of digitized image pairs via application of a cross-

correlation calculation [1]. This method attempts to generate 

a deterministic measure of the degree of similarity between 

two speckle patterns and is generally very robust. The sec-

ond (interferometric) approach pre-dates the correlative one 

and consists of holographic and laser speckle interferometry 

methods that leverage optical interference phenomena [2]. 

The difference between the two – while interesting from a 

technical and academic standpoint - is subtle, and ultimately 

both methods generate equivalent outputs consisting of cor-

relation fringes (i.e., displacement isolines). Both types have 

found widespread use in fluid and solid mechanics research. 

Due to its straightforward methodology, robustness, and the 

increasing power of digital computers, direct cross-correla-

tion analysis eventually became the more commonly adopted 

method. The interferometric approach has continued to 

evolve, however, and reached its zenith with the Computer-

Aided Speckle Interferometry (CASI) algorithm [3]. This 

hybrid approach combines the sensitivity characteristics 

of speckle interferometry with the automation capabilities 

of digitized imagery by computing the interference within 

computer memory.

In the field of fluid mechanics, the primary goal is often 

characterizing the two-dimensional flow field [4–6]. This 

typically involves seeding a fluid with tracer particles and 

then illuminating it with a laser beam expanded in one 

direction (usually parallel to the dominant flow direction). 
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Particle image pairs - made visible by their scattering of 

the laser illumination - are then analyzed either by Laser 

Speckle Velocimetry (LSV, an interferometric approach 

leveraging a speckle diffraction effect) if high fluid-particle 

concentrations exist, or the more general Particle Image 

Velocimetry (PIV, a statistical analysis approach) for use 

with either dense or sparse particle concentrations [5]. Both 

cases fundamentally generate two-dimensional displace-

ment fields as their dataset outputs, which are then option-

ally post-processed via numerical differentiation to estimate 

velocity vector fields.

Likewise, the field of solid mechanics has seen a parallel 

but independent effort to develop and apply similar methods. 

The DIC method is most often employed and, like PIV, uses 

statistical analysis to map displacements by cross-correlating 

small subimage pairs within a predefined search region of 

optical images [1]. Like its PIV counterpart in fluid mechan-

ics, the DIC approach ultimately outputs a data set character-

izing the two-dimensional displacement field which is then 

optionally post-processed via numerical differentiation to 

estimate surface strain fields. This approach is often referred 

to as “white light speckle” due to its reliance on natural 

surface texture or the application of high-contrast random 

paint patterns to the surface under study, an approach analo-

gous to seeding the fluid flow with scattering particles in 

the style of PIV/LSV. Alternatively, a coherent light source 

such as a laser can be used to illuminate the object surface 

provided that the surface roughness is greater than the order 

of the wavelength of the illuminating light. In this case, a 

stochastic interference pattern known as laser speckle [7] is 

generated that can be used to uniquely characterize the sur-

face of the object; since the local micro-relief of the surface 

governs the scattering behavior, and therefore the forma-

tion of the speckle pattern itself. The local speckle pattern 

(i.e., the speckle pattern associated with small subimages 

extracted from some source image) is anchored to the local 

relief and translates in response to a translation of the associ-

ated surface, thus mirroring its deformation. As in PIV/LSV/

DIC, source image pairs consisting of speckle patterns are 

processed to generate a two-dimensional displacement field 

which can then be post-processed to estimate the surface 

strains [8–11]. Additional advances in the field have also 

enabled the use of sparse data sets for generating approxi-

mations of full-field displacements with less computational 

burden [12–15].

As optical methods have advanced, so have the digital 

processing capabilities of personal computers. Key architec-

tural enhancements such as out-of-order execution, branch 

prediction, Single Instruction Multiple Data (SIMD) vector 

processing, many-core designs and branch prediction have 

all improved the runtime performance of CPUs [16]. In the 

last decade some of the largest improvements in runtime 

performance have been realized in the graphics processing 

subsystem, specifically the Graphics Processing Unit (GPU). 

These were initially intended as task-specific processors 

optimized for rendering graphics output but have gradually 

evolved into fully programmable processors that, in some 

cases, are ideally suited to highly parallel computational 

workloads. To facilitate the application of these devices 

to more general workloads, several Application Program-

ming Interfaces (APIs) have been introduced to expose this 

underlying capability to non-graphics programmers. Among 

the most widespread is Nvidia’s  CUDATM GPU API [17]. 

Applications written using CUDA are executable only on 

Nvidia GPUs. While these are widespread, this poses a limi-

tation with respect to general compatibility. In response to 

this restriction, the open-source OpenCL framework was 

created to enable GPU-specific code to execute on multiple 

hardware vendor platforms including Nvidia, Intel and AMD 

[18]. Another, less well-known, framework is a Microsoft 

API called  DirectComputeTM which operates within the 

 Direct3DTM runtime (version 11 or higher) on the Windows 

operating system and allows low-level programming of pixel 

shaders to enable computational workloads other than graph-

ics. While powerful,  DirectComputeTM was difficult to use 

for programmers unfamiliar with graphics programming. 

In response to this, Microsoft created the C++ Acceler-

ated Massive Parallelism (C++ AMP) open specification 

[19] - in effect, enabling the use of  DirectComputeTM with 

more familiar C++ programming idioms. Microsoft pro-

vides an implementation of C++ AMP in the C++ compiler 

included with all versions of their Visual Studio Integrated 

Development Environment (IDE). Applications using C++ 

AMP to target the GPU can execute on any GPU that sup-

ports DirectX 11 or higher, regardless of manufacturer. The 

enhanced version of CASI described in this paper is imple-

mented with Microsoft’s C++ AMP compiler.

This paper is organized as follows: the principles of 

the laser speckle diffraction measurement technique are 

described, followed by their expression in the form of the 

CASI I/II algorithms. The mapping of key stages of the base 

CASI II algorithm to commodity GPU hardware for efficient 

parallel execution via C++ AMP is described in detail. Two 

additional modifications to the base algorithm are then pro-

posed: (1) a straightforward method to disambiguate large 

(but resolvable) displacements from translation aliasing 

effect, and (2) a subimage-tapering modification involv-

ing an oversampling-downsampling approach that greatly 

extends the measurement range of the original method while 

preserving the ability to efficiently map the algorithm to 

GPUs. Results on synthetic speckle patterns are shown and 

timings for an example GPU are provided.
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Principle

