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Abstract
For comparison of multiple outcomes commonly encountered in biomedical research, Huang et al.
(2005) improved O’Brien’s (1984) rank-sum tests through the replacement of the ad hoc variance
by the asymptotic variance of the test statistics. The improved tests control the Type I error rate at
the desired level and gain power when the differences between the two comparison groups in each
outcome variable fall into the same direction. However, they may lose power when the differences
are in different directions (e.g., some are positive and some are negative). These tests and the
popular Bonferroni correction failed to show important significant difference when applied to
compare heart rates from a clinical trial to evaluate the effect of a procedure to remove the
cardioprotective solution HTK. We propose an alternative test statistic, taking the maximum of the
individual rank-sum statistics, which controls the type I error and maintains satisfactory power
regardless of the directions of the differences. Simulation studies show the proposed test to be of
higher power than other tests in certain alternative parameter space of interest. Furthermore, when
used to analyze the heart rates data the proposed test yields more satisfactory results.
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1. INTRODUCTION
Multiple outcomes are frequently encountered in biomedical research, for example, in
clinical trials, genome-wide association studies, and disease-exposure association studies. In
a randomized clinical trial of diabetes to determine which treatment yields better nerve
function, a total of 34 electromyographic variables are measured that jointly define the nerve
function (O’Brien 1984). A clinical trial of Coenzyme Q10 in treating early Parkinson’s
disease to slow the functional decline caused by the disease was described in Huang et al.
(2005). The functional decline is measured by a number of outcome variables, including
mentation, motor, and average daily living scales. Other clinical trial examples can be found
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in Pocock, Geller and Tsiatis (1987), Shames et al. (1998), Tilley et al. (1999), and Li, Zhao
and Paty (2001).

Under the assumption of multivariate normality, multiple outcomes between groups can be
compared using a parametric procedure, such as multivariate ANOVA (Brunner, Munzel
and Puri 2002), ordinary least squares, Hotelling’s T2, or the Bonferroni procedure (Pocock,
Geller and Tsiatis 1987). Nonparametric procedures that are robust against distributional
assumptions such as the rank-sum test (O’Brien, 1984) and the adjusted rank-sum test
(Huang et al. 2005) are also available. Most of the methods are obtained based on the null
hypothesis that the two or more groups have a common distribution.

O’Brien’s (1984) rank-sum-type tests are distribution-free and used to evaluate whether the
outcome measures from one treatment group are uniformly better than those from the other
group. The null hypothesis is that outcomes from the two treatment groups have a common
distribution and the tests are robust for small sample size. The tests have been widely used in
biomedical research (Kaufman et al. 1998; Shames et al. 1998; Li, Zhao and Paty 2001). For
the generalized nonparametric Behrens-Fisher hypothesis, Huang et al. (2005) showed that
O’Brien’s (1984) rank-sum tests have an inflated type I error rate when the groups being
compared have different variances. They moved on to propose variance-adjusted rank-sum
tests that control the type I error of the tests.

The rank-sum-type tests of O’Brien (1984) and Huang et al. (2005) gain power by
accumulating evidence across comparisons on each individual outcome, but they may lose
power in situations when the differences in the outcomes between the two samples exist but
fall in different directions (some differences are positive and some are negative), or in the
same direction with relatively much varied magnitudes. As a result, they may fail to reveal
important differences between the two groups under investigation. For example, these tests
and the popular Bonferroni correction failed to show important significant difference when
applied to compare heart rates from a clinical trial to evaluate the effect of a procedure to
remove the cardioprotective solution HTK. To overcome this, we propose a simple yet
robust test that maintains satisfactory power regardless of the directions of the differences.
Simulation results show that our approach controls the type I error rate and is more powerful
than O’Brien’s (1984) tests and the tests of Huang et al. (2005) in certain parameter space of
intertest. Furthermore, when used to analyze the heart rates data the proposed test succeeds
in finding important treatment effects. Growth-related hormones data from the Autism/ASD
Study are also used to illustrate the application of the proposed test.

