
Vol.:(0123456789)

Experimental Techniques

https://doi.org/10.1007/s40799-021-00520-x

APPLICATIONS PAPER

A Range and Performance Optimized Version of the Computer-Aided
Speckle Interferometry Algorithm for Real-Time Displacement-Strain
Field Monitoring

L. Keene
1

Received: 2 August 2021 / Accepted: 29 September 2021

© The Author(s) 2021

Abstract

This work presents an optimized implementation of the Computer-Aided Speckle Interferometry algorithm which enables

full-field determination of displacements and strains on commodity Graphics Processing Units at high resolution and frame

rates. By combining careful control of the average speckle size in a laser speckle pattern with a simple sampling rate conver-

sion scheme, a compact representation of the optical speckle is achieved. This allows for optimal use of Graphics Processing

Unit architecture with robust range extension. The optimal mapping of the Computer-Aided Speckle Interferometry algorithm

to Graphics Processing Unit architecture is shown in detail, and a straightforward method for disambiguating large displace-

ments is illustrated. Lastly, this paper demonstrates a two-step subimage-tapering modification to the original algorithm that

enables robust range enhancement while maintaining resolution. Results from numerical simulations on synthetic speckle

patterns are shown, and runtime performance metrics are provided, with performance ranging up to 60 frames per second in

some cases. The method is suitable for interactive experimental mechanics research, process and testing or any application

where real-time high-resolution displacement-strain monitoring is needed. A .NET Framework class library enabling the

incorporation of the algorithm into 3rd -party applications is available for download.

Keywords Computer-aided Speckle Interferometry · General-purpose Graphics Processing Unit · GPGPU · Speckle

Interferometry · Digital image correlation · Experimental mechanics

Introduction

The application of optical methods for resolving full-field

displacements and strains is a mature field. Two primary

approaches – one statistical and one interferometric – are

commonly chosen for this purpose. The Digital Image Cor-

relation (DIC) approach involves direct spatial-statistical

analysis of digitized image pairs via application of a cross-

correlation calculation [1]. This method attempts to generate

a deterministic measure of the degree of similarity between

two speckle patterns and is generally very robust. The sec-

ond (interferometric) approach pre-dates the correlative one

and consists of holographic and laser speckle interferometry

methods that leverage optical interference phenomena [2].

The difference between the two – while interesting from a

technical and academic standpoint - is subtle, and ultimately

both methods generate equivalent outputs consisting of cor-

relation fringes (i.e., displacement isolines). Both types have

found widespread use in fluid and solid mechanics research.

Due to its straightforward methodology, robustness, and the

increasing power of digital computers, direct cross-correla-

tion analysis eventually became the more commonly adopted

method. The interferometric approach has continued to

evolve, however, and reached its zenith with the Computer-

Aided Speckle Interferometry (CASI) algorithm [3]. This

hybrid approach combines the sensitivity characteristics

of speckle interferometry with the automation capabilities

of digitized imagery by computing the interference within

computer memory.

In the field of fluid mechanics, the primary goal is often

characterizing the two-dimensional flow field [4–6]. This

typically involves seeding a fluid with tracer particles and

then illuminating it with a laser beam expanded in one

direction (usually parallel to the dominant flow direction).

 * L. Keene

 keene6@llnl.gov

1 Lawrence Livermore National Laboratory, Livermore, CA,

USA

http://orcid.org/0000-0002-2261-4324
http://crossmark.crossref.org/dialog/?doi=10.1007/s40799-021-00520-x&domain=pdf

 Experimental Techniques

Particle image pairs - made visible by their scattering of

the laser illumination - are then analyzed either by Laser

Speckle Velocimetry (LSV, an interferometric approach

leveraging a speckle diffraction effect) if high fluid-particle

concentrations exist, or the more general Particle Image

Velocimetry (PIV, a statistical analysis approach) for use

with either dense or sparse particle concentrations [5]. Both

cases fundamentally generate two-dimensional displace-

ment fields as their dataset outputs, which are then option-

ally post-processed via numerical differentiation to estimate

velocity vector fields.

Likewise, the field of solid mechanics has seen a parallel

but independent effort to develop and apply similar methods.

The DIC method is most often employed and, like PIV, uses

statistical analysis to map displacements by cross-correlating

small subimage pairs within a predefined search region of

optical images [1]. Like its PIV counterpart in fluid mechan-

ics, the DIC approach ultimately outputs a data set character-

izing the two-dimensional displacement field which is then

optionally post-processed via numerical differentiation to

estimate surface strain fields. This approach is often referred

to as “white light speckle” due to its reliance on natural

surface texture or the application of high-contrast random

paint patterns to the surface under study, an approach analo-

gous to seeding the fluid flow with scattering particles in

the style of PIV/LSV. Alternatively, a coherent light source

such as a laser can be used to illuminate the object surface

provided that the surface roughness is greater than the order

of the wavelength of the illuminating light. In this case, a

stochastic interference pattern known as laser speckle [7] is

generated that can be used to uniquely characterize the sur-

face of the object; since the local micro-relief of the surface

governs the scattering behavior, and therefore the forma-

tion of the speckle pattern itself. The local speckle pattern

(i.e., the speckle pattern associated with small subimages

extracted from some source image) is anchored to the local

relief and translates in response to a translation of the associ-

ated surface, thus mirroring its deformation. As in PIV/LSV/

DIC, source image pairs consisting of speckle patterns are

processed to generate a two-dimensional displacement field

which can then be post-processed to estimate the surface

strains [8–11]. Additional advances in the field have also

enabled the use of sparse data sets for generating approxi-

mations of full-field displacements with less computational

burden [12–15].

As optical methods have advanced, so have the digital

processing capabilities of personal computers. Key architec-

tural enhancements such as out-of-order execution, branch

prediction, Single Instruction Multiple Data (SIMD) vector

processing, many-core designs and branch prediction have

all improved the runtime performance of CPUs [16]. In the

last decade some of the largest improvements in runtime

performance have been realized in the graphics processing

subsystem, specifically the Graphics Processing Unit (GPU).

These were initially intended as task-specific processors

optimized for rendering graphics output but have gradually

evolved into fully programmable processors that, in some

cases, are ideally suited to highly parallel computational

workloads. To facilitate the application of these devices

to more general workloads, several Application Program-

ming Interfaces (APIs) have been introduced to expose this

underlying capability to non-graphics programmers. Among

the most widespread is Nvidia’s CUDATM GPU API [17].

Applications written using CUDA are executable only on

Nvidia GPUs. While these are widespread, this poses a limi-

tation with respect to general compatibility. In response to

this restriction, the open-source OpenCL framework was

created to enable GPU-specific code to execute on multiple

hardware vendor platforms including Nvidia, Intel and AMD

[18]. Another, less well-known, framework is a Microsoft

API called DirectComputeTM which operates within the

 Direct3DTM runtime (version 11 or higher) on the Windows

operating system and allows low-level programming of pixel

shaders to enable computational workloads other than graph-

ics. While powerful, DirectComputeTM was difficult to use

for programmers unfamiliar with graphics programming.

In response to this, Microsoft created the C++ Acceler-

ated Massive Parallelism (C++ AMP) open specification

[19] - in effect, enabling the use of DirectComputeTM with

more familiar C++ programming idioms. Microsoft pro-

vides an implementation of C++ AMP in the C++ compiler

included with all versions of their Visual Studio Integrated

Development Environment (IDE). Applications using C++

AMP to target the GPU can execute on any GPU that sup-

ports DirectX 11 or higher, regardless of manufacturer. The

enhanced version of CASI described in this paper is imple-

mented with Microsoft’s C++ AMP compiler.

This paper is organized as follows: the principles of

the laser speckle diffraction measurement technique are

described, followed by their expression in the form of the

CASI I/II algorithms. The mapping of key stages of the base

CASI II algorithm to commodity GPU hardware for efficient

parallel execution via C++ AMP is described in detail. Two

additional modifications to the base algorithm are then pro-

posed: (1) a straightforward method to disambiguate large

(but resolvable) displacements from translation aliasing

effect, and (2) a subimage-tapering modification involv-

ing an oversampling-downsampling approach that greatly

extends the measurement range of the original method while

preserving the ability to efficiently map the algorithm to

GPUs. Results on synthetic speckle patterns are shown and

timings for an example GPU are provided.