Single-Beam Speckle Diffraction Interferometry

Single-beam speckle diffraction interferometry has its ori-

gins in the fundamental work of Burch and Tokarski [20], 

was expanded upon by Archbold et al. [21, 22] and later 

refined by Khetan and Chiang [23]. Conceived as a full-

field non-contact method for determining surface in-plane 

deformations, the basic experimental setup and procedure 

is illustrated in Fig. 1. In the case of solid mechanics, 

this involves illuminating an object with a diffused coher-

ent light source (typically a laser beam passed through a 

microscope objective such that the emitted beam forms 

a diverging cone of light) and capturing the subjective 

speckle pattern on a photographic negative. The object 

under study is then stressed or perturbed in some way and 

a second speckle pattern is captured on the same photo-

graphic negative. This is referred to as a “double exposure 

specklegram”. For fluid mechanics studies implementing 

LSV, the process is the same with the exception that the 

two speckle patterns are two reflectance specklegrams of 

seed particles captured some time interval apart either 

Laser illumination

Lens

Lens

Diffuse object 

surface

Double exposure 

specklegram

Fringe pattern
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specklegram
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(b)

Fig. 1  a) Optical arrangement for collection of double exposure specklegram of coherently illuminated object undergoing strain. b) Optical pro-

cessing of double exposure specklegram to generate Young’s fringes
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by pulsed laser or shuttered continuous wave laser. Once 

developed, the negative contains a randomly distributed 

array of varying transparency corresponding to the irradi-

ance pattern of the original speckle patterns. When illu-

minated by a plane wave source, the photographic nega-

tive acts as a random transmittance function causing the 

impinging wave to diffract. Since the negative is a double 

exposure containing the photographic superposition of 

both speckle patterns (reference and perturbed), the trans-

mittance function embodied by the photographic plate is 

essentially two superimposed non-uniform partially cor-

related diffraction gratings. The gratings are non-uniform 

due to the randomness of the speckle pattern, and par-

tially correlated due to the displacement imposed between 

images. If the displacement between images is not overly 

large, a spatial correspondence will exist between neigh-

boring speckles. When illuminated by a plane wave such 

as a collimated laser beam, these speckles act as aperture 

pairs that diffract the impinging wave. When viewed in 

the far field, a central diffraction halo modulated by sinu-

soidal fringes (i.e., Young’s fringes) corresponding to the 

displacement between images can be observed. The fringe 

orientation is perpendicular to the direction of the local 

motion within a ±180-degree ambiguity. The object’s dis-

placement is inversely proportional to the resulting fringe 

pitch and is given by [2].

Here Pf  is the fringe pitch, � is the wavelength, F
l
 is the 

focal length of the imaging lens used in the optical process-

ing step, M is the system’s optical magnification and Disp is 

the object’s displacement at the location of optical process-

ing. In practice, the photographic plate is usually mounted 

in an XY translation gantry and illuminated by collimated 

laser beam at many discreet locations. Therefore, one can 

obtain its two-dimensional displacement field by scanning 

the beam in an XY plane perpendicular to the laser’s optical 

axis over the entire image of the object, analyzing the result-

ing fringe pattern at each position. Implicit in this method is 

the assumption that the displacement is essentially uniform 

within the illuminated region due to its small size relative to 

the size of the overall object within the negative. Therefore, 

care must be taken to ensure that a proper size ratio between 

object and interrogation spot is maintained. This ratio will 

be dependent on the target spatial resolution of the resulting 

displacement-strain field as well as the complexity of the 

strain field itself; more complex strain fields will require 

smaller interrogation area. In many cases, successful appli-

cation of the technique requires several iterations, and some 

a priori knowledge of the object’s approximate deformation 

is helpful.

(1)Disp =

�Fl

MPf

CASI I

Taking advantage of the advent of powerful personal com-

puters and CCD cameras of sufficient resolution, Chen and 

Chiang [24] proposed to reconstruct the speckle diffraction 

interference using a two-step Fast Fourier Transform (FFT) 

[25] numerical simulation rather than implementing it via 

physical optics as described earlier. Here, a brief overview 

of this method is presented. Approximating the deformed 

speckle pattern as a shifted version of the reference (i.e., 

undeformed) speckle pattern, a subimage of the reference 

speckle pattern is denoted as

An equally sized subimage portion of the deformed 

speckle pattern is approximated as

where u and v are the displacements in the x and y direc-

tion, respectively, and n(x, y) is an additive uncorrelated 

noise component that is assumed to be small and is often 

therefore disregarded [24] (the impact of additive noise of 

various amplitudes on the CASI algorithm is shown later 

in this work, see Figs. 9 and 10). Furthermore, the spatial 

spectrum of the reference subimage is written as

where Δ denotes the subimage area and �
x
 and �

y
 are spa-

tial frequencies in the x and y directions, respectively. The 

spectral sum of the reference and displaced speckle patterns 

can be written as

or alternatively, using the Fourier shift theorem [25], as

It can be shown [24] that the spectral amplitude of Eq. (6) 

can be approximated as

where Ah

(
�x,�y

)
=
|
|
|
H(�x,�y)

|
|
|
 (often referred to as the dif-

fraction halo). Inspection of Eq. (7) indicates that the result-

ing spectral amplitude consists of an overall diffraction halo 

bias modulated by cos
2 fringes i.e., Young’s fringes resulting 

from the interference of the two speckle patterns. Chen and 

(2)h1(x, y) = h(x, y)

(3)h2(x, y) = h(x − u, y − v) + n(x, y)

(4)H
(

�x,�y

)

= ∬
Δ

h1(x, y)e−j2�(x�x+y�y)dxdy

(5)

F
(

�x,�y

)

= ∬
Δ

(h(x, y) + h(x − u, y − v))e−j2�(x�x+y�y)dxdy

(6)

F
(

�x,�y

)

= 2H(�x,�y)e
−j�(u�x+v�y)cos

(

�

(

u�x + v�y

))

(7)

As

(

�x,�y

)

≈
4

3�
Ah(�x,�y){1 + 4cos2

(

�

(

u�x + v�y

))

}
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Chiang [24] proposed processing this result via a second 

forward Fourier transform to estimate the peak position in 

the second frequency domain corresponding to the funda-

mental frequency of the fringes. Based on this description, 

implementation of CASI I involves the following sequence 

of processing steps:

Step 1. Extract a subimage (typically 64 × 64 or 32 × 32 

pixels) from the reference image.

Step 2. Extract an equally sized subimage from the cor-

responding location in the deformed image.

Step 3. Add the subimages together to create the double 

exposure.

Step 4. Perform a forward Fourier transform of the dou-

ble exposure and compute the magnitude of the result.

Step 5. Perform a forward Fourier transform of the 

result from step 4 and locate the crest of the correla-

tion peak(s). This indicates the direction (with ±180 

degrees ambiguity) and magnitude of the shift between 

subimages.

Step 6. Shift subimage location and repeat sequence for 

entire image.