2. TWO MOTIVATING DATA EXAMPLES
2.1 Autism/ASD Study

The Growth and Maturation in Children with Autism or Autistic Spectrum Disorder (ASD)
Study (the Autism/ASD Study) is a case-control study conducted by the Eunice Kennedy
Shriver National Institute of Child Health and Human Development in 2002–2005. The
study was designed to determine whether children with autism/ASD between the ages of 4
and 8 are larger than matched control children, and if so, what role hormones play. Potential
cases were identified from the patient records of the Kelly O’Leary Center for Autism
Spectrum Disorders at Cincinnati Children’s Hospital Medical Center (CCHMC). Patients
evaluated for a possible diagnosis of autism/ASD receive a multidisciplinary evaluation that
typically includes a detailed medical history, a physical examination by a developmental
pediatrician, and application of the Autism Diagnostic Observation Schedule (ADOS),
published by Western Psychological Services. Eighty-one subjects, 75 boys and 6 girls,
diagnosed as having autism/ASD were enrolled. Age-matched controls were recruited from
one of CCHMC’s ENT outpatient surgery facilities. Eighty control children, 59 boys and 21
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girls, were enrolled. Three major components of the comparison were: (a) bone age, (b)
weight, height, head circumference and body mass index, and (c) growth-related hormones.
Blood samples were assayed for insulin-like growth factors (IGF-1, IGF-2), insulin-like
growth factor binding protein (IGFBP-3), and growth hormone binding protein (GHBP), as
well as for dehydroepiandrosterone (DHEA) and DHEA-sulphate (DHEAS). Details of
subject enrollment and data collection were described in Mills et al. (2007).

2.2 Removal of Cardioplegic Solution (HTK Study)
Section 1.3.14 of Brunner, Domhof and Langer (2002) described a clinical trial to evaluate
the effect of a procedure to remove the cardioprotective solution HTK. A total of 30 patients
undergoing coronary bypass surgery were evenly randomized to the treatment and control
groups. The heart rates of these 30 patients were recorded at five particular times, namely,
after induction of anesthesia, pre-cardiopulmonary bypass (CPB), 15 minutes after
separation from CPB, 3 hours after the end of surgery, and 6 hours after the end of surgery.
The original data can be found in Appendix A.15 in Brunner, Domhof and Langer (2002).
The question of interest is whether the heart rates are different at any of the time points.

Data from the HTK and the Autism/ASD study will be used to illustrate the performance of
the method proposed in the present paper.

3. METHODS
3.1 Rank-MAX Statistics for the Generalized Behrens-Fisher Problem

We consider comparison of p-dimensional outcomes, each measured on a continuous scale,
from two groups, X = (X1, ··· , Xp)′ and Y = (Y1, ··· , Yp)′, following distributions F and G,
respectively. The marginal distributions corresponding to Xa and Ya are Fa and Ga,
respectively, with a = 1, ··· , p.

Following Huang et al. (2005), we define

The null hypothesis being tested is

In practice θa/2 = Pr(Xa < Ya)−1/2 is called the relative effect of the Y-group with respect to
the X-group for the ath outcome variable. The null hypothesis is often referred to as a
generalized or nonparametric Behrens-Fisher problem; see Brunner, Domhof and Langer

(2002, Chapter 3). Alternatively a more restrictive null hypothesis  : F = G, a special case
of H0, is also often used.

Let xi = (xi1, ··· , xip)′, i = 1, ··· , m, be the outcomes of the ith subject from the X-sample and
yj = (yj1, ··· , yjp)′, j = 1, ··· , n, be the outcomes of the jth subject from the Y-sample, and let
N = m + n, the total number of subjects. For the ath outcome variable, a = 1, ··· , p, we
combine the two samples and rank the N observations x1a, ··· , xma, y1a, ··· , yna, and denote
the midranks of xia and yja by Rxia and Ryja, respectively. Define

Liu et al. Page 3

J Am Stat Assoc. Author manuscript; available in PMC 2011 May 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Applying the two-sample t-test to the summary rank statistics {Rxi·} and {Ryj·}, O’Brien

(1984) considered two test statistics for testing :

and

Under  : F = G, T1 and T2 both follow a t-distribution with degrees of freedom equal to m
+ n − 2 and [ζ2/(m − 1) + (1 − ζ)2/(n − 1)]−1, respectively, where

.