Experimental Techniques

Principle

Single-Beam Speckle Diffraction Interferometry

Single-beam speckle diffraction interferometry has its ori-

gins in the fundamental work of Burch and Tokarski [20],

was expanded upon by Archbold et al. [21, 22] and later

refined by Khetan and Chiang [23]. Conceived as a full-

field non-contact method for determining surface in-plane

deformations, the basic experimental setup and procedure

is illustrated in Fig. 1. In the case of solid mechanics,

this involves illuminating an object with a diffused coher-

ent light source (typically a laser beam passed through a

microscope objective such that the emitted beam forms

a diverging cone of light) and capturing the subjective

speckle pattern on a photographic negative. The object

under study is then stressed or perturbed in some way and

a second speckle pattern is captured on the same photo-

graphic negative. This is referred to as a “double exposure

specklegram”. For fluid mechanics studies implementing

LSV, the process is the same with the exception that the

two speckle patterns are two reflectance specklegrams of

seed particles captured some time interval apart either

Laser illumination

Lens

Lens

Diffuse object

surface

Double exposure

specklegram

Fringe pattern
Double exposure

specklegram

Laser

(a)

(b)

Fig. 1 a) Optical arrangement for collection of double exposure specklegram of coherently illuminated object undergoing strain. b) Optical pro-

cessing of double exposure specklegram to generate Young’s fringes

 Experimental Techniques

by pulsed laser or shuttered continuous wave laser. Once

developed, the negative contains a randomly distributed

array of varying transparency corresponding to the irradi-

ance pattern of the original speckle patterns. When illu-

minated by a plane wave source, the photographic nega-

tive acts as a random transmittance function causing the

impinging wave to diffract. Since the negative is a double

exposure containing the photographic superposition of

both speckle patterns (reference and perturbed), the trans-

mittance function embodied by the photographic plate is

essentially two superimposed non-uniform partially cor-

related diffraction gratings. The gratings are non-uniform

due to the randomness of the speckle pattern, and par-

tially correlated due to the displacement imposed between

images. If the displacement between images is not overly

large, a spatial correspondence will exist between neigh-

boring speckles. When illuminated by a plane wave such

as a collimated laser beam, these speckles act as aperture

pairs that diffract the impinging wave. When viewed in

the far field, a central diffraction halo modulated by sinu-

soidal fringes (i.e., Young’s fringes) corresponding to the

displacement between images can be observed. The fringe

orientation is perpendicular to the direction of the local

motion within a ±180-degree ambiguity. The object’s dis-

placement is inversely proportional to the resulting fringe

pitch and is given by [2].

Here Pf is the fringe pitch, � is the wavelength, F
l
 is the

focal length of the imaging lens used in the optical process-

ing step, M is the system’s optical magnification and Disp is

the object’s displacement at the location of optical process-

ing. In practice, the photographic plate is usually mounted

in an XY translation gantry and illuminated by collimated

laser beam at many discreet locations. Therefore, one can

obtain its two-dimensional displacement field by scanning

the beam in an XY plane perpendicular to the laser’s optical

axis over the entire image of the object, analyzing the result-

ing fringe pattern at each position. Implicit in this method is

the assumption that the displacement is essentially uniform

within the illuminated region due to its small size relative to

the size of the overall object within the negative. Therefore,

care must be taken to ensure that a proper size ratio between

object and interrogation spot is maintained. This ratio will

be dependent on the target spatial resolution of the resulting

displacement-strain field as well as the complexity of the

strain field itself; more complex strain fields will require

smaller interrogation area. In many cases, successful appli-

cation of the technique requires several iterations, and some

a priori knowledge of the object’s approximate deformation

is helpful.

(1)Disp =

�Fl

MPf

CASI I

Taking advantage of the advent of powerful personal com-

puters and CCD cameras of sufficient resolution, Chen and

Chiang [24] proposed to reconstruct the speckle diffraction

interference using a two-step Fast Fourier Transform (FFT)

[25] numerical simulation rather than implementing it via

physical optics as described earlier. Here, a brief overview

of this method is presented. Approximating the deformed

speckle pattern as a shifted version of the reference (i.e.,

undeformed) speckle pattern, a subimage of the reference

speckle pattern is denoted as

An equally sized subimage portion of the deformed

speckle pattern is approximated as

where u and v are the displacements in the x and y direc-

tion, respectively, and n(x, y) is an additive uncorrelated

noise component that is assumed to be small and is often

therefore disregarded [24] (the impact of additive noise of

various amplitudes on the CASI algorithm is shown later

in this work, see Figs. 9 and 10). Furthermore, the spatial

spectrum of the reference subimage is written as

where Δ denotes the subimage area and �
x
 and �

y
 are spa-

tial frequencies in the x and y directions, respectively. The

spectral sum of the reference and displaced speckle patterns

can be written as

or alternatively, using the Fourier shift theorem [25], as

It can be shown [24] that the spectral amplitude of Eq. (6)

can be approximated as

where Ah

(
�x,�y

)
=
|
|
|
H(�x,�y)

|
|
|
 (often referred to as the dif-

fraction halo). Inspection of Eq. (7) indicates that the result-

ing spectral amplitude consists of an overall diffraction halo

bias modulated by cos
2 fringes i.e., Young’s fringes resulting

from the interference of the two speckle patterns. Chen and

(2)h1(x, y) = h(x, y)

(3)h2(x, y) = h(x − u, y − v) + n(x, y)

(4)H
(

�x,�y

)

= ∬
Δ

h1(x, y)e−j2�(x�x+y�y)dxdy

(5)

F
(

�x,�y

)

= ∬
Δ

(h(x, y) + h(x − u, y − v))e−j2�(x�x+y�y)dxdy

(6)

F
(

�x,�y

)

= 2H(�x,�y)e
−j�(u�x+v�y)cos

(

�

(

u�x + v�y

))

(7)

As

(

�x,�y

)

≈
4

3�
Ah(�x,�y){1 + 4cos2

(

�

(

u�x + v�y

))

}

Experimental Techniques

Chiang [24] proposed processing this result via a second

forward Fourier transform to estimate the peak position in

the second frequency domain corresponding to the funda-

mental frequency of the fringes. Based on this description,

implementation of CASI I involves the following sequence

of processing steps:

Step 1. Extract a subimage (typically 64 × 64 or 32 × 32

pixels) from the reference image.

Step 2. Extract an equally sized subimage from the cor-

responding location in the deformed image.

Step 3. Add the subimages together to create the double

exposure.

Step 4. Perform a forward Fourier transform of the dou-

ble exposure and compute the magnitude of the result.

Step 5. Perform a forward Fourier transform of the

result from step 4 and locate the crest of the correla-

tion peak(s). This indicates the direction (with ±180

degrees ambiguity) and magnitude of the shift between

subimages.

Step 6. Shift subimage location and repeat sequence for

entire image.

CASI II

Chen and Chiang further refined the method by proposing

an alternative algorithm referred to as CASI II [26]. In

this approach, corresponding subimages are extracted as in

CASI I but processed independently rather than superim-

posed as a double exposure, and a new spectrum is formed

which contains an array of phase differences. The direction

of the deformation is indicated by the sign of the primary

phase difference, and the magnitude of the deformation is

indicated by the periodicity. Again, let the reference sub-

image be denoted as in Eq. (2) and the displaced subimage

denoted as in Eq. (3), where u and v are the displacements

in the x and y directions, respectively, and Δ indicates

the subimage extraction region within the overall source

image. The spectrum of the reference subimage is deter-

mined by

Likewise, the spectrum of the displaced subimage is

determined by

A new spectrum, in the form of a normalized cross-power

spectrum of the two subimage spectra, is obtained by

(8)H1

(

�x,�y

)

= ∬
Δ

h1(x, y)e−j2�(x�x+y�y)dxdy

(9)H2

(

�x,�y

)

= ∬
Δ

h2(x, y)e−j2�(x�x+y�y)dxdy

where ∗ indicates the complex conjugate. A second Fourier

transform gives rise [26] to the secondary frequency domain

(ξ,η) representation of this new spectrum:

By computing the magnitude of G(�, �) , an expanded

impulse function centered at the displacement point (u,

v) in the second spectral domain is obtained. By locating

the crest of this single impulse function, the direction and

magnitude of the deformation between speckle patterns is

uniquely determined. A detailed exposition of the derivation

can be found in [3].

Based on the above description, implementation of CASI

II involves the following sequence of steps:

Step 1. Extract a subimage (typically 32 × 32 pixels) from

the reference image.

Step 2. Extract an equally sized subimage from the cor-

responding location in the deformed image.

Step 3. Perform a forward Fourier transform of the refer-

ence subimage.

Step 4. Perform a forward Fourier transform of the dis-

placed subimage.

Step 5. Compute a normalized cross-power spectrum

according to Eq. (10).