CASI II

Chen and Chiang further refined the method by proposing 

an alternative algorithm referred to as CASI II [26]. In 

this approach, corresponding subimages are extracted as in 

CASI I but processed independently rather than superim-

posed as a double exposure, and a new spectrum is formed 

which contains an array of phase differences. The direction 

of the deformation is indicated by the sign of the primary 

phase difference, and the magnitude of the deformation is 

indicated by the periodicity. Again, let the reference sub-

image be denoted as in Eq. (2) and the displaced subimage 

denoted as in Eq. (3), where u and v are the displacements 

in the x and y directions, respectively, and Δ indicates 

the subimage extraction region within the overall source 

image. The spectrum of the reference subimage is deter-

mined by

Likewise, the spectrum of the displaced subimage is 

determined by

A new spectrum, in the form of a normalized cross-power 

spectrum of the two subimage spectra, is obtained by

(8)H1

(

�x,�y

)

= ∬
Δ

h1(x, y)e−j2�(x�x+y�y)dxdy

(9)H2

(

�x,�y

)

= ∬
Δ

h2(x, y)e−j2�(x�x+y�y)dxdy

where ∗ indicates the complex conjugate. A second Fourier 

transform gives rise [26] to the secondary frequency domain 

(ξ,η) representation of this new spectrum:

By computing the magnitude of G(�, �) , an expanded 

impulse function centered at the displacement point (u, 

v) in the second spectral domain is obtained. By locating 

the crest of this single impulse function, the direction and 

magnitude of the deformation between speckle patterns is 

uniquely determined. A detailed exposition of the derivation 

can be found in [3].

Based on the above description, implementation of CASI 

II involves the following sequence of steps:

Step 1. Extract a subimage (typically 32 × 32 pixels) from 

the reference image.

Step 2. Extract an equally sized subimage from the cor-

responding location in the deformed image.

Step 3. Perform a forward Fourier transform of the refer-

ence subimage.

Step 4. Perform a forward Fourier transform of the dis-

placed subimage.

Step 5. Compute a normalized cross-power spectrum 

according to Eq. (10).

Step 6. Perform a forward Fourier transform on the com-

plex result from step 5 and locate the crest of the magni-

tude impulse peak. This uniquely indicates the direction 

and magnitude of the shift between subimages.

Step 7. Increment subimage location and repeat sequence.

CASI II can uniquely determine the direction directly in 

the secondary frequency domain, whereas CASI I generates 

an interference fringe pattern which requires further process-

ing to ascertain the nature of the underlying displacement. 

The penalty paid for this enhancement is greater computa-

tional complexity, primarily the need to compute an addi-

tional forward FFT in CASI II vs. CASI I.

Adaptation to GPU Architecture

GPU hardware is designed to efficiently process parallel 

workloads by scheduling many tens of thousands of inde-

pendent threads of execution, each one running the same 

logical execution unit referred to as a “kernel”. In most 

cases, threads execute the kernel method either indepen-

dently of each other or with minimal synchronization. This 

(10)
F
(
fx, fy

)
=

H1(fx, fy)H
∗
2
(fx, fy)

√
||
|
H1(fx, fy)H2(fx, fy)

|
|
|

(11)
G(�, �) = ∬

Δf

F(fx, fy)e
−j2�(fx�+fy�)dfxdfy
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is generally the most efficient model for GPUs, as the flex-

ibility it affords the thread scheduler allows for maximum 

occupancy. In the case of the CASI II algorithm, however, 

there exist two granular levels of parallelism: (1) data-level 

parallelism, and (2) task-level parallelism, as can be seen 

by examining the algorithmic sequence listed for CASI II. 

Fundamentally, each subimage pair is processed indepen-

dently of any other - an example of task-level parallelism. 

Subimage processing (steps 3, 4 and 6 above) involves the 

application of multiple 2D FFTs, operations that can be 

parallelized at the data level. Lastly, Step 5 of CASI II is 

a pointwise operation over the entire subimage with maxi-

mum data-level parallelism. By inspection, CASI II is an 

algorithm that should respond well to GPU implementation 

provided that the dual-level parallel granularity can be effi-

ciently mapped to GPU architecture.

Memory Access Optimization

One programmatic mechanism exposed by the C++ AMP 

standard is a data-partitioning strategy called “tiling”. With 

this approach, the input data is partitioned into logical units 

processed by clusters of spatially associated threads whose 

execution can be synchronized, allowing for a degree of 

task-parallel granularity. Tiles can be up to rank order 3. 

The extent of the data partitioning (i.e., number of tiles 

in all dimensions) must be declared at the kernel invoca-

tion. In this case the tiles form a natural correspondence 

to individual subimages in CASI II and are of rank order 

2. The declared dimension of the tiles defines the number 

of threads assigned to them and is equal to the product of 

the tile’s dimensions (its area or volume). This value can-

not currently exceed 1024 [19]. GPU threads within a tile 

group can synchronize among themselves but not among 

other tiles, and the sequence in which the tiles complete 

their processing is non-deterministic. Algorithms must be 

structured with these caveats in mind. Tiling enables the 

two-tiered parallel granularity required for CASI; the tile 

itself enforces the task-parallel nature of processing subim-

age pairs, while the thread group within each tile enforces 

the data-parallel nature of the actual processing operations. 

Following is an example of a two-dimensionally tiled kernel 

invocation using C++ AMP:

static const int TileSize = 32;

extent<2> tiledExtent(OutputDataRows * TileSize, Out-

putDataColumns * TileSize);

parallel_for_each(tiledExtent.tile<TileSize, Tile-

Size>(), [=](tiled_index<TileSize, TileSize> tiledIndex) 

restrict(amp) {.}

In this invocation, tiledExtent(.) defines the degree to 

which the input data is apportioned threads. The user-defined 

variables OutputDataRows and OutputDataColumns corre-

spond to the output dimensions (the total number of subim-

age processing positions within the input images) and are 

based upon the size of the input images, the subimage size 

and the shift size (i.e., the pixel offset between adjacent sub-

image locations).

Since a logical computation unit (tile) will be assigned 

for each subimage analysis position in the input image(s), 

the total extent of processing threads requested to process 

the entire image is the thread area per tile (1024 threads 

per 32 × 32 pixel subimage) multiplied by the total num-

ber of subimage processing locations in the parent image. 

Code within the parentheses is executed by each tile thread 

independently. The entire kernel declaration, beginning 

with “parallel_for_each” can be read as: For the following, 

assign a collection of spatial tiles of ‘tiledExtent” dimen-

sions, partition each tile into a 2D cluster of threads such 

that each tile contains “TileSize” number of threads in the 

X and Y directions, enable each individual thread’s global 

and tile-specific location to be identified by “tiled_index”, 

and restrict execution to the C++ AMP runtime.

Logical tile partitioning is beneficial not only because it 

enables task-level parallelism, but also because it enables the 

use of what is referred to as “tile-static” memory. This is a 

small region of programmable cache memory separate from 

the GPU’s global memory bank. Similar to a CPU cache, its 

total capacity is much less than the main memory bank, but 

it exhibits far greater bandwidth and much lower latency. 