Huang et al. (2005) noticed that under the more restrictive null hypothesis,  : F = G, both
T1 and T2 asymptotically follow the standard normal distribution. However, when F ≠ G,
these two statistics remain asymptotically normally distributed but have nonunit variances.
When being used to test the generalized Behrens-Fisher hypothesis H0, these test statistics
can substantially inflate the Type I error rate, as being demonstrated in Huang et al. (2005).
To make O’Brien’s (1984) test suitable for testing the null hypothesis H0, Huang et al.
(2005) derived the asymptotic variances of the two statistics and suggested using the
following two modified test statistics for H0:

where ĥ1 and ĥ2 are, respectively, the consistent estimates of

Liu et al. Page 4

J Am Stat Assoc. Author manuscript; available in PMC 2011 May 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



where cab = Cov(Ga(Xa), Gb(Xb)), dab = Cov(Fa(Ya), Fb(Yb)), eab = Cov(Fa(Xa), Fb(Xb)), fab
= Cov(Fa(Xa), Gb(Xb)), ξab = Cov(Ga(Ya), Gb(Yb)), ηab = Cov(Ga(Ya), Fb(Yb) and λ = m/n.

The two-sided test of Huang et al. (2005) rejects the generalized Behrens-Fisher null
hypothesis H0 at level α if |Th1| (or |Th2|) exceeds Z1−α/2, the α/2 upper-tail quartile of the
standard normal distribution. The test maintains good power in the alternative parameter
space when the θas are in the same direction. However in the parameter space when the θas
fall in different directions, or in the same direction with relatively much varied magnitudes,
the test may suffer from substantial loss of power. To see this, we define

. Then , and thus

. Clearly the power of the test is asymptotically α for parameters in

the alternative subspace defined as {θa : , θa ≠ 0 for some a}. This is true even
when the magnitude of some of the θas are large. For example, with p = 2 and θ1 = −θ2 ≫ 0,
the power of the test is still approximately α.

To overcome this, we consider a more robust test statistic,

and reject H0 if Tmax > cmax. The statistic Tmax can be viewed as a nonlinear combination of
the test statistics R̄y·a − R̄x·a, a = 1, ··· , p, while the test of Huang et al. (2005) can be viewed
as a linear combination (with equal weights). Because H0 is rejected if the observed relative
effect of the Y-sample with respect to the X-sample is large, the test is expected to maintain
satisfactory power regardless of the directions of the relative effects.

3.2 Statistical Significance of Tmax
In this subsection, we provide a procedure to calculate the critical value cmax and p-values of
Tmax. Theorem 1 below gives the asymptotic joint distribution of (R̄y·1 − R̄x·1, ··· , R̄y·p −
R̄x·p)′ under the null hypothesis H0.

Theorem 1. Under the null hypothesis H0, (R̄y·1 − R̄x·1, ··· , R̄y·p − R̄x·p)′ follows
asymptotically a multivariate normal distribution with mean (0, ··· , 0)′ and correlation
coefficient matrix Λ = (ρab)p×p as min{m, n} → ∞ and 0 < m/n → λ0 < ∞, where

, cab = Cov(Ga(Xa), Gb(Xb)), and dab = Cov(Fa(Ya), Fb(Yb)).

Huang et al. (2005) provided a computational procedure for estimating cab and dab. The
details are given in the Appendix. Based on

and the multivariate integration, we can evaluate the statistical significance of Tmax.

4. SIMULATION STUDIES
In this section, we conduct simulation studies to explore the performance of the proposed
test statistic Tmax by comparing its type I error rate and power with that of O’Brien’s (1984)
and Huang et al.’s (2005) tests. We consider generating data from various scenarios, 4-
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variate normal distributions, bivariate exponential distributions, and ordinal variables with 5
levels. Power is compared among tests for two selected configurations of the relative effect
parameters θa, one when they are in different directions and one when they are in the same
direction but with relatively much varied magnitudes.