Step 6. Perform a forward Fourier transform on the com-

plex result from step 5 and locate the crest of the magni-

tude impulse peak. This uniquely indicates the direction

and magnitude of the shift between subimages.

Step 7. Increment subimage location and repeat sequence.

CASI II can uniquely determine the direction directly in

the secondary frequency domain, whereas CASI I generates

an interference fringe pattern which requires further process-

ing to ascertain the nature of the underlying displacement.

The penalty paid for this enhancement is greater computa-

tional complexity, primarily the need to compute an addi-

tional forward FFT in CASI II vs. CASI I.

Adaptation to GPU Architecture

GPU hardware is designed to efficiently process parallel

workloads by scheduling many tens of thousands of inde-

pendent threads of execution, each one running the same

logical execution unit referred to as a “kernel”. In most

cases, threads execute the kernel method either indepen-

dently of each other or with minimal synchronization. This

(10)
F
(
fx, fy

)
=

H1(fx, fy)H
∗
2
(fx, fy)

√
||
|
H1(fx, fy)H2(fx, fy)

|
|
|

(11)
G(�, �) = ∬

Δf

F(fx, fy)e
−j2�(fx�+fy�)dfxdfy

 Experimental Techniques

is generally the most efficient model for GPUs, as the flex-

ibility it affords the thread scheduler allows for maximum

occupancy. In the case of the CASI II algorithm, however,

there exist two granular levels of parallelism: (1) data-level

parallelism, and (2) task-level parallelism, as can be seen

by examining the algorithmic sequence listed for CASI II.

Fundamentally, each subimage pair is processed indepen-

dently of any other - an example of task-level parallelism.

Subimage processing (steps 3, 4 and 6 above) involves the

application of multiple 2D FFTs, operations that can be

parallelized at the data level. Lastly, Step 5 of CASI II is

a pointwise operation over the entire subimage with maxi-

mum data-level parallelism. By inspection, CASI II is an

algorithm that should respond well to GPU implementation

provided that the dual-level parallel granularity can be effi-

ciently mapped to GPU architecture.

Memory Access Optimization

One programmatic mechanism exposed by the C++ AMP

standard is a data-partitioning strategy called “tiling”. With

this approach, the input data is partitioned into logical units

processed by clusters of spatially associated threads whose

execution can be synchronized, allowing for a degree of

task-parallel granularity. Tiles can be up to rank order 3.

The extent of the data partitioning (i.e., number of tiles

in all dimensions) must be declared at the kernel invoca-

tion. In this case the tiles form a natural correspondence

to individual subimages in CASI II and are of rank order

2. The declared dimension of the tiles defines the number

of threads assigned to them and is equal to the product of

the tile’s dimensions (its area or volume). This value can-

not currently exceed 1024 [19]. GPU threads within a tile

group can synchronize among themselves but not among

other tiles, and the sequence in which the tiles complete

their processing is non-deterministic. Algorithms must be

structured with these caveats in mind. Tiling enables the

two-tiered parallel granularity required for CASI; the tile

itself enforces the task-parallel nature of processing subim-

age pairs, while the thread group within each tile enforces

the data-parallel nature of the actual processing operations.

Following is an example of a two-dimensionally tiled kernel

invocation using C++ AMP:

static const int TileSize = 32;

extent<2> tiledExtent(OutputDataRows * TileSize, Out-

putDataColumns * TileSize);

parallel_for_each(tiledExtent.tile<TileSize, Tile-

Size>(), [=](tiled_index<TileSize, TileSize> tiledIndex)

restrict(amp) {.}

In this invocation, tiledExtent(.) defines the degree to

which the input data is apportioned threads. The user-defined

variables OutputDataRows and OutputDataColumns corre-

spond to the output dimensions (the total number of subim-

age processing positions within the input images) and are

based upon the size of the input images, the subimage size

and the shift size (i.e., the pixel offset between adjacent sub-

image locations).

Since a logical computation unit (tile) will be assigned

for each subimage analysis position in the input image(s),

the total extent of processing threads requested to process

the entire image is the thread area per tile (1024 threads

per 32 × 32 pixel subimage) multiplied by the total num-

ber of subimage processing locations in the parent image.

Code within the parentheses is executed by each tile thread

independently. The entire kernel declaration, beginning

with “parallel_for_each” can be read as: For the following,

assign a collection of spatial tiles of ‘tiledExtent” dimen-

sions, partition each tile into a 2D cluster of threads such

that each tile contains “TileSize” number of threads in the

X and Y directions, enable each individual thread’s global

and tile-specific location to be identified by “tiled_index”,

and restrict execution to the C++ AMP runtime.

Logical tile partitioning is beneficial not only because it

enables task-level parallelism, but also because it enables the

use of what is referred to as “tile-static” memory. This is a

small region of programmable cache memory separate from

the GPU’s global memory bank. Similar to a CPU cache, its

total capacity is much less than the main memory bank, but

it exhibits far greater bandwidth and much lower latency.

Unlike CPU cache, however, tile-static memory is not man-

aged automatically and must be declared and managed by

the programmer. Once declared within the kernel it is vis-

ible only to threads in a given tile (i.e., threads that have

been instantiated for cooperative work on a specific task)

and can be used as a way for them to share information while

simultaneously partitioning a region of high-speed memory

for exclusive use by that task’s threads. Its use is crucially

important when a cluster of threads is cooperatively pro-

cessing a single task, as it enables thread synchronization

and an encapsulated form of data sharing at the task-parallel

level [19, 27]. Furthermore, from a performance standpoint,

the low latency is highly beneficial if data residing in the

global memory store needs to be accessed multiple times; in

most cases this is the primary reason for adopting the greater

complexity associated with tiling an algorithm. In the imple-

mentation described here, a tile size of 32 × 32 has been

used as it provides excellent performance on the hardware

tested while also providing for a conceptually straightfor-

ward mapping of the CASI algorithm to GPU kernel code.

Figure 2 illustrates the spatial relationship between global

and tile-static memory, and how individual tile threads refer-

ence their locations in tile domain and global data domain

spaces. This is an example of computing a tile thread’s data

domain space coordinate:

Experimental Techniques

where tiledIndex is the index identifier declared in the kernel

invocation, and Shift is a user-defined integer value corre-

sponding to the size of the spatial shift (in pixels) from one

subimage analysis location to the next in the parent images.

Spectral Processing

An examination of the CASI II algorithm indicates the first

major processing step in the sequence is a pair of 2D forward

FFTs. This is an iterative operation where data is repeat-

edly read, shuffled, processed, and stored in-place, and thus

makes optimal use of the cached tiling strategy previously

described. Each forward FFT operation generates an equally

sized array of complex results. Therefore, four 32 × 32 tile-

static caches are needed to store the subimage spectra: two

for each subimage FFT operation (one to store the real com-

ponent and one to store the imaginary component of the

complex result).

The FFT algorithm used for this work is a decimation-

in-time radix-2 implementation with bit-reversed input

int DataDomainRow = (tiledIndex.tile[0] ∗ Shift)

+ tiledIndex.local[0]; ∕∕ Global memory row

int DataDomainColumn = (tiledIndex.tile[1] ∗ Shift)

+ tiledIndex.local[1]; ∕∕ Global memory column

ordering [28]. The bit-reversed input ordering requires that

the input data be re-ordered prior to use, and this is typi-

cally done at runtime by bit-reversing the array input indi-

ces as they appear in their original order. Since the subim-

age dimensions are fixed in this implementation, the input

ordering that would result from bit-reversal is predetermined

and hard-coded in predefined struct of integers, simplifying

implementation and improving readability. The input data is

then reordered in row-wise fashion according to the index

values in this struct in preparation for FFT processing. In

similar fashion, the multiplicative “twiddle” factors needed

for the FFT computation [29] are stored in predefined float

structures and used during the computation rather than

computed at runtime. Figure 3(a-e) shows the progressive

signal flow of the radix-2 algorithm, as well as the topo-

logical progression of the classic trapezoidal “butterfly”

data access pattern, at the tile-thread level for the first row

of a subimage tile, from the first pass of the row-wise FFT

(Fig. 3(a)) to the final pass (Fig. 3(e)). By inspection it can

be seen that for a given butterfly pattern, two input values

are required to generate two output values per pass of the

algorithm, which are then stored in-place (this can be seen

most clearly in Fig. 3(a)). The original input values must

be known in order to generate the two output values of the

butterfly pattern. Due to the use of in-place storage, if more

than one thread were responsible for storing the intermittent

results of each butterfly pattern (per pass), the values at those

Fig. 2 Spatial relationship

between tile-static memory

containing subimage data and

global memory containing

entire image data. Assuming the

user-defined 2D tile identifier

“tiledIndex”, row-column loca-

tions for individual tiles are: a)

tiledIndex.tile[0] = 0, tiledIn-

dex.tile[1] = 0, b) tiledIndex.