Unlike CPU cache, however, tile-static memory is not man-

aged automatically and must be declared and managed by 

the programmer. Once declared within the kernel it is vis-

ible only to threads in a given tile (i.e., threads that have 

been instantiated for cooperative work on a specific task) 

and can be used as a way for them to share information while 

simultaneously partitioning a region of high-speed memory 

for exclusive use by that task’s threads. Its use is crucially 

important when a cluster of threads is cooperatively pro-

cessing a single task, as it enables thread synchronization 

and an encapsulated form of data sharing at the task-parallel 

level [19, 27]. Furthermore, from a performance standpoint, 

the low latency is highly beneficial if data residing in the 

global memory store needs to be accessed multiple times; in 

most cases this is the primary reason for adopting the greater 

complexity associated with tiling an algorithm. In the imple-

mentation described here, a tile size of 32 × 32 has been 

used as it provides excellent performance on the hardware 

tested while also providing for a conceptually straightfor-

ward mapping of the CASI algorithm to GPU kernel code. 

Figure 2 illustrates the spatial relationship between global 

and tile-static memory, and how individual tile threads refer-

ence their locations in tile domain and global data domain 

spaces. This is an example of computing a tile thread’s data 

domain space coordinate:
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where tiledIndex is the index identifier declared in the kernel 

invocation, and Shift is a user-defined integer value corre-

sponding to the size of the spatial shift (in pixels) from one 

subimage analysis location to the next in the parent images.

Spectral Processing

An examination of the CASI II algorithm indicates the first 

major processing step in the sequence is a pair of 2D forward 

FFTs. This is an iterative operation where data is repeat-

edly read, shuffled, processed, and stored in-place, and thus 

makes optimal use of the cached tiling strategy previously 

described. Each forward FFT operation generates an equally 

sized array of complex results. Therefore, four 32 × 32 tile-

static caches are needed to store the subimage spectra: two 

for each subimage FFT operation (one to store the real com-

ponent and one to store the imaginary component of the 

complex result).

The FFT algorithm used for this work is a decimation-

in-time radix-2 implementation with bit-reversed input 

int DataDomainRow = (tiledIndex.tile[0] ∗ Shift)

+ tiledIndex.local[0]; ∕∕ Global memory row

int DataDomainColumn = (tiledIndex.tile[1] ∗ Shift)

+ tiledIndex.local[1]; ∕∕ Global memory column

ordering [28]. The bit-reversed input ordering requires that 

the input data be re-ordered prior to use, and this is typi-

cally done at runtime by bit-reversing the array input indi-

ces as they appear in their original order. Since the subim-

age dimensions are fixed in this implementation, the input 

ordering that would result from bit-reversal is predetermined 

and hard-coded in predefined struct of integers, simplifying 

implementation and improving readability. The input data is 

then reordered in row-wise fashion according to the index 

values in this struct in preparation for FFT processing. In 

similar fashion, the multiplicative “twiddle” factors needed 

for the FFT computation [29] are stored in predefined float 

structures and used during the computation rather than 

computed at runtime. Figure 3(a-e) shows the progressive 

signal flow of the radix-2 algorithm, as well as the topo-

logical progression of the classic trapezoidal “butterfly” 

data access pattern, at the tile-thread level for the first row 

of a subimage tile, from the first pass of the row-wise FFT 

(Fig. 3(a)) to the final pass (Fig. 3(e)). By inspection it can 

be seen that for a given butterfly pattern, two input values 

are required to generate two output values per pass of the 

algorithm, which are then stored in-place (this can be seen 

most clearly in Fig. 3(a)). The original input values must 

be known in order to generate the two output values of the 

butterfly pattern. Due to the use of in-place storage, if more 

than one thread were responsible for storing the intermittent 

results of each butterfly pattern (per pass), the values at those 

Fig. 2  Spatial relationship 

between tile-static memory 

containing subimage data and 

global memory containing 

entire image data. Assuming the 

user-defined 2D tile identifier 

“tiledIndex”, row-column loca-

tions for individual tiles are: a) 

tiledIndex.tile[0] = 0, tiledIn-

dex.tile[1] = 0, b) tiledIndex.

tile[0] = 1, tiledIndex.tile[1] 

= 1, c) tiledIndex.tile[0] = 1, 

tiledIndex.tile[1] = 0, and indi-

vidual thread locations within 

the tile are identified as: d) 

tiledIndex.local[0] = 0, tiledIn-

dex.local[1] = 0, e) tiledIndex.

local[0] = 0, tiledIndex.local[1] 

= 31, and f) tiledIndex.local[0] 

= 31, tiledIndex.local[1] = 0

(a)

0

31

31

(b)

(c)

(d)

(e)

(f)
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memory locations at any moment become non-determinis-

tic. The excessive thread synchronization required to avoid 

this state – known as a “race condition” – would negatively 

impact performance. Therefore, a single thread is assigned 

to each butterfly instance. Since each thread is responsible 

for generating two output values, only half of the available 

tile threads (threads are indicated in the figure by “t0” for 

the first tile thread, up to “t15” for the sixteenth tile thread) 

have been apportioned to process the subimage FFT. Since 

this results in a thread occupancy level of 50 % for the tile, 

maximum thread occupancy - and efficiency - is achieved 

by assigning the first 512 tile threads to the 2D FFT for 

the first (reference) subimage, and the other 512 threads in 

the tile to the 2D FFT of the second (displaced) subimage. 

Each cluster of tile threads therefore processes two FFTs 

simultaneously with results stored in-place, and the ideal 

thread occupancy level is achieved. This pattern assumes 

the input data has been re-ordered (bit-reversed). While only 

the first-row processing is shown in Fig. 3, all rows of the 

subimage tile are processed quasi-concurrently and in the 

identical pattern to that shown. Column-wise FFT process-

ing proceeds in the same topological stages and with the 

same thread distribution.

Interference Spectrum and Parallel Reduction

Computing the interference spectrum according to Eq. (10) 

is a pointwise operation over the entire subimage tile with 

maximum thread occupancy. In other words, each tile thread 

generates one complex result corresponding to that thread’s 

row-column location in the tile, with the operation occurring 

in parallel over the entire subimage. The spectrum of the 

reference subimage tile will be reused in a further processing 

step and is not overwritten by any following intermediate 

results. Instead, the results from the interference spectrum 

calculation are stored in the tile cache containing the forward 

FFT of the displaced subimage, overwriting the spectral data 

(it will no longer be needed after computing the interfer-

ence spectrum) but preserving the reference subimage tile 

spectrum. This bypasses the need to instantiate additional 

scarce tile-static memory. A second 2D forward FFT is 

then applied to this result in the same manner as previously 

described, thus generating the 2nd complex spectral domain 

representation and storing it in-place in the displaced subim-

age tile-static cache. This is then processed in a pointwise 

manner with maximum thread occupancy (again, in-place) 

to compute the complex magnitude.