4.1 Multivariate Normal Distributions
We first conduct a simulation study to evaluate the type I error rate and power of the tests
with data from 4-dimensional distributions. To this end, we generate X = (Xi1, Xi2, Xi3, Xi4)’,
i = 1, … , m, iid, from a 4-variate normal distribution with mean (0, 0, 0, 0)′ and variance-
covariance matrix (urs)4×4, where urr = 1 for r ∈ {1, 2, 3, 4}, and urs = 0.8 for r ≠ s ∈ {1, 2,
3, 4}, and Y = (Yj1, Yj2, Yj3, Yj4)′, j = 1, … , n, iid, from a 4-variate normal distribution with
mean (0, 0, 0, 0)′ and variance-covariance matrix (υrs)4×4, where υrr = 16 for r ∈ {1, 2, 3,
4}, and υrs = 14.4 for r ≠ s ∈ {1, 2, 3, 4}. Clearly the null hypothesis holds with these two
distributions, i.e., for any i and j, Pr(Xia < Yja)−Pr(Xia > Yja) = 0, a = 1, 2, 3, 4.

The simulated power is obtained similarly under the same settings with the mean vector of X
setting to be (−0.5, −0.5, 0.5, 0.5)′. The mean vector of Y is set to be (0.5, 0.5, −0.5, −0.5)′
and (−0.4, −0.4, 0.6, 2.0)′, respectively, with the former resulting in different directions in
θs and the latter yielding same direction for θs with varied magnitudes.

We generate 10,000 replicates for each pair of m and n selected from {50, 100, 200}. The
simulated Type I error is the proportion of the null hypothesis H0 being rejected at a nominal
significance level of 0.05 (two-sided).

Table 1 summarizes the empirical type I error and power. Comparing tests with significance
level 0.05, we can see, from the table, that the tests of Huang et al. (2005) and the proposed
Tmax both control the type I error rate at about the nominal level, 0.05, while O’Brien’s
(1984) tests have a substantially inflated type I error rate. For example, when m = 100, n =
50, the empirical type I error rates of O’Brien’s two tests are 0.117 and 0.066, respectively,
and the two tests of Huang et al. give 0.056 and 0.054, respectively, whereas the proposed
test gives 0.058. As expected, when the parameters θa fall into differene directions, the
proposed test is considerably more powerful than the tests of O’Brien and Huang et al. For
example when m = 100, n = 100, O’Brien’s two tests have power levels of 0.067 and 0.066
respectively, and the power = 0.052 for both tests of Huang et al.. The proposed test,
however, has a power level as high as 0.907. For the second configuration when θa are in the
same direction but with varied magnitudes, the proposed test still has the highest power,
though the other tests gained considerably in power as compared to the first configuration.
With m = n = 100, O’Brien’s two tests yield power level of 0.221 and 0.220 respectively,
and the power = 0.179 and 0.178 for both tests of Huang et al.. The proposed test, however,
has a power level of 0.830.

4.2 Bivariate Exponential Distribution
The second simulation study generates data from X = (X1, X2)′ and Y = (Y1, Y2), each
following a bivariate exponential distribution as defined by Marshall and Olkin (1967a, b):
two random variables W1 and W2 follow a bivariate exponential distribution, denoted by
BiExp(λ1, λ2, λ12), if their joint survival function is exp(−λ1w1 − λ2w2 − λ12 max(w1, w2)).
The correlation coefficient between W1 and W2 is then λ12/(λ1 + λ2 + λ12). To draw samples
for (W1, W2), one can first generate samples from U1, U2 and U12, mutually independent and
following univariate exponential distributions with parameters λ1, λ2 and λ12, respectively,
and then set W1 = min(U1, U12) and W2 = min(U2, U12). We assess the tests under
investigation with significance level 0.05 and 10,000 replicates. The type I error rates for the
tests are evaluated with X, Y ~ BiExp(1, 2, 5). The power of the tests is evaluated
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respectively with X ~ BiExp(1, 2, 1) and Y ~ BiExp(2, 1, 1), and with X ~ BiExp(1, 1, 1) and
Y ~ BiExp(2, 1.2, 1), yielding θ1 and θ2 in opposite and same directions, respectively. The
number of subjects in each group is chosen from {50, 100, 200}. Here the rejection region is
for two-sided tests.