tile[0] = 1, tiledIndex.tile[1]

= 1, c) tiledIndex.tile[0] = 1,

tiledIndex.tile[1] = 0, and indi-

vidual thread locations within

the tile are identified as: d)

tiledIndex.local[0] = 0, tiledIn-

dex.local[1] = 0, e) tiledIndex.

local[0] = 0, tiledIndex.local[1]

= 31, and f) tiledIndex.local[0]

= 31, tiledIndex.local[1] = 0

(a)

0

31

31

(b)

(c)

(d)

(e)

(f)

 Experimental Techniques

0 1 2
3

4
5 6

7 8
9 10

11 12
13

14 15
16

17
18 19

20
21

22 23
24

25
26 27

28 29 30 31

0 1 2
3

4
5 6

7 8
9 10

11 12
13

14 15
16

17
18 19

20 21
22 23

24
25

26 27
28 29

30 31

0 1 2
3

4
5 6

7 8
9 10

11 12
13

14 15
16

17
18 19

20 21
22 23

24
25

26 27
28 29 30 31

0 1 2
3

4
5 6

7 8
9 10

11 12
13

14 15
16

17
18 19

20 21
22 23

24
25

26 27
28 29 30 31

t0

0
2

3
4

5 6
7 8

9 10
11 12

13
14 15

16
17

18 19
20 21

22 23
24

25
26 27

28 29 30 31

t0

t0

t0

t0

t15

t15

t15

t15

t15

(a)

(b)

(c)

(d)

(e)

Experimental Techniques

memory locations at any moment become non-determinis-

tic. The excessive thread synchronization required to avoid

this state – known as a “race condition” – would negatively

impact performance. Therefore, a single thread is assigned

to each butterfly instance. Since each thread is responsible

for generating two output values, only half of the available

tile threads (threads are indicated in the figure by “t0” for

the first tile thread, up to “t15” for the sixteenth tile thread)

have been apportioned to process the subimage FFT. Since

this results in a thread occupancy level of 50 % for the tile,

maximum thread occupancy - and efficiency - is achieved

by assigning the first 512 tile threads to the 2D FFT for

the first (reference) subimage, and the other 512 threads in

the tile to the 2D FFT of the second (displaced) subimage.

Each cluster of tile threads therefore processes two FFTs

simultaneously with results stored in-place, and the ideal

thread occupancy level is achieved. This pattern assumes

the input data has been re-ordered (bit-reversed). While only

the first-row processing is shown in Fig. 3, all rows of the

subimage tile are processed quasi-concurrently and in the

identical pattern to that shown. Column-wise FFT process-

ing proceeds in the same topological stages and with the

same thread distribution.

Interference Spectrum and Parallel Reduction

Computing the interference spectrum according to Eq. (10)

is a pointwise operation over the entire subimage tile with

maximum thread occupancy. In other words, each tile thread

generates one complex result corresponding to that thread’s

row-column location in the tile, with the operation occurring

in parallel over the entire subimage. The spectrum of the

reference subimage tile will be reused in a further processing

step and is not overwritten by any following intermediate

results. Instead, the results from the interference spectrum

calculation are stored in the tile cache containing the forward

FFT of the displaced subimage, overwriting the spectral data

(it will no longer be needed after computing the interfer-

ence spectrum) but preserving the reference subimage tile

spectrum. This bypasses the need to instantiate additional

scarce tile-static memory. A second 2D forward FFT is

then applied to this result in the same manner as previously

described, thus generating the 2nd complex spectral domain

representation and storing it in-place in the displaced subim-

age tile-static cache. This is then processed in a pointwise

manner with maximum thread occupancy (again, in-place)

to compute the complex magnitude.

The magnitude field of the interference spectrum contains

the peak indicating the displacement between the reference

and displaced subimages, and so a reduction step is nec-

essary to determine the row-column location of the peak.

Tile-static cache consists of a series of interleaved memory

banks of a certain width [19]. This is hardware independ-

ent but is most commonly 32-bits wide. Figure 4(a) shows

the most likely configuration of the memory banks as they

pertain to tile-static caches of the size being used here. All

tile cache in the algorithm described in this work is declared

as single precision floating point, with each column of the

tile a single 32-bit wide memory bank. Memory access

can only be parallelized by the thread scheduler if they are

attempting to read/write different banks. Otherwise, they are

serialized – a condition known as memory bank conflict. If

this condition arises continuously, it has a negative impact

on runtime performance. In this work, the parallel reduc-

tion of the tile cache data is performed in such a manner

as to minimize memory bank conflicts. This is illustrated

in Fig. 4(b). The tile cache is first scanned by the topmost

row of tile threads in a vertical column-wise fashion, one

thread per memory bank. Each thread determines the row

number and magnitude of that column’s maximum value.

These results (row and magnitude) are stored in the first

two rows of their respective column in the tile-static cache,

and a second pass consisting of four tile threads is used to

further reduce the previous results to four candidate values

(Fig. 4(c)). Note that - due to the horizontal reduction opera-

tion of this second stage - the column number associated

with the maximum value must also be stored alongside the

row number. Lastly, a single thread determines the row and

column coordinate associated with the maximum of these

four values. This indicates the location of the impulse func-

tion, thus obtaining the displacement at the given subimage

processing location.

CASI II Range Extension

Disambiguating spatial shift aliasing

In addition to its non-contact nature and tolerance of envi-

ronmental noise, one of the benefits of the CASI II algorithm

is its ability to resolve in-plane displacements that are large

relative to the subimage dimension(s). This can be illustrated

via numerical experiment. The method described by Good-

man [7] for numerically simulating speckle formation by

free space propagation is used to generate synthetic objective

speckle patterns to evaluate CASI II performance character-

istics. Goodman’s method involves instantiating an array of

zeros and then populating a given rectangular region of the

array with a random phasor field. Computing the intensity

of the array’s frequency domain representation simulates

the stochastic nature and appearance of an optical speckle

pattern, with the initial size of the array governing the size of

the resulting image and the size of the random phasor field

Fig. 3 Tile-threaded processing pattern for row-wise FFT of 32 x

32 subimage tile for a) first stage, to e) final stage. “t0..t15” denote

thread 0 to thread 15 of a given tile row

◂

 Experimental Techniques

0 1 2
3

4
5 6

7 8
9 10

11 12
13

14 15
16

17
18 19

20 21
22 23

24
25

26 27
28 29 30 31

t0

t0

(b)

(c)

0 1 2
3

4
5 6

7 8
9 10

11 12
13

14 15
16

17
18 19

20 21
22 23

24
25

26 27
28 29 30 31

t31

t1

t2

t3

(a)

0 1 2
3

4
5 6

7 8
9 10

11 12
13

14 15
16

17
18 19

20 21
22 23

24
25

26 27
28 29

30 31

Fig. 4 Parallel reduction of 32 x 32 subimage tile. a) Memory bank configuration for tile-static cache used for subimages. Discreet banks are

numbered 0 – 31 and correspond to subimage tile columns. b) First pass column-wise reduction using 32 tile threads. Each thread process a

single column. Results from each column are stored in top two rows of associated column. c) Second pass horizontal reduction using four tile

threads. A final pass with a single thread reduces these four results to the final one (not shown)

Experimental Techniques

governing the average size of the speckle. Figure 5 shows

three examples of synthetic speckle patterns - corresponding

to three different speckle sizes - generated using this method.

All synthetic speckle patterns used in this study are gener-

ated as sixteen-bit grayscale images.

To illustrate the resolvable noise-free range resolution, a

synthetic speckle pattern with an average speckle size of 4

pixels was generated and then subjected to sequential rigid

body integer translations of 0, 15, 30 and 40 pixels in the XY

directions. This amounted to a trivial remapping of pixels

which introduces no noise or resampling error. This sequence

was paired with the initial untranslated image and CASI II is

applied to a centrally extracted 64 × 64-pixel subimage pair.

