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A RANK FOR RIGHT CONGRUENCES ON INVERSE SEMIGROUPS

VICTORIA GOULD

The S-rank (where 'S' abbreviates 'sandwich') of a right congruence p on a semigroup
5 is the Cantor-Bendixson rank of p in the lattice of right congruences HC of 5 with
respect to a topology we call the finite type topology. If every p e 1ZC possesses S-
rank, then 5 is ranked. It is known that every right Noetherian semigroup is ranked
and every ranked inverse semigroup is weakly right Noetherian. Moreover, if S is
ranked, then so is every maximal subgroup of S. We show that a Brandt semigroup
B°(G, I) is ranked if and only if G is ranked and / is finite.

We establish a correspondence between the lattice of congruences on a chain E,
and the lattice of right congruences contained within the least group congruence on
any inverse semigroup 5 with semilattice of idempotents E(S) =* E. Consequently
we argue that the (inverse) bicyclic monoid B is not ranked; moreover, a ranked
semigroup cannot contain a bicyclic »7-class. On the other hand, B is weakly right
Noetherian, and possesses trivial (hence ranked) subgroups.

Our notion of rank arose from considering stability properties of the theory Ts of
existentially closed (right) S-sets over a right coherent monoid S. The property of
right coherence guarantees that the existentially closed 5-sets form an axiomatisable
class. We argue that B is right coherent. As a consequence, it follows from known
results that TB is a theory of B-sets that is superstable but not totally transcendental.

1. INTRODUCTION

Suppose that 5 is a semigroup: we denote by TIC — TZCs the lattice of right congru-
ences of S. The notion of 5-rank for p € V£ was introduced in [7], in an attempt to find
a property intermediate between that of being right Noetherian and of being weakly right
Noetherian. Such a property was sought in order to solve an open problem in the model
theory of 5-sets over a monoid 5 (see [7] and below for further details). Recall that a
semigroup is right Noetherian if every right congruence is finitely generated, and weakly
right Noetherian if every right ideal is finitely generated. By considering Rees right con-
gruences, it is easy to see that a right Noetherian semigroup is weakly right Noetherian.
The converse is, however, far from true: to see this the reader need only consider a group
a having a subgroup lattice that does not have the ascending chain condition.
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The 5-rank of p € TZC is the Cantor-Bendixson rank of p with respect to the finite
type topology. The topology and the calculation of rank is given explicitly in Section 2.
For the purposes of this introduction, it is enough to say that the 5-rank of p € TZC is
an ordinal, or oo (considered to be greater than every ordinal), that measures how far
p is from being finitely generated and finitely covered in TZC. A semigroup is ranked if
every p € TZC has 5-rank strictly less than oo. We showed in [7] that a right Noetherian
semigroup is ranked, and a ranked inverse semigroup is weakly right Noetherian.

The aim of this paper is to consider ranked inverse semigroups. From [7], if a Brandt
semigroup B°(G, /) over a group G is ranked, then / is finite and G is ranked. In Section 3
we prove the converse. Right congruences on Brandt semigroups may be described using
inverse subsemigroups containing the 0 element [12]; for the purposes of our arguments
it is easier to take a direct approach.

In Section 4 we concentrate on an E-unitary inverse semigroup 5 having a chain E(S)
of idempotents. By analysing right congruences contained in the least group congruence
a, we can show that if 5 is ranked then E(S) is finite. Consequently, the bicyclic monoid
B is not ranked, even though it is weakly right Noetherian and has trivial (hence ranked)
subgroups. It follows that a ranked semigroup cannot contain a bicyclic ,7-class. Theorem
1.3 of [8] gives that the 0-simple principal factors of a right Noetherian semigroup are
completely 0-simple. We conjecture the same is true for ranked semigroups.

Our approach to rank was inspired by the model-theoretic Morley rank. From [7],
every (complete l)-type of the theory Ts of existentially closed (right) 5-sets over a right
coherent monoid 5 has Morley rank, that is, Ts is totally transcendental, if and only if
5 is weakly right Noetherian and ranked. Prom [11, 4] Ts is superstable if and only if
5 is weakly right Noetherian. In Section 5 we show that B is right coherent. Thus TB

exists, is superstable, but not totally transcendental. For background in model theory we
recommend [2] and [3]. The reader interested in stability theory can find further details
in the books [1, 9, 13].

We remark that 5-rank was introduced in [7] for pairs (/, p) where p € TZC and /
is a /j-saturated right ideal of 5. Our aim in doing so was to get a close bound on the
Morley rank of types over the theory Ts, where 5 is a right coherent monoid. However,
if all pairs of the form (0, p) possess 5-rank then so do all pairs (/, p). For the purposes
of this paper, which makes no explicit model-theoretic considerations, it is enough to
consider pairs (0, p). Thus we define 5-rank simply for elements of TZC.