Table 2 summarizes the empirical type I error and power. From the table, all tests control the
type I error rate at about the nominal level, 0.05. For example, when m = 200 and n = 100,
the empirical type I error rates are 0.053 and 0.054 for O’Brien’s tests, 0.055 for Huang et
al’s tests, and 0.052 for the proposed test. However, as expected, the proposed test has the
highest power among the tests being assessed when θ1 and θ2 are in opposite directions. For
example when m = 100 and n = 200, the power is 0.046 and 0.048 for O’Brien’s two tests,
and 0.051 and 0.050 for Huang et al.’s tests. The power of the proposed method has the
highest value, 0.965. For the second configuration with θ1 = −0.20 and θ2 = −0.05 the
proposed test still has the highest power though the gain is relatively smaller as compared to
the first configuration. With m = 100 and n = 200, O’Brien’s two tests yield power level of
0.557 and 0.536 respectively, and the power = 0.540 and 0.537 for both tests of Huang et al..
The proposed test, however, has a power level of 0.721.

4.3 Ordinal Variables
Ordinal outcomes are common in biomedical research, often representing, for example, the
various stages of severity of a disease or levels of improvement of a patient after being
treated. For the simulation, we consider p = 3 ordinal variables with five different levels, −2,
−1, 0, 1, and 2. The outcomes (xi1, xi2, xi3) are generated according to the following
formula:

where  iid are drawn from the uniform distribution U(−1, 1), a = 1, ··· , 3, and c1, c2, c3, c4
are parameters determining the distributions of the ordinal variables. For assessing the type I
error rate, we set (c1, c2, c3, c4) to (−0.2, −0.1, 0.1, 0.2) for the X-sample, and (−0.9, −0.8,
0.8, 0.9) for the Y-sample.

To evaluate the power we set (c1, c2, c3, c4) to (0.1, 0.3, 0.5, 0.7) for xi1, (−0.2, 0.0, 0.2, 0.4)
for both xi2 and xi3, and (−0.2, 0.0, 0.2, 0.4) for yi1, and (0.1, 0.3, 0.5, 0.7) for both yi2 and
yi3 so that θa are in different directions and (c1, c2, c3, c4) to (0, 0.2, 0.4, 0.8) for xi1, (−0.5,
0.2, 0.4, 0.8) for both xi2 and xi3, and (−0.9, 0.2, 0.4, 0.9) for yi1, and (−0.6, 0.2, 0.4, 0.8) for
both yi2 and yi3 to yield θa in the same direction. Again the type I error rates and power are
simulated with 10,000 replicates at significance level 0.05 and the number of subjects in
each group is chosen from {50, 100, 200}.

Table 3 shows the simulation results. The table shows that both the proposed method and the
methods of Huang et al. maintain the correct type I error rates, which are very close to the
nominal significance level, 0.05. However, O’Brien’s tests have substantially inflated type I
error rates, as expected. For example, when m = 100, and n = 200, the empirical type I error
of O’Brien’s two tests are 0.167 and 0.076, respectively, while Huang et al.’s two methods
give 0.046 and 0.045, respectively. The proposed method gives 0.051. Furthermore, the
proposed test is considerably more powerful than those of O’Brien and of Huang et al. when
the θs are in different directions. For example, when m = 100, n = 200, the power levels for
O’Brien’s two tests are 0.400 and 0.392, respectively, and are 0.220 and 0.247, respectively,
for the two tests of Huang et al. On the other hand, the proposed method achieves power as
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high as 0.935. Similar pattern is observed again for θa to be in the same direction with varied
magnitudes.

5. APPLICATIONS TO DATA EXAMPLES
In this section, we exemplify the methods using the growth-related hormone data from the
Austim/ASD Study and removal of cardioplegic solution data from the HTK Study.

5.1 Growth-Related Hormone in Autism
We demonstrate the aforementioned methods with an examination of growth-related
hormones in young children from the Autism/ASD Study, as described in the Introduction
section. In Mills et al. (2007), it is noted that only the data on the male subjects were used in
this analysis because of the small number of girls among the cases. Four boys in the case
group did not provide blood samples. Consequently there were only 71 cases and 59 controls
in this analysis. We confine our attention to five hormones: insulin-like growth factor-1
(IGF-1), insulin-like growth factor 2 (IGF-2), IGF binding protein (IGFBP-3), growth
hormone binding protein (GHBP), and dehydroepiandrosterone (DHEA); their means and
standard deviations are given in Table 4. DHEA-sulphate (DHEAS) was not included in the
analysis since its levels were undetectable in more than half of the subjects (Mills et al.,
2007). We are interested in whether the levels of a growth-related hormone, if any, differ
between cases and controls. The null hypothesis is set to be the generalized Behrens-Fisher
problem, i.e., there is no (relative) effect for any of the hormones under consideration.