The results are shown in Fig. 6, which depicts the magnitude

field of the second spectral domain (step 6 of the CASI II algo-

rithm) resulting from each rigid body translation. The signal

peak position translates in accordance with the relative rigid

body displacement between the two subimages, while its mag-

nitude decreases as initially correlated speckles move out of

the subimage reference frame and new uncorrelated speckles

enter. Even at a relatively large relative displacement of 40

pixels in both X and Y directions – corresponding to only a

14 % shared subimage area (Fig. 6(d)) – a peak is still resolv-

able among the background random peaks in the magnitude

field. While useful, this large measurement range introduces

an ambiguity when interpreting the result: provided the signal

to noise ratio of the two speckle patterns is sufficient, when

the relative displacement between subimages exceeds half the

subimage dimension in either direction, the signal peak can

be seen to wrap around to the opposite side of the magnitude

field. As a result, while CASI II uniquely resolves the direction

of the displacement when compared to CASI I, this is only

true for displacements that do not exceed half of the subim-

age dimension in either direction. Displacements in the U and

V directions exceeding this magnitude often manifest under

the alias of a displacement in opposite direction to the true

displacement, differing in magnitude by a factor equal to the

subimage size. Using the engineering convention of positive

U displacement being in the positive X direction and positive

V displacement being in the negative Y direction (where posi-

tive Y is typically downwards from the standpoint of image

coordinates), the aliased shifts can then be written as

Fig. 5 Examples of numerically

simulated far field speckle pat-

terns for average sized speckles

of a) 4 pixels per speckle, b)

8 pixels per speckle, and c) 16

pixels per speckle

 Experimental Techniques

(12)U
a
= ±(U

d
− S

s
)

(13)V
a
= ±(V

d
− S

s
)

Where U
a
 and V

a
 denote the aliased displacement in the

U and V directions, U
d
 and V

d
 denote the determined U and

V displacements resulting from the application of CASI II,

and S
s
 is the size of the subimage (always a square) with

Fig. 6 Magnitude values result-

ing from application of CASI

II to a 64x64 synthetic speckle

pattern with sequentially

imposed rigid-body UV shifts

of a) 0, b) 15, c) 30 and d) 40

pixels. The gray region depicts

the area of correspondence (the

shared region) between the two

equally sized subimages after

one subimage has undergone

a displacement relative to the

other. As this region decreases,

so too does the peak signal

amplitude

(a)

(b)

(c)

(d)

Experimental Techniques

its sign being the negative of the associated determined

displacements.

To disambiguate the determined displacements from their

aliased counterparts and arrive at the true direction of the

shift, a straightforward polling modification to the original

algorithm is proposed: (1) CASI II is first implemented as

described and the U and V displacements are determined.

(2) If either one is found to exceed the threshold, Eq. (12)

are used to estimate the aliased displacements. (3) CASI II is

then repeated twice, first by pairing the reference subimage

with a subimage extracted from the determined UV displace-

ment location, and secondly, with a subimage extracted from

the computed aliased displacement location (rounding to the

nearest pixel). (4) The signal peak amplitude from both loca-

tions is then used to resolve the final displacement direc-

tions. A conservative threshold value that has been found

to work well is 50 % of the determinable displacement for

a given subimage i.e., for a 32 × 32 subimage, if the mag-

nitude of the determined displacement in either direction is

found to exceed 8, the polling modification just described

is invoked.

This modification is illustrated in Fig. 7. A simulated sub-

jective speckle pattern was generated using Goodman’s algo-

rithm [7] with width and height of 2048 and average speckle

size of 4 pixels. This speckle pattern was then resampled in

the horizontal direction using bicubic resampling to a new

width of 2096 and then cropped to the original dimension

to simulate an imposed strain of approximately 2.3 %. A 64

× 64-pixel subimage was then extracted starting from row

992 and column 1632 such that application of the CASI II

algorithm results in a weak - but clearly detectable - signal

peak residing at column 7 in the output magnitude array

(Fig. 7(a)). The location of this signal peak erroneously indi-

cates a relative displacement of -25 pixels between reference

and displaced subimages (as originally written, the CASI

II algorithm interprets this result as indicating a leftward

shift of the subimage due to the location of the peak rela-

tive to the center of the magnitude field). The magnitude of

this displacement exceeds the threshold convention used in

this work; the thresholded region for reliable displacement

determination is defined as a central portion of the output

array with dimensions 32 × 32 for a 64 × 64 subimage. The

described polling modification is then invoked to disam-

biguate the true displacement from its aliased counterpart.

Figure 7(b and c) illustrate the results from application of

CASI II for the determined displacement (b) and aliased

displacement (c) as computed by Eq. (12a). These clearly

indicate that the true displacement is in the positive X direc-

tion as expected from the resampling operation, and not the

opposite direction as initially indicated in (a).

There is a penalty associated with this modification due

to the additional processing of subimage pairs. Recall that

50 % of tile threads are used to perform a single 2D FFT in

this implementation. Recognizing that the reference subim-

age spectrum has been preserved in the GPU cache - and is

therefore available for reuse - full thread occupancy could,

in principle, be achieved by targeting half of the tile threads

to compute the spectrum of the subimage at the determined

location, and the other half the spectrum of the subimage at

the aliased location. This would, however, require the instan-

tiation of an additional two tile-static arrays at the time of

kernel initiation. For the implementation described in this

work, the decision was made to favor cache-compactness

over thread occupancy for two reasons: (1) GPU cache

memory is currently much scarcer than global memory and

should be used sparingly, and (2) while the additional cache

memory would be allocated at the initiation of the kernel,

there would be no guarantee of its actual need since it would

only be called upon in the case where a determined displace-

ment is found to exceed the predefined threshold. Therefore,

the determined and aliased FFT analyses are performed in

serial fashion and as separate steps by half (512) of the tile

threads. As will be shown later, this approach demonstrates

good runtime performance.

Sample-rate converted coarse-fine decomposition

A practice sometimes encountered in the application of digital

full-field methods is to reduce the shift size between subimage

analysis points in the belief that this will yield greater displace-

ment field resolution. A shift size equal to (or, frequently, half

of) the radius of the subimage is, for most practical purposes,

sampling the displacement field at sufficient resolution relative

to the subimage size. Uniform displacement is always assumed

within the subimage; the only true method for increasing spa-

tial resolution is to reduce the size of the subimage relative

to the imaged surface. Maintaining the subimage size while

reducing the shift size beyond the 50 % factor amounts to a

form of oversampling: the approach yields greater informa-

tion, but it is not useful. In this work, a different approach is

taken. The spatial resolution of CASI II is maintained but the

measurement range is increased even further beyond the pre-

viously described modification by incorporating a coarse-fine

decomposition step into the original algorithm. This involves

a two-step process wherein an initial coarse estimate of the

displacement is generated and then further refined to the

subpixel level. The initial coarse estimate is generated using

CASI II with a larger subimage centered about the smaller

subimage (which is used for fine displacement estimation).

Due to its size, the larger subimage is capable of resolving

larger displacements but with less spatial resolution, while the

smaller subimage used in the second step resolves finer spatial

resolution at the cost of decreased measurement range. By

combining the two, the effective range can be increased with-

out sacrificing spatial resolution. The process, as implemented

here, involves extracting a 64 × 64 subimage centered at each

 Experimental Techniques

analysis location and, using CASI II in combination with the

aliased displacement step described previously, determine the

pixel-level displacement. A 32 × 32 subimage centered at this

displacement estimate is then extracted and processed with

CASI II against a reference 32 × 32 subimage centered at the

original analysis position. The final displacement is simply

the sum of the determined displacements from both steps.

The determined displacement from the coarse step should be

thought of as a rough estimate since uniform displacement

within the subimage is an implicit assumption in this tech-

nique. In most cases, the method is useful in bringing the

smaller 32 × 32 subimage within sufficient proximity to the

original reference location so that a signal peak of sufficient

signal-to-noise ratio can be recovered. The aliasing correction

step described previously is only applied to the larger 64 × 64

subimage. Here it is assumed that the coarse adjustment is suf-

ficient to reduce the determined displacement of the smaller

secondary subimage to within threshold limits, negating the

need for a second application of the aliasing correction (and

its associated computational overhead).

There are two drawbacks to this approach: (1) the additional

computational burden involved in processing the larger subim-

age will negatively impact the runtime performance, and (2)

the larger subimage requires a tile-static GPU cache of equiva-

lent dimensions, which cannot be allocated (32 × 32 being

the largest total size available as of this writing). To mitigate

0.00

450000.00

0.00

450000.00

(a)

(b) (c)

0.00

450000.00

Fig. 7 (a) 64 x 64 magnitude output array from initial application of CASI II showing attenuated peak at column 7 row 16, indicating a shift in

–X direction of 25 pixels. (b) CASI II output array resulting from pairing of reference subimage and subimage extracted at displacement deter-

mined from (a). (c) CASI II output array resulting from pairing of reference subimage with subimage extracted from computed aliased location.