The magnitude field of the interference spectrum contains 

the peak indicating the displacement between the reference 

and displaced subimages, and so a reduction step is nec-

essary to determine the row-column location of the peak. 

Tile-static cache consists of a series of interleaved memory 

banks of a certain width [19]. This is hardware independ-

ent but is most commonly 32-bits wide. Figure 4(a) shows 

the most likely configuration of the memory banks as they 

pertain to tile-static caches of the size being used here. All 

tile cache in the algorithm described in this work is declared 

as single precision floating point, with each column of the 

tile a single 32-bit wide memory bank. Memory access 

can only be parallelized by the thread scheduler if they are 

attempting to read/write different banks. Otherwise, they are 

serialized – a condition known as memory bank conflict. If 

this condition arises continuously, it has a negative impact 

on runtime performance. In this work, the parallel reduc-

tion of the tile cache data is performed in such a manner 

as to minimize memory bank conflicts. This is illustrated 

in Fig. 4(b). The tile cache is first scanned by the topmost 

row of tile threads in a vertical column-wise fashion, one 

thread per memory bank. Each thread determines the row 

number and magnitude of that column’s maximum value. 

These results (row and magnitude) are stored in the first 

two rows of their respective column in the tile-static cache, 

and a second pass consisting of four tile threads is used to 

further reduce the previous results to four candidate values 

(Fig. 4(c)). Note that - due to the horizontal reduction opera-

tion of this second stage - the column number associated 

with the maximum value must also be stored alongside the 

row number. Lastly, a single thread determines the row and 

column coordinate associated with the maximum of these 

four values. This indicates the location of the impulse func-

tion, thus obtaining the displacement at the given subimage 

processing location.

CASI II Range Extension

Disambiguating spatial shift aliasing

In addition to its non-contact nature and tolerance of envi-

ronmental noise, one of the benefits of the CASI II algorithm 

is its ability to resolve in-plane displacements that are large 

relative to the subimage dimension(s). This can be illustrated 

via numerical experiment. The method described by Good-

man [7] for numerically simulating speckle formation by 

free space propagation is used to generate synthetic objective 

speckle patterns to evaluate CASI II performance character-

istics. Goodman’s method involves instantiating an array of 

zeros and then populating a given rectangular region of the 

array with a random phasor field. Computing the intensity 

of the array’s frequency domain representation simulates 

the stochastic nature and appearance of an optical speckle 

pattern, with the initial size of the array governing the size of 

the resulting image and the size of the random phasor field 

Fig. 3  Tile-threaded processing pattern for row-wise FFT of 32 x 

32 subimage tile for a) first stage, to e) final stage. “t0..t15” denote 

thread 0 to thread 15 of a given tile row

◂
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governing the average size of the speckle. Figure 5 shows 

three examples of synthetic speckle patterns - corresponding 

to three different speckle sizes - generated using this method. 

All synthetic speckle patterns used in this study are gener-

ated as sixteen-bit grayscale images.

To illustrate the resolvable noise-free range resolution, a 

synthetic speckle pattern with an average speckle size of 4 

pixels was generated and then subjected to sequential rigid 

body integer translations of 0, 15, 30 and 40 pixels in the XY 

directions. This amounted to a trivial remapping of pixels 

which introduces no noise or resampling error. This sequence 

was paired with the initial untranslated image and CASI II is 

applied to a centrally extracted 64 × 64-pixel subimage pair. 

The results are shown in Fig. 6, which depicts the magnitude 

field of the second spectral domain (step 6 of the CASI II algo-

rithm) resulting from each rigid body translation. The signal 

peak position translates in accordance with the relative rigid 

body displacement between the two subimages, while its mag-

nitude decreases as initially correlated speckles move out of 

the subimage reference frame and new uncorrelated speckles 

enter. Even at a relatively large relative displacement of 40 

pixels in both X and Y directions – corresponding to only a 

14 % shared subimage area (Fig. 6(d)) – a peak is still resolv-

able among the background random peaks in the magnitude 

field. While useful, this large measurement range introduces 

an ambiguity when interpreting the result: provided the signal 

to noise ratio of the two speckle patterns is sufficient, when 

the relative displacement between subimages exceeds half the 

subimage dimension in either direction, the signal peak can 

be seen to wrap around to the opposite side of the magnitude 

field. As a result, while CASI II uniquely resolves the direction 

of the displacement when compared to CASI I, this is only 

true for displacements that do not exceed half of the subim-

age dimension in either direction. Displacements in the U and 

V directions exceeding this magnitude often manifest under 

the alias of a displacement in opposite direction to the true 

displacement, differing in magnitude by a factor equal to the 

subimage size. Using the engineering convention of positive 

U displacement being in the positive X direction and positive 

V displacement being in the negative Y direction (where posi-

tive Y is typically downwards from the standpoint of image 

coordinates), the aliased shifts can then be written as

Fig. 5  Examples of numerically 

simulated far field speckle pat-

terns for average sized speckles 

of a) 4 pixels per speckle, b) 

8 pixels per speckle, and c) 16 

pixels per speckle
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Where U
a
 and V

a
 denote the aliased displacement in the 

U and V directions, U
d
 and V

d
 denote the determined U and 

V displacements resulting from the application of CASI II, 

and S
s
 is the size of the subimage (always a square) with 

Fig. 6  Magnitude values result-

ing from application of CASI 

II to a 64x64 synthetic speckle 

pattern with sequentially 

imposed rigid-body UV shifts 

of a) 0, b) 15, c) 30 and d) 40 

pixels. The gray region depicts 

the area of correspondence (the 

shared region) between the two 

equally sized subimages after 

one subimage has undergone 

a displacement relative to the 

other. As this region decreases, 

so too does the peak signal 

amplitude

(a)

(b)

(c)

(d)



Experimental Techniques 

its sign being the negative of the associated determined 

displacements.

To disambiguate the determined displacements from their 

aliased counterparts and arrive at the true direction of the 

shift, a straightforward polling modification to the original 

algorithm is proposed: (1) CASI II is first implemented as 

described and the U and V displacements are determined. 

(2) If either one is found to exceed the threshold, Eq. (12) 

are used to estimate the aliased displacements. (3) CASI II is 

then repeated twice, first by pairing the reference subimage 

with a subimage extracted from the determined UV displace-

ment location, and secondly, with a subimage extracted from 

the computed aliased displacement location (rounding to the 

nearest pixel). (4) The signal peak amplitude from both loca-

tions is then used to resolve the final displacement direc-

tions. A conservative threshold value that has been found 

to work well is 50 % of the determinable displacement for 

a given subimage i.e., for a 32 × 32 subimage, if the mag-

nitude of the determined displacement in either direction is 

found to exceed 8, the polling modification just described 

is invoked.