We applied the proposed test and the tests of O’Brien (1984) and Huang et al. (2005) to the
five growth-related hormone levels in cases and controls. The P-values were 2.86 × 10−6

and 1.75 × 10−6 for O’Brien’s tests and 6.28 × 10−7 and 6.30 × 10−7 for the two tests of
Huang et al. In contrast the proposed test yielded a P-value of 1.52 × 10−9, indicating that
the proposed method is more powerful than O’Brien’s and Huang et al.’s methods.

5.2 Removal of Cardioplegic Solution (HTK Study)
Due to technical reasons, there were a few missing observations in the study, which are
replaced by the mean of each endpoint in each group for our analysis. Means and standard
deviations of the heart rates at each time point are presented in the table below.

A univariate comparison of the heart rates between the two groups at each of the five time
points by the Wilcoxon rank-sum test yields P-values of 0.663, 0.724, 0.648, 0.110, 0.014,
respectively. Using the conservative Bonferroni correction procedure at significance level of
0.05, we would conclude that there are no significant differences at the five time points
between the groups.

The P-values are respectively 0.295 and 0.295 for O’Brien’s (1984) tests and 0.289 and
0.289 for the tests of Huang et al. (2005). All tests failed to detect any difference at certain
time point. On the other hand, for our proposed MAX statistic, the P-value is 0.032, thus
effectively detecting a difference.

6. DISCUSSION
For comparing the distributions of two samples with multiple endpoints, we proposed using
the MAX statistic and via simulation and real data examples demonstrated its effectiveness,
as compared with the methods of O’Brien (1984) and Huang et al. (2005), in maintaining
high power in certain parameter space and detecting differences between the two samples at
individual endpoints. In the growth hormone example, all methods under investigation
produced significant results. In the HTK Study example, our proposed method successfully
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detected a difference while the others (including the conservative Bonferroni procedure)
failed to do so. Our simulation results demonstrate that the MAX statistic is more efficient
than the other methods when the relative effects fall into different directions or in the same
direction but with relatively different magnitudes.

The MAX statistic, like the test statistics of O’Brien and Huang et al., can be used for
comparison of two multivariate distributions, as a nonparametric alternative to Hotelling’s
T2, a popular test statistic in multivariate data analysis (Anderson, 2003; Muirhead, 1982).
These procedures are often termed as “global” tests in contrast to tests for each individual
marginal distribution. In clinical trial settings where the trial has several endpoints that are
equally ordered by their clinical importance, the MAX statistic, or any other proper overall
significance tests in that matter, can be used for monitoring of the trial, followed by a step-
down method to identify individual endpoints with positive or negative treatment effects;
see Jennison and Turnbull (2000, chapter 15). One important implication is that when an
overall significance test is used for possible early stopping of the trial, the MAX statistic
may lead to early termination (while the others may fail to do so) if indeed the differences
between treatment groups are statistically significant but fall into different directions, thus
saving sample sizes and reducing study costs.

Often in practice multiple outcomes are ordered hierarchically according to their clinical
importance. In this case the MAX statistic could be extended to

where the weights wa ≥ 0,  are properly chosen so that more important outcomes
carry larger weights.

The test statistics under investigation can all be viewed as forms of combinations of
univariate tests on the individual outcomes. The test statistics of O’Brien (1984) and Huang
et al. (2005) are linear combinations of the individual test statistics, while the MAX statistic
is a nonlinear combination of the individual test statistics. In general, nonlinear
combinations are expected to be more efficient when the parameters lie beyond the
multidimensional plane determined by the linear combinations. With p = 2 we show
analytically in the Appendix that the MAX statistic is more powerful than the test statistic in
Huang et al. (2005) in some parameter space. Because the asymptotic distribution of the
MAX statistic is quite complicated, more theoretical research is deemed needed to show the
superiority of power of the MAX statistic over the other statistics in certain parameter space.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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APPENDIX: TECHNICAL DETAILS
Proof of Theorem 1. Since

is a U-statistic, it converges in distribution to a normal distribution as min{m, n} → ∞ and 0
< m/n → λ0 < ∞. Denote
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and j1, j2, ∈ {1, ··· , n}. Then we have

1. when i1 ≠ i2, j1 ≠ j2, .