Strong signal peak is visible, indicating true displacement

Experimental Techniques

these issues, a sample rate conversion step is proposed wherein

the larger 64 × 64 subimage is downsampled to 32 × 32. This

compact representation allows for the (re)use of 32 × 32 tile-

static caches allocated for the implementation described up to

this point, while also minimizing the impact of the additional

computation on runtime performance. Care must be taken

when downsampling, however; overlap can occur between

spectral replications in the frequency domain, corrupting the

higher frequencies and leading to unreliable results [29, 30].

Representing a 64 × 64 subimage in a 32 × 32 cache requires

that the subimage be downsampled by a factor of 2 × . Shannon

sampling theorem [30] stipulates that the sampling rate must

exceed the highest frequency component in the spectrum by

2 if aliasing is to be avoided. Therefore, it is proposed that the

size of the speckles be adjusted such that they are oversampled

by 2 × when initially imaged onto the sensor. Downsampling

this (oversampled) speckle pattern should, in principle, avoid

aliasing.

To implement this strategy, the target average speckle size

must be known a priori. The average subjective speckle size in

the direction normal to the optical axis of the imaging system

is given by [3]:

where S is the speckle size, λ is the wavelength of the illu-

mination, q is the distance from the imaging lens to the sen-

sor focal plane, and D is the diameter of the imaging lens

aperture. From Eq. (13) it can be seen that the size of a

subjective speckle is inversely proportional to the imaging

aperture. Therefore, it is a straightforward matter to alter

the size of the subjective speckles by adjusting the aperture

of the imaging lens such that they are oversampled by the

camera sensor. The target size that brings about this degree

of oversampling of the speckle must be determined. Chen

and Chiang [3, 31] have applied Shannon sampling theo-

rem to determine the optimal sampling rate for a subjective

speckle pattern. They have shown the spectrum of a speckle

pattern is bandlimited, i.e., non-zero only in a circular region

defined as:

where �
x
 and �

y
 are spectral frequency components in the

X and Y directions, respectively, and

From Shannon sampling theorem [30], a sampled func-

tion produces spectral replications at regular intervals of

T
−1 where T is the sampling interval. To avoid aliasing, the

(14)S =

1.22�q

D

(15)

√

�
x

2 + �
y

2 = �

(16)� =

D

�q

following condition relating T to the non-zero speckle pat-

tern spectral region � must be satisfied:

By substitution, the Nyquist sampling interval for a sub-

jective speckle pattern can be written as

Rearrangement of Eq. (13) yields

After substitution of Eq. (17) into Eq. (16), and rearrange-

ment, an expression for the Nyquist sampling interval rela-

tive to speckle size is

Therefore, to avoid spectral corruption from the sample

rate conversion step, the average speckle size must be at least

4-5 pixels (twice the optimal sampling interval given in Eq.

(18)). As noted previously, this is accomplished via adjust-

ment of the lens aperture prior to image collection.

To evaluate the effectiveness of sample-rate converted

coarse-fine decomposition, two 2080 × 2080-pixel syn-

thetic speckle patterns were generated: one with an aver-

age speckle size of 2 pixels (corresponding to an optimally

sampled speckle pattern as per Eq. (18)) and one with an

average speckle size of 4 pixels (corresponding to a speckle

pattern oversampled by 2 ×). Both speckle patterns were

resized in the X and Y directions to 2110 × 2110 pixels

using bicubic resampling kernel, corresponding to approxi-

mately 1.5 % strain. These images were then processed with

three iterations of CASI II. Figure 8 shows the results in

the form of displacement magnitude i.e., the Euclidean dis-

tance arising from the determined U and V displacement

fields. Figure 8(a) depicts the results from processing via

the original CASI II algorithm utilizing a 32 × 32 subimage

with the optimally sampled (speckle size 2) image pair. The

aliased shift effect appears as mirroring in the displacement

field when the magnitude of the displacement exceeds the

subimage radius. Signal peak decorrelation is manifested

as noise in the displacement field and dominates the larger

displacement region. Figure 8(b) depicts the displace-

ment magnitude output data generated using the algorithm

enhancements described previously, but now applied to the

same optimally sampled speckle patterns as those used in

Fig. 8(a). The aliasing shift effect is corrected. However, due

to the downsampling operation being applied to an optimally

sampled pattern, the spectra of the subimages have been

corrupted by aliasing-induced downsampling, resulting in a

(17)
1

T
> 2�

(18)
1

T
= 2

(

D

�q

)

(19)D =

1.22�q

S

(20)T = 0.41S

 Experimental Techniques

quasi-periodic noise pattern in the output data. Figure 8(c)

depicts the displacement output data generated using the

algorithm enhancements described earlier but applied to the

proposed 2 × oversampled speckle patterns. Both the alias-

ing shift effect and the periodic output noise are eliminated,

while the effective measurement range has been improved

by a factor of approximately 2.5×.

An additional simulation was conducted to evaluate the

noise tolerance of both implementations. The same simu-

lated (noise-free) speckle patterns were used as in the previ-

ous example but corrupted by gaussian noise so as to model

the effect of additive thermal-electronic noise that can arise

in digital camera amplification circuits. Three levels of addi-

tive noise were used, defined as percentages of the image’s

full-scale dynamic range: 20 %, 40 % and 60 %. These values

were then assigned to the fourth standard deviation of the

gaussian curve to adjust the width of the noise distribution.

Since the simulated test images were computed to sixteen-bit

dynamic range with full scale of 0 – 65,535, the three addi-

tive noise levels of 20 %, 40 % and 60 % equated to 13,107,

26,214 and 39,321 at 4� of the gaussian. Separate noise fields

were computed for each image in the sequence to simulate

the temporal variation of the noise level in the speckle pat-

tern during image capture. Examples are shown in Fig. 9.

The images were then analyzed and the Euclidean distance

resulting from the X and Y displacement fields was com-

puted. Results from the analysis are shown in Fig. 10. At all

noise levels, the proposed version demonstrates enhanced

noise tolerance over the original.

While no changes have been made to the core algo-

rithm of CASI II, the enhancements proposed in this work

require larger speckles than would otherwise be considered

Fig. 8 Displacement magnitude fields using synthetically generated speckle patterns with 1.5% applied strain in X and Y directions. (a) Speckle

size 2 (optimally sampled) original CASI II algorithm with spatial shift aliasing visible as mirroring in the output data as well as large-scale

decorrelation as relative displacement increases. (b) Results from proposed algorithm manifesting spectral corruption due to sample aliased rate

conversion of initial size 2 speckles from (a). (c) Results from proposed algorithm with size 4 speckle pattern (2X oversampled) and sample rate

converted via 2X downsampling showing extended measurement range up to approx. 40 pixels displacement

Experimental Techniques

optimal [31], which may impact subpixel behavior of the

algorithm. To evaluate sub-pixel performance, syntheti-

cally generated speckle patterns with dimensions of 2048

× 2048 pixels and average speckle size of 4 – 5 pixels

were progressively shifted in the x direction via bicubic

resampling in steps of 0.1 pixels through two ranges: (a)

0.1 – 1.0 pixels, and (b) 20.1 – 21.0 pixels. At each step,

the enhanced CASI II algorithm was applied to the entire

image using a shift value of 16 pixels. The average of all

results in the computed displacement field at each step was

then computed along with their standard deviation. Results

are shown in Fig. 11. At the minimal displacement range

(Fig. 11(a)) a slight bias can be seen wherein the results

tend to underestimate the imposed displacements. At the

larger range (Fig. 11(b)) this bias appears to be resolved.

The average standard deviation found for the displacement

range shown in Fig. 11(a) is 0.0351 pixels and for the

range shown in Fig. 11(b) the average standard deviation

is 0.051 pixels. The original CASI II paper [26] claimed a

theoretical subpixel resolution on the order of 0.02 of the

average speckle diameter. Assuming optimal sampling in

that case, the claimed theoretical displacement resolution

would be on the order of 0.04 pixels (optimal speckle size

being approximately 2 pixels in the original publication).

In the case of the modified version proposed in this work

– and assuming an average speckle size of approximately

5 pixels – the theoretical displacement resolution would

be on the order of 0.1 pixels. By inspection of the results

shown in Fig. 11 and factoring in the uncertainty induced

by the standard deviations, this appears to be the case.

The final proposed CASI II algorithm is illustrated in

Fig. 12.