This modification is illustrated in Fig. 7. A simulated sub-

jective speckle pattern was generated using Goodman’s algo-

rithm [7] with width and height of 2048 and average speckle 

size of 4 pixels. This speckle pattern was then resampled in 

the horizontal direction using bicubic resampling to a new 

width of 2096 and then cropped to the original dimension 

to simulate an imposed strain of approximately 2.3 %. A 64 

× 64-pixel subimage was then extracted starting from row 

992 and column 1632 such that application of the CASI II 

algorithm results in a weak - but clearly detectable - signal 

peak residing at column 7 in the output magnitude array 

(Fig. 7(a)). The location of this signal peak erroneously indi-

cates a relative displacement of -25 pixels between reference 

and displaced subimages (as originally written, the CASI 

II algorithm interprets this result as indicating a leftward 

shift of the subimage due to the location of the peak rela-

tive to the center of the magnitude field). The magnitude of 

this displacement exceeds the threshold convention used in 

this work; the thresholded region for reliable displacement 

determination is defined as a central portion of the output 

array with dimensions 32 × 32 for a 64 × 64 subimage. The 

described polling modification is then invoked to disam-

biguate the true displacement from its aliased counterpart. 

Figure 7(b and c) illustrate the results from application of 

CASI II for the determined displacement (b) and aliased 

displacement (c) as computed by Eq. (12a). These clearly 

indicate that the true displacement is in the positive X direc-

tion as expected from the resampling operation, and not the 

opposite direction as initially indicated in (a).

There is a penalty associated with this modification due 

to the additional processing of subimage pairs. Recall that 

50 % of tile threads are used to perform a single 2D FFT in 

this implementation. Recognizing that the reference subim-

age spectrum has been preserved in the GPU cache - and is 

therefore available for reuse - full thread occupancy could, 

in principle, be achieved by targeting half of the tile threads 

to compute the spectrum of the subimage at the determined 

location, and the other half the spectrum of the subimage at 

the aliased location. This would, however, require the instan-

tiation of an additional two tile-static arrays at the time of 

kernel initiation. For the implementation described in this 

work, the decision was made to favor cache-compactness 

over thread occupancy for two reasons: (1) GPU cache 

memory is currently much scarcer than global memory and 

should be used sparingly, and (2) while the additional cache 

memory would be allocated at the initiation of the kernel, 

there would be no guarantee of its actual need since it would 

only be called upon in the case where a determined displace-

ment is found to exceed the predefined threshold. Therefore, 

the determined and aliased FFT analyses are performed in 

serial fashion and as separate steps by half (512) of the tile 

threads. As will be shown later, this approach demonstrates 

good runtime performance.

Sample-rate converted coarse-fine decomposition

A practice sometimes encountered in the application of digital 

full-field methods is to reduce the shift size between subimage 

analysis points in the belief that this will yield greater displace-

ment field resolution. A shift size equal to (or, frequently, half 

of) the radius of the subimage is, for most practical purposes, 

sampling the displacement field at sufficient resolution relative 

to the subimage size. Uniform displacement is always assumed 

within the subimage; the only true method for increasing spa-

tial resolution is to reduce the size of the subimage relative 

to the imaged surface. Maintaining the subimage size while 

reducing the shift size beyond the 50 % factor amounts to a 

form of oversampling: the approach yields greater informa-

tion, but it is not useful. In this work, a different approach is 

taken. The spatial resolution of CASI II is maintained but the 

measurement range is increased even further beyond the pre-

viously described modification by incorporating a coarse-fine 

decomposition step into the original algorithm. This involves 

a two-step process wherein an initial coarse estimate of the 

displacement is generated and then further refined to the 

subpixel level. The initial coarse estimate is generated using 

CASI II with a larger subimage centered about the smaller 

subimage (which is used for fine displacement estimation). 

Due to its size, the larger subimage is capable of resolving 

larger displacements but with less spatial resolution, while the 

smaller subimage used in the second step resolves finer spatial 

resolution at the cost of decreased measurement range. By 

combining the two, the effective range can be increased with-

out sacrificing spatial resolution. The process, as implemented 

here, involves extracting a 64 × 64 subimage centered at each 
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analysis location and, using CASI II in combination with the 

aliased displacement step described previously, determine the 

pixel-level displacement. A 32 × 32 subimage centered at this 

displacement estimate is then extracted and processed with 

CASI II against a reference 32 × 32 subimage centered at the 

original analysis position. The final displacement is simply 

the sum of the determined displacements from both steps. 

The determined displacement from the coarse step should be 

thought of as a rough estimate since uniform displacement 

within the subimage is an implicit assumption in this tech-

nique. In most cases, the method is useful in bringing the 

smaller 32 × 32 subimage within sufficient proximity to the 

original reference location so that a signal peak of sufficient 

signal-to-noise ratio can be recovered. The aliasing correction 

step described previously is only applied to the larger 64 × 64 

subimage. Here it is assumed that the coarse adjustment is suf-

ficient to reduce the determined displacement of the smaller 

secondary subimage to within threshold limits, negating the 

need for a second application of the aliasing correction (and 

its associated computational overhead).

There are two drawbacks to this approach: (1) the additional 

computational burden involved in processing the larger subim-

age will negatively impact the runtime performance, and (2) 

the larger subimage requires a tile-static GPU cache of equiva-

lent dimensions, which cannot be allocated (32 × 32 being 

the largest total size available as of this writing). To mitigate 

0.00
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(b) (c)

0.00
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Fig. 7  (a) 64 x 64 magnitude output array from initial application of CASI II showing attenuated peak at column 7 row 16, indicating a shift in 

–X direction of 25 pixels. (b) CASI II output array resulting from pairing of reference subimage and subimage extracted at displacement deter-

mined from (a). (c) CASI II output array resulting from pairing of reference subimage with subimage extracted from computed aliased location. 

Strong signal peak is visible, indicating true displacement
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these issues, a sample rate conversion step is proposed wherein 

the larger 64 × 64 subimage is downsampled to 32 × 32. This 

compact representation allows for the (re)use of 32 × 32 tile-

static caches allocated for the implementation described up to 

this point, while also minimizing the impact of the additional 

computation on runtime performance. Care must be taken 

when downsampling, however; overlap can occur between 

spectral replications in the frequency domain, corrupting the 

higher frequencies and leading to unreliable results [29, 30]. 

Representing a 64 × 64 subimage in a 32 × 32 cache requires 

that the subimage be downsampled by a factor of 2 × . Shannon 

sampling theorem [30] stipulates that the sampling rate must 

exceed the highest frequency component in the spectrum by 

2 if aliasing is to be avoided. Therefore, it is proposed that the 

size of the speckles be adjusted such that they are oversampled 

by 2 × when initially imaged onto the sensor. Downsampling 

this (oversampled) speckle pattern should, in principle, avoid 

aliasing.