2. when i1 = i2 = i, j1 ≠ j2,

where the last equality follows from E[Ga(Xa)] = E[Gb(Xb)] = 1/2 under the null
hypothesis.

3. when i1 ≠ i2, j1 = j2, .

4. when i1 = i2, j1 = j2, , |η| ≤ 1.

Therefore, Cov (I {xi1a<yj1a} − I{xi1a>yj1a}, I{xi2b<yi2b} − I{xi2b>yj2b})

It follows that when a ≠ b,

and when a = b,

Therefore,

where cab = Cov(Ga(Xa), Gb(Xb)) and dab = Cov(Fa(Ya), Fb(Yb)).

Estimation of cab = Cov(Ga(Xa), Gb(Xb)) and dab = Cov(Fa(Ya), Fb(Yb)). For any a ∈ {1,
··· , p}, define Ry(xia) to be the midrank of xia among {xia, y1a, ··· , yna}, Rx(xia) the midrank
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of xia among {x1a, ··· , xma}, Rx(yja) the midrank of yja among {x1a, ··· , xma, yja}, and Ry(yja)
the midrank of yja among {y1a, ··· , yna}. Let

P = (pia)m×p with pia = 2Ry(xia) − 2 − n + nθ ̂a, and Q = (qja)n×p with qja = 2Rx(yja) − 2 − m
− mθ ̂a, i = 1, ··· , m, j = 1, ··· , n, a = 1, ··· , p. Then the consistent estimates of Cov(Ga(Xa),
Gb(Xb)) and Cov(Fa(Ya), Fb(Tb)), are, in matrix form,

.

Efficiency of the MAX statistic (p = 2). Let Z1 and Z2 be two test statistics (corresponding
to the rank test statistic of the first and second endpoint, respectively) with (Z1, Z2)′
asymptotically following a bivariate normal distribution with mean (µ1, µ2)′ and covariance

matrix . Under the null hypothesis H0 we have µ1 = µ2 = 0. We consider alternative
parameter space H1 with (µ1, µ2) = (µ, −µ − δ) where µ > 0 and δ ≥ 0. Thus µ1 and µ2 are in
opposite directions but their magnitudes differ according to δ. With the above notations the
test statistic of Huang et al (2005) can be expressed as , and the MAX
statistic is max{|Z1|, |Z2|}.

Theorem. Under the above assumptions, for any given significance level α (α > 0), there
exists δ0 > 0 such that, when δ ∈ [0, δ0),

where c and t satisfy

Proof. First consider δ = 0, yielding µ1 + µ2 = 0, and thus

We need to show that PrH1 (max{|Z1|, |Z2|} > t) > α.

Because

it suffices to show that 1 − g(µ) > α as µ > 0, that is, g(µ) < 1 − α, since
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Note that

Write ξ = (z1 − µ) and η = z2 + µ, then

When ρ ≤ 0, we have

and when ρ > 0, we have

In the above proof, we utilized the fact that the marginal distributions of ξ and η are both
standard normal distribution.

Thus dg(µ)/dµ < 0 as µ ≥ 0, implying that the function g(µ) is strictly decreasing in µ and
hence

Therefore we have

when δ = 0.

On the other hand, when δ → ∞ we have
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Note that the power functions are continuous in δ and therefore there exists δ0 > 0, such that
when δ ∈ (0, δ0),

Figure 1 presents the ratios in power of the other four tests to the MAX statistic with
significance level 0.05. Power of the test is computed based on 10,000 simulations of X =
(Xi1, Xi2)′, i = 1, … , 100, iid from a bivariate normal distribution with mean (−0.1, 0.1)′ and

covariance matrix  and Y = (Yj1, Yj2)′, j = 1, … , 100, iid, from a bivariate

normal distribution with mean (0.1 + δ, −0.1)′ and covariance matrix . A ratio
below 1 indicates superiority of the MAX statistic to its counterpart. We observe from the
figure that for a relatively large range of δ values the MAX statistic has higher power than
the other statistics.
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Figure 1.
Ratio of power levels, where power(T) denotes the power of the test statistic T. T1 and T2 are
O’Brien’s test statistics, Th1 and Th2 are Huang et al.’s test statistics, and Tmax is the
proposed test statistic.
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