Computational Runtime Performance

Achieving interactive runtime performance for full-field

analysis is a key objective of this work and, therefore, some

performance metrics are now presented. Computational

performance is, however, highly dependent on the data set

Fig. 9 Synthetic speckle pattern

with varying levels of addi-

tive gaussian noise (specified

as percent full-scale at 4th

standard deviation of gauss-

ian). (a) noise-free, (b) 20%, (c)

40%, (d) 60% full-scale additive

gaussian noise

 Experimental Techniques

Fig. 10 Displacement magnitude fields (in units of pixels) using synthetically generated speckle patterns corrupted by additive gaussian noise

model and with 1.5% imposed strain in X and Y directions, computed via (a) optimally sampled original algorithm with 20 % additive noise,

(b)proposed algorithm with 20% additive noise, (c) optimally sampled original algorithm with 40% additive noise, (d) proposed algorithm with

40% additive noise, (e) optimally sampled original algorithm with 60% additive noise, (f) proposed algorithm with 60% additive noise

Experimental Techniques

size and the hardware platform. In the case of the algorithm

presented here, this is further complicated by the conditional

branch governing whether or not the aliased shift disam-

biguation step is invoked (see Fig. 9). Therefore, runtime

performance is dependent not only on data size and hard-

ware platform, but also the strain field. To gauge the perfor-

mance of this implementation, synthetic speckle patterns

(average speckle size 4) with dimensions of 1024 × 1024

and 2048 × 2048 were generated as described earlier and

1.5 % strain applied in the X and Y directions via bicubic

resampling. This value was chosen to trigger the conditional

branch for approximately 75 % of the output data set such

that its impact on performance is emphasized. Shift sizes of

8 and 16 pixels were used. The computer testbed consists

of an 8-core Intel i9-9980HK with 16GB ram and an AMD

Radeon Pro WX8200 discreet GPU. The average execution

time for 10 iterations is shown. Runtimes include the periph-

eral processing required to invoke the GPU kernel; while

the core of the algorithm is written in C++ to run on the

AMP runtime, the decision was made (primarily for soft-

ware modernization and ease of consumption) to encapsulate

the kernel in a C# class library responsible for invoking it

internally via the Platform Invocation services of the .NET

runtime. Therefore, all timings include not only the time

to execute the GPU kernel, but also the time required to

marshal memory to and from both the managed (C#/.NET)

to unmanaged (C++) runtimes as well as to-from the GPU

global memory bank. Results are shown in Table 1. Even in

the case of a 2048 × 2048 image analyzed with a shift of 8

(corresponding to a total output data set of 62,001 analysis

points), interactive frame rates are obtained. Greater perfor-

mance is easily achievable by using a more powerful GPU.

Discussion and Conclusion

Unlike traditional DIC, the method described in this work is

a true interferometer and, therefore, limiting requirements

are introduced. Primary among these is the need for a dense

speckle pattern, most easily generated using a laser light

source. Sparse speckle patterns of the type encountered

in “white light” speckle or DIC/PIV applications are not

expected to perform as well.

Secondly, the method requires accurate modulation of the

size of the interference speckles to satisfy the requirements

of the sample rate conversion scheme. This is accomplished

most easily with a subjective speckle pattern by altering the

imaging aperture. While it is possible to apply a white light

speckle pattern with the approximate target statistical size

distribution, in practice this is would be difficult to achieve

reliably. Future work may include an automated analysis

method that can be used to determine the average speckle

size in an image. This could be used not only to provide

feedback to the user when adjusting the lens aperture, but

also as an automatic means to optimize the aperture for a

motorized lens.

The effect of the sample-rate conversion on subpixel esti-

mation accuracy has not been addressed in this work. The

“fine” step of the “coarse-fine” decomposition utilizes a 32

× 32 subimage which produces the best results when applied

to an optimally sampled speckle pattern. In this implemen-

tation, however, the smaller subimage is being applied to a

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
o

m
p

u
te

d
 d

is
p

la
ce

m
e

n
t

(p
ix

e
ls

)

Imposed displacement (pixels)

19.9

20

20.1

20.2

20.3

20.4

20.5

20.6

20.7

20.8

20.9

21

21.1

20.1 20.2 20.3 20.4 20.5 20.6 20.7 20.8 20.9 21

C
o

m
p

u
te

d
 s

h
i�

 (
p

ix
e

ls
)

Imposed shi� (pixels)

(a)

(b)

Fig. 11 Subpixel performance for progressively shifted synthetically

generated speckle pattern. Dotted line indicates the imposed shift (via

bicubic resampling) for shift range of a) 0.1 – 1.0 pixels in increments

of 0.1, and b) shift range of 20.1 – 21.0 in increments of 0.1 pixels.

Markers indicated mean computed shifts and their standard deviations

 Experimental Techniques

Fig. 12 Proposed algorithm for

enhanced CASI II implementa-

tion showing processing flow

for a given tile partition

2X Oversampled

speckle pa�erns

Extract 2X downsampled

64x64 subimages

FFT reference

subimage

FFT displaced

subimage

Thread bank 1 Thread bank 2

Threshold

exceeded?

CASI II

FFT determined

64x64 subimage

CASI II

FFT shi�-aliased

64x64 subimage

CASI II

Extract 1X sampled

32x32 subimages

CASI II

Max. peak

UV Displacement

fields

Yes

No

Eq. (10)

CASI II

FFT

Magnitude

field

Peak ID

2X Oversampled

speckle pa�erns

Experimental Techniques

2 × oversampled speckle pattern and some peak broadening

can be expected. The effect this has on subpixel estimation

has been shown to increase the measurement uncertainty to

approximately 10 % of a pixel. While this was determined

using resampled images, this places a strong emphasis on

choice of type (and quality of implementation) of the resa-

mpling method used and should be thought of as, at best, a

proxy for ground truth. In addition, noise levels in the image

can be seen to affect subpixel estimations. This is clearly

evident in Fig. 9, where the displacement contours become

visibly progressively less smooth (when compared with the

noise-free case shown in Fig. 8) as progressively greater

levels of noise are introduced. Given that the implementa-

tion proposed here is targeted at real-time applications where

noise may be more prevalent due to higher camera frame

rates, less emphasis should be placed on the fidelity of sub-

pixel accuracy. Perhaps more importantly, it should be noted

that in most applications the true information being sought is

strain. This requires a post-processing smoothing/denoising

step to avoid overwhelming oscillatory artifacts in the calcu-

lated derivatives. Such filters can be expected to heavily alter

the subpixel displacement estimations, calling into question

the utility of super-fine subpixel detection. Nevertheless, for

many applications the approach demonstrated here is likely

to be useful and effective.

In conclusion, a series of enhancements to the original

CASI II algorithm for simulating speckle interferometry

have been detailed, the goal being to amplify both the usable

range of the technique as well as its computational perfor-

mance. Results for representative data sets have shown the

efficacy of these modifications. This new version of CASI

II generates high-resolution full-field displacement fields at

common camera frame rates and is suitable for use in many

non-contact industrial inspection applications, as well as

classical experimental mechanics studies.

Acknowledgements The author wishes to acknowledge helpful techni-

cal discussions with Joseph Goodman (Professor Emeritus, Stanford

University) and Fu-Pen Chiang (Distinguished Professor, Stony Brook

University). Furthermore, the author would like to thank Joseph Tringe

(Lawrence Livermore National Laboratory) for valuable feedback and

comments during preparation of this manuscript. This work was sup-

ported by the US DOE LLNL-LDRD 20-SI-001 and was performed

under the auspices of the U.S. Department of Energy by Lawrence

Livermore National Laboratory under Contract DE-AC52-07NA27344.

Funding This work was supported by the US DOE LLNL-LDRD

20-SI-001 and was performed under the auspices of the U.S. Depart-

ment of Energy by Lawrence Livermore National Laboratory under

Contract DE-AC52-07NA27344.

Data Availability Not applicable.

Code Availability Custom class library implementation available for

download.

Declarations

Ethics Approval Not applicable.

Consent to Participate Not applicable.

Conflict of Interest The author declares that he has no conflict of inter-

est.