To implement this strategy, the target average speckle size 

must be known a priori. The average subjective speckle size in 

the direction normal to the optical axis of the imaging system 

is given by [3]:

where S is the speckle size, λ is the wavelength of the illu-

mination, q is the distance from the imaging lens to the sen-

sor focal plane, and D is the diameter of the imaging lens 

aperture. From Eq. (13) it can be seen that the size of a 

subjective speckle is inversely proportional to the imaging 

aperture. Therefore, it is a straightforward matter to alter 

the size of the subjective speckles by adjusting the aperture 

of the imaging lens such that they are oversampled by the 

camera sensor. The target size that brings about this degree 

of oversampling of the speckle must be determined. Chen 

and Chiang [3, 31] have applied Shannon sampling theo-

rem to determine the optimal sampling rate for a subjective 

speckle pattern. They have shown the spectrum of a speckle 

pattern is bandlimited, i.e., non-zero only in a circular region 

defined as:

where �
x
 and �

y
 are spectral frequency components in the 

X and Y directions, respectively, and

From Shannon sampling theorem [30], a sampled func-

tion produces spectral replications at regular intervals of 

T
−1 where T  is the sampling interval. To avoid aliasing, the 
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1.22�q

D
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following condition relating T  to the non-zero speckle pat-

tern spectral region � must be satisfied:

By substitution, the Nyquist sampling interval for a sub-

jective speckle pattern can be written as

Rearrangement of Eq. (13) yields

After substitution of Eq. (17) into Eq. (16), and rearrange-

ment, an expression for the Nyquist sampling interval rela-

tive to speckle size is

Therefore, to avoid spectral corruption from the sample 

rate conversion step, the average speckle size must be at least 

4-5 pixels (twice the optimal sampling interval given in Eq. 

(18)). As noted previously, this is accomplished via adjust-

ment of the lens aperture prior to image collection.

To evaluate the effectiveness of sample-rate converted 

coarse-fine decomposition, two 2080 × 2080-pixel syn-

thetic speckle patterns were generated: one with an aver-

age speckle size of 2 pixels (corresponding to an optimally 

sampled speckle pattern as per Eq. (18)) and one with an 

average speckle size of 4 pixels (corresponding to a speckle 

pattern oversampled by 2 × ). Both speckle patterns were 

resized in the X and Y directions to 2110 × 2110 pixels 

using bicubic resampling kernel, corresponding to approxi-

mately 1.5 % strain. These images were then processed with 

three iterations of CASI II. Figure 8 shows the results in 

the form of displacement magnitude i.e., the Euclidean dis-

tance arising from the determined U and V displacement 

fields. Figure 8(a) depicts the results from processing via 

the original CASI II algorithm utilizing a 32 × 32 subimage 

with the optimally sampled (speckle size 2) image pair. The 

aliased shift effect appears as mirroring in the displacement 

field when the magnitude of the displacement exceeds the 

subimage radius. Signal peak decorrelation is manifested 

as noise in the displacement field and dominates the larger 

displacement region. Figure  8(b) depicts the displace-

ment magnitude output data generated using the algorithm 

enhancements described previously, but now applied to the 

same optimally sampled speckle patterns as those used in 

Fig. 8(a). The aliasing shift effect is corrected. However, due 

to the downsampling operation being applied to an optimally 

sampled pattern, the spectra of the subimages have been 

corrupted by aliasing-induced downsampling, resulting in a 

(17)
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T
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)
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quasi-periodic noise pattern in the output data. Figure 8(c) 

depicts the displacement output data generated using the 

algorithm enhancements described earlier but applied to the 

proposed 2 × oversampled speckle patterns. Both the alias-

ing shift effect and the periodic output noise are eliminated, 

while the effective measurement range has been improved 

by a factor of approximately 2.5×.

An additional simulation was conducted to evaluate the 

noise tolerance of both implementations. The same simu-

lated (noise-free) speckle patterns were used as in the previ-

ous example but corrupted by gaussian noise so as to model 

the effect of additive thermal-electronic noise that can arise 

in digital camera amplification circuits. Three levels of addi-

tive noise were used, defined as percentages of the image’s 

full-scale dynamic range: 20 %, 40 % and 60 %. These values 

were then assigned to the fourth standard deviation of the 

gaussian curve to adjust the width of the noise distribution. 

Since the simulated test images were computed to sixteen-bit 

dynamic range with full scale of 0 – 65,535, the three addi-

tive noise levels of 20 %, 40 % and 60 % equated to 13,107, 

26,214 and 39,321 at 4� of the gaussian. Separate noise fields 

were computed for each image in the sequence to simulate 

the temporal variation of the noise level in the speckle pat-

tern during image capture. Examples are shown in Fig. 9. 

The images were then analyzed and the Euclidean distance 

resulting from the X and Y displacement fields was com-

puted. Results from the analysis are shown in Fig. 10. At all 

noise levels, the proposed version demonstrates enhanced 

noise tolerance over the original.

While no changes have been made to the core algo-

rithm of CASI II, the enhancements proposed in this work 

require larger speckles than would otherwise be considered 

Fig. 8  Displacement magnitude fields using synthetically generated speckle patterns with 1.5% applied strain in X and Y directions. (a) Speckle 

size 2 (optimally sampled) original CASI II algorithm with spatial shift aliasing visible as mirroring in the output data as well as large-scale 

decorrelation as relative displacement increases. (b) Results from proposed algorithm manifesting spectral corruption due to sample aliased rate 

conversion of initial size 2 speckles from (a). (c) Results from proposed algorithm with size 4 speckle pattern (2X oversampled) and sample rate 

converted via 2X downsampling showing extended measurement range up to approx. 40 pixels displacement
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optimal [31], which may impact subpixel behavior of the 

algorithm. To evaluate sub-pixel performance, syntheti-

cally generated speckle patterns with dimensions of 2048 

× 2048 pixels and average speckle size of 4 – 5 pixels 

were progressively shifted in the x direction via bicubic 

resampling in steps of 0.1 pixels through two ranges: (a) 

0.1 – 1.0 pixels, and (b) 20.1 – 21.0 pixels. At each step, 

the enhanced CASI II algorithm was applied to the entire 

image using a shift value of 16 pixels. The average of all 

results in the computed displacement field at each step was 

then computed along with their standard deviation. Results 

are shown in Fig. 11. At the minimal displacement range 

(Fig. 11(a)) a slight bias can be seen wherein the results 

tend to underestimate the imposed displacements. At the 

larger range (Fig. 11(b)) this bias appears to be resolved. 