Open Access This article is licensed under a Creative Commons Attri-

bution 4.0 International License, which permits use, sharing, adapta-

tion, distribution and reproduction in any medium or format, as long

as you give appropriate credit to the original author(s) and the source,

provide a link to the Creative Commons licence, and indicate if changes

were made. The images or other third party material in this article are

included in the article’s Creative Commons licence, unless indicated

otherwise in a credit line to the material. If material is not included in

the article’s Creative Commons licence and your intended use is not

permitted by statutory regulation or exceeds the permitted use, you will

need to obtain permission directly from the copyright holder. To view a

copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Chu TC, Ranson WF, Sutton MA (1985) Applications of digital-

image-correlation techniques to experimental mechanics. Exp

Mech 25:232–244. https:// doi. org/ 10. 1007/ BF023 25092

 2. Shchepinov VP, Pisarev VS (1996) Strain and stress analysis by

holographic and speckle interferometry. Meas Sci Technol 7.

https:// doi. org/ 10. 1088/ 0957- 0233/7/ 9/ 019

 3. Chen DJ (1993) Computer Aided Speckle Interferometry (casi)

and its application to strain analysis. PhD Thesis

 4. Scarano F, Riethmuller ML (2000) Advances in iterative multigrid

PIV image processing. Exp Fluids 29:S051–S060. https:// doi. org/

10. 1007/ s0034 80070 007

 5. Westerweel J (1993) Digital particle image velocimetry. Theory

and application

 6. Scarano F (2001) Iterative image deformation methods in PIV.

Meas Sci Technol 13:R1–R19. https:// doi. org/ 10. 1088/ 0957- 0233/

13/1/ 201

 7. Goodman J (2007) Speckle Phenomena In Optics, 1st edn. Roberts

& Company Publishers, Englewood

 8. Wang YV, Chen DJ, Chiang FP (1993) Material testing by com-

puter aided speckle interferometry. Exp Tech 17:30–32. https://

doi. org/ 10. 1111/j. 1747- 1567. 1993. tb007 72.x

 9. Rao M, Samuel R, Nair P et al (2001) Applications of holographic

and electronic speckle interferometric techniques for NDE of

spacecraft components. International Society for Optics and Pho-

tonics, Bellingham, pp 560–567

Table 1 Runtime performance for GPU-based extended CASI II

algorithm

Category 1024 × 1024 2048 × 2048

Shift 8 Shift 16 Shift 8 Shift 16

Full-field analysis points 14,641 3,721 62,001 15,625

Elapsed time 27.2 ms 13.3 ms 102.7 ms 46.6 ms

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/BF02325092
https://doi.org/10.1088/0957-0233/7/9/019
https://doi.org/10.1007/s003480070007
https://doi.org/10.1007/s003480070007
https://doi.org/10.1088/0957-0233/13/1/201
https://doi.org/10.1088/0957-0233/13/1/201
https://doi.org/10.1111/j.1747-1567.1993.tb00772.x
https://doi.org/10.1111/j.1747-1567.1993.tb00772.x

 Experimental Techniques

 10. Leendertz J (1970) Interferometric displacement measurement on

scattering surfaces utilizing speckle effect. J Phys E: Sci Instrum

3:214

 11. Adams FD, Maddux GE (1973) On speckle diffraction interfer-

ometry for measuring whole field displacements and strains. Air

Force Flight Dynamics Lab Wright-Patterson AFB OH

 12. Zhu Z, Luo S, Feng Q et al (2020) A hybrid DIC–EFG method for

strain field characterization and stress intensity factor evaluation

of a fatigue crack. Measurement 154:107498. https:// doi. org/ 10.

1016/j. measu rement. 2020. 107498

 13. Chen Y, Avitabile P, Page C, Dodson J (2021) A polynomial

based dynamic expansion and data consistency assessment and

modification for cylindrical shell structures. Mech Syst Signal

Process 154:107574. https:// doi. org/ 10. 1016/j. ymssp. 2020.

107574

 14. Chen Y, Logan P, Avitabile P, Dodson J (2019) Non-model based

expansion from limited points to an augmented set of points using

chebyshev polynomials. Exp Tech 43:521–543. https:// doi. org/ 10.

1007/ s40799- 018- 00300-0

 15. Chen Y, Joffre D, Avitabile P (2018) Underwater dynamic

response at limited points expanded to full-field strain response.

J Vib Acoust 140. https:// doi. org/ 10. 1115/1. 40398 00

 16. Gerber R, Bik JC, Smith A, Tian K X (2005) The software optimi-

zation cookbook: High performance recipes for IA-32 Platforms,

2nd edn. Intel Press, Santa Clara

 17. Sanders J, Kandrot E (2010) CUDA by example: an introduction

to general-purpose GPU programming, 1st edn. Addison-Wesley

Professional, Boston

 18. Kaeli D, Mistry P, Schaa D, Zhang DP (2015) Hetero-

geneous Computing with OpenCL 2.0, 3rd edn. Morgan

Kaufmann, Burlington

 19. Gregory K, Miller A (2012) C++ AMP - Accelerated mas-

sive parallelism with Microsoft visual C++, 1st edn. Microsoft

Press, Redmond

 20. Burch JM, Tokarski JMJ (1968) Production of multiple beam

fringes from photographic scatterers. Optica Acta 15:101–111.

https:// doi. org/ 10. 1080/ 71381 8071

 21. Archbold E, Ennos AE (1972) Displacement measurement from

double-exposure laser photographs. Optica Acta 19:253–271.

https:// doi. org/ 10. 1080/ 71381 8559

 22. Archbold E, Burch JM, Ennos AE (1970) Recording of in-plane

surface displacement by double-exposure speckle photography.

Optica Acta 17:883–898. https:// doi. org/ 10. 1080/ 71381 8270

 23. Khetan RP, Chiang FP (1976) Strain analysis by one-beam laser

speckle interferometry 1: Single aperture method. Appl Opt

15:2205. https:// doi. org/ 10. 1364/ AO. 15. 002205

 24. Chen DJ, Chiang FP (1993) Computer-aided speckle interfer-

ometry using spectral amplitude fringes. Appl Opt 32:225–236.

https:// doi. org/ 10. 1364/ AO. 32. 000225

 25. Goodman J (2005) Introduction to fourier optics, 3rd ed. Roberts

& Company Publishers, Greenwood Village

 26. Chen DJ, Chiang FP, Tan Y, Don HS (1991) Computer-

aided speckle interferometry: Part II--an alternative approach

using spectral amplitude and phase information. Proc SPIE

1554:706–717

 27. Moth D C++ AMP - Introduction to Tiling in C++ AMP. https://

docs. micro soft. com/ en- us/ archi ve/ msdn- magaz ine/ 2012/ april/c-

amp- intro ducti on- to- tiling- in-c- amp. Accessed 20 Mar 2018

 28. Cooley JW, Tukey JW (1965) An algorithm for the machine calcu-

lation of complex Fourier series. Math Comp 19:297–301. https://

doi. org/ 10. 1090/ S0025- 5718- 1965- 01785 86-1

 29. Lyons RG (2004) Understanding digital signal processing, 2nd

edn. Prentice Hall PTR, Hoboken

 30. Shannon CE (1949) Communication in the presence of noise. Proc

IRE 37:10–21. https:// doi. org/ 10. 1109/ JRPROC. 1949. 232969

 31. Chen DJ, Chiang FP (1992) Optimal sampling and range of meas-

urement in displacement-only laser-speckle correlation. Exp Mech

32:145–153. https:// doi. org/ 10. 1007/ BF023 24726

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1016/j.measurement.2020.107498
https://doi.org/10.1016/j.measurement.2020.107498
https://doi.org/10.1016/j.ymssp.2020.107574
https://doi.org/10.1016/j.ymssp.2020.107574
https://doi.org/10.1007/s40799-018-00300-0
https://doi.org/10.1007/s40799-018-00300-0
https://doi.org/10.1115/1.4039800
https://doi.org/10.1080/713818071
https://doi.org/10.1080/713818559
https://doi.org/10.1080/713818270
https://doi.org/10.1364/AO.15.002205
https://doi.org/10.1364/AO.32.000225
https://docs.microsoft.com/en-us/archive/msdn-magazine/2012/april/c-amp-introduction-to-tiling-in-c-amp
https://docs.microsoft.com/en-us/archive/msdn-magazine/2012/april/c-amp-introduction-to-tiling-in-c-amp
https://docs.microsoft.com/en-us/archive/msdn-magazine/2012/april/c-amp-introduction-to-tiling-in-c-amp
https://doi.org/10.1090/S0025-5718-1965-0178586-1
https://doi.org/10.1090/S0025-5718-1965-0178586-1
https://doi.org/10.1109/JRPROC.1949.232969
https://doi.org/10.1007/BF02324726

	A Range and Performance Optimized Version of the Computer-Aided Speckle Interferometry Algorithm for Real-Time Displacement-Strain Field Monitoring
	Abstract
	Introduction
	Principle
	Single-Beam Speckle Diffraction Interferometry
	CASI I
	CASI II
	Adaptation to GPU Architecture
	Memory Access Optimization
	Spectral Processing
	Interference Spectrum and Parallel Reduction
	CASI II Range Extension
	Disambiguating spatial shift aliasing
	Sample-rate converted coarse-fine decomposition

	Computational Runtime Performance

	Discussion and Conclusion
	Acknowledgements
	References