The average standard deviation found for the displacement 

range shown in Fig. 11(a) is 0.0351 pixels and for the 

range shown in Fig. 11(b) the average standard deviation 

is 0.051 pixels. The original CASI II paper [26] claimed a 

theoretical subpixel resolution on the order of 0.02 of the 

average speckle diameter. Assuming optimal sampling in 

that case, the claimed theoretical displacement resolution 

would be on the order of 0.04 pixels (optimal speckle size 

being approximately 2 pixels in the original publication). 

In the case of the modified version proposed in this work 

– and assuming an average speckle size of approximately 

5 pixels – the theoretical displacement resolution would 

be on the order of 0.1 pixels. By inspection of the results 

shown in Fig. 11 and factoring in the uncertainty induced 

by the standard deviations, this appears to be the case.

The final proposed CASI II algorithm is illustrated in 

Fig. 12.

Computational Runtime Performance

Achieving interactive runtime performance for full-field 

analysis is a key objective of this work and, therefore, some 

performance metrics are now presented. Computational 

performance is, however, highly dependent on the data set 

Fig. 9  Synthetic speckle pattern 

with varying levels of addi-

tive gaussian noise (specified 

as percent full-scale at 4th 

standard deviation of gauss-

ian). (a) noise-free, (b) 20%, (c) 

40%, (d) 60% full-scale additive 

gaussian noise
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Fig. 10  Displacement magnitude fields (in units of pixels) using synthetically generated speckle patterns corrupted by additive gaussian noise 

model and with 1.5% imposed strain in X and Y directions, computed via (a) optimally sampled original algorithm with 20 % additive noise, 

(b)proposed algorithm with 20% additive noise, (c) optimally sampled original algorithm with 40% additive noise, (d) proposed algorithm with 

40% additive noise, (e) optimally sampled original algorithm with 60% additive noise, (f) proposed algorithm with 60% additive noise
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size and the hardware platform. In the case of the algorithm 

presented here, this is further complicated by the conditional 

branch governing whether or not the aliased shift disam-

biguation step is invoked (see Fig. 9). Therefore, runtime 

performance is dependent not only on data size and hard-

ware platform, but also the strain field. To gauge the perfor-

mance of this implementation, synthetic speckle patterns 

(average speckle size 4) with dimensions of 1024 × 1024 

and 2048 × 2048 were generated as described earlier and 

1.5 % strain applied in the X and Y directions via bicubic 

resampling. This value was chosen to trigger the conditional 

branch for approximately 75 % of the output data set such 

that its impact on performance is emphasized. Shift sizes of 

8 and 16 pixels were used. The computer testbed consists 

of an 8-core Intel i9-9980HK with 16GB ram and an AMD 

Radeon Pro WX8200 discreet GPU. The average execution 

time for 10 iterations is shown. Runtimes include the periph-

eral processing required to invoke the GPU kernel; while 

the core of the algorithm is written in C++ to run on the 

AMP runtime, the decision was made (primarily for soft-

ware modernization and ease of consumption) to encapsulate 

the kernel in a C# class library responsible for invoking it 

internally via the Platform Invocation services of the .NET 

runtime. Therefore, all timings include not only the time 

to execute the GPU kernel, but also the time required to 

marshal memory to and from both the managed (C#/.NET) 

to unmanaged (C++) runtimes as well as to-from the GPU 

global memory bank. Results are shown in Table 1. Even in 

the case of a 2048 × 2048 image analyzed with a shift of 8 

(corresponding to a total output data set of 62,001 analysis 

points), interactive frame rates are obtained. Greater perfor-

mance is easily achievable by using a more powerful GPU.

Discussion and Conclusion

Unlike traditional DIC, the method described in this work is 

a true interferometer and, therefore, limiting requirements 

are introduced. Primary among these is the need for a dense 

speckle pattern, most easily generated using a laser light 

source. Sparse speckle patterns of the type encountered 

in “white light” speckle or DIC/PIV applications are not 

expected to perform as well.

Secondly, the method requires accurate modulation of the 

size of the interference speckles to satisfy the requirements 

of the sample rate conversion scheme. This is accomplished 

most easily with a subjective speckle pattern by altering the 

imaging aperture. While it is possible to apply a white light 

speckle pattern with the approximate target statistical size 

distribution, in practice this is would be difficult to achieve 

reliably. Future work may include an automated analysis 

method that can be used to determine the average speckle 

size in an image. This could be used not only to provide 

feedback to the user when adjusting the lens aperture, but 

also as an automatic means to optimize the aperture for a 

motorized lens.

The effect of the sample-rate conversion on subpixel esti-

mation accuracy has not been addressed in this work. The 

“fine” step of the “coarse-fine” decomposition utilizes a 32 

× 32 subimage which produces the best results when applied 

to an optimally sampled speckle pattern. In this implemen-

tation, however, the smaller subimage is being applied to a 
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Fig. 11  Subpixel performance for progressively shifted synthetically 

generated speckle pattern. Dotted line indicates the imposed shift (via 

bicubic resampling) for shift range of a) 0.1 – 1.0 pixels in increments 

of 0.1, and b) shift range of 20.1 – 21.0 in increments of 0.1 pixels. 
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Fig. 12  Proposed algorithm for 

enhanced CASI II implementa-

tion showing processing flow 

for a given tile partition
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2 × oversampled speckle pattern and some peak broadening 

can be expected. The effect this has on subpixel estimation 

has been shown to increase the measurement uncertainty to 

approximately 10 % of a pixel. While this was determined 

using resampled images, this places a strong emphasis on 

choice of type (and quality of implementation) of the resa-

mpling method used and should be thought of as, at best, a 

proxy for ground truth. In addition, noise levels in the image 

can be seen to affect subpixel estimations. This is clearly 

evident in Fig. 9, where the displacement contours become 

visibly progressively less smooth (when compared with the 

noise-free case shown in Fig. 8) as progressively greater 

levels of noise are introduced. Given that the implementa-

tion proposed here is targeted at real-time applications where 

noise may be more prevalent due to higher camera frame 

rates, less emphasis should be placed on the fidelity of sub-

pixel accuracy. Perhaps more importantly, it should be noted 

that in most applications the true information being sought is 

strain. This requires a post-processing smoothing/denoising 

step to avoid overwhelming oscillatory artifacts in the calcu-

lated derivatives. Such filters can be expected to heavily alter 

the subpixel displacement estimations, calling into question 

the utility of super-fine subpixel detection. Nevertheless, for 

many applications the approach demonstrated here is likely 

to be useful and effective.

In conclusion, a series of enhancements to the original 

CASI II algorithm for simulating speckle interferometry 

have been detailed, the goal being to amplify both the usable 

range of the technique as well as its computational perfor-

mance. Results for representative data sets have shown the 

efficacy of these modifications. This new version of CASI 

II generates high-resolution full-field displacement fields at 

common camera frame rates and is suitable for use in many 

non-contact industrial inspection applications, as well as 

classical experimental mechanics studies.
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