2. 5-RANK FOR RIGHT CONGRUENCES

Sandwich rank, or 5-rank, for right congruences on a semigroup 5 is defined as below.
The terminology arose since we aim to 'sandwich' right congruences in intervals of the
lattice TZC determined by finite sets. Let v denote a finitely generated right congruence
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[3] A rank for inverse semigroups 57

on S and let K C S x S be finite. Then we let

[v,K} = {p eUC : v C p C S x S\K}

and we say that [v, K\ is a subset of finite type. Clearly subsets of finite type are convex,

where a subset Y of a partially ordered set X is convex if, for any x, y, z 6 X, from

£ ^ y ^ z and x,z € y , we deduce that y 6 Y. Denoting the right congruence

on S generated by a subset H of 5 x S by (H), it is easy to see that [/x, K] n [v, L]

= [(p. U v), K U L]; consequently, finite intersections of subsets of finite type are of finite

type. Hence the set of subsets of finite type are a basis for a topology on TZC; we call

this the finite type topology.

Let p e TZC. The S-rank of p, S(p), is the Cantor-Bendixson rank of p in TZC

equipped with the finite type topology. We make this explicit by defining subsets TlCa

of TIC for each ordinal a, as follows:

(I) TZC0 = TIC;

(II) if a is a limit ordinal, then

TlCa = 0

(III) p e 7lCa+1 if and only if p € V£a and for each subset of finite type [v, K]
which contains p , there exists 9 € TIC such that

The S-rank of p e TIC is S(/o), where if p e TIC° for all a then S(p) = oo, and
otherwise S(p) = a where p € "£CQ \ HCa+1. If S(p) < oo, then we say that p has S-rank.
Notice that for any p G TZC and ordinal a, S(p) ^ a if and only if p € TZC". We remark
that in [7], S(p) is denoted by S(0, p).

We say that a semigroup S is ranked if every element of TIC has 5-rank. Notice
that if p is finitely generated and has finitely many covers {pt : i G / } , then choosing
(ttj, vj € pi\p, and putting

i: = {K«i):ie/}>

it is clear that [p, K] isolates p , that is, [p, K] = {p}. Thus S(p) = 0. Hence any finite
semigroup is ranked, and if the universal relation w on any semigroup is finitely generated,
then S(w) = 0.

We recall the following results from [7], which will be needed in later sections.

PROPOSITION 2 . 1 . Let S,T be semigroups and let ip : S -+ T be an onto

morphism. IfSis ranked, then so is T.

PROPOSITION 2 . 2 . Let S be a semigroup and let T be a monoid principal

factor, a monoid J -class, or a maximal subgroup of S. If S is ranked, then so is T.

PROPOSITION 2 . 3 . Let S be a ranked inverse semigroup. Then S is weakly

right Noetherian.
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3. RANKED BRANDT SEMIGROUPS

Let B° = S°(G, / ) be a Brandt semigroup. If S° is ranked, then from Propositions 2.2
and 2.3 we know that G is ranked and / is finite. The aim of this section is to prove the
converse.

To this end, let B° = S°(G, / ) be a Brandt semigroup. For each i € / we put

so that Gt is a subgroup of 6° isomorphic to G. For any p e TIC = IZCBO we put

so that pi is a right congruence on Gj. We also denote the p-class of 0 by Up, so that in
particular Up is a right ideal.

We make the observation that

THEOREM 3 . 1 . Suppose that 0° = B°(G, I) is a Brandt semigroup over a group
G. Then B° is ranked if and only ifG is ranked and I is finite.

P R O O F : We assume that G is ranked and / is finite. From the observation preceding
the theorem, u is finitely generated. As remarked in Section 2, it follows that S(ui) = 0.

Our aim then is to show that if p € "R£ with

{i&I:(i,l,i)iUp}^H>,

then we have that S(p) < oo.
Choose and fix a non-empty subset J of /. Without loss of generality we can assume

that
J = {l ,2 , . . . ,m}

for some m € N. Put J' = I\J and

U={(i,a,j):i€J'}u{0},

so that U is a right ideal; if J = / , then U = {0}. Let

nc( J) = {penc:Up = u}.

We proceed via a series of lemmas to show that every p e TZC(J) has S-rank.

LEMMA 3 . 2 . Let p € HC{ J). Then for any i, j e J,

(i, a, k) p (j, b, I) implies that k = I.

Further,
(i, a, k) p (j, b, k) if and only if (i, o, m) p (j, b, m)

for any m & I.
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P R O O F : If (i, a, k) p (j, b, I), then as p is a right congruence,

(i, a, k) = (i, a, *)(*, 1, *) p (j, b, /)(*, 1, k)

so that k = / since (i, a, k) £ U. Suppose now that

(i, a, k) p (j, b, k)

and me I. Then
(i, a, k)(k, 1, m)p(J, b, k)(k, 1, m),

so that

as required. D

For any p G TIC(J) we define a relation p on J by the rule that ipj if and only if
there exist (i,a,I), (j,b,I) with (i,a,l)p(j,b,l). Clearly p is reflexive and symmetric. If
ipjpk then, calling upon Lemma 3.2, for some (i, a, I), (j, b, I), (j,c, /), (k, d,I) we have
that

(t, a, I) p (j, b, I) and (j, c, I) p (k, d, I)

so that

thus ipk and pi is an equivalence on J.
We denote by \p\ the number of ^-classes, so that 1 < \p\ ̂  m. If 9, p G HC( J) and

pC6, then clearly pC$so that \p\ ̂  |0| and \p\ = \0\ if and only if p = 6.
For the meanwhile we fix p 6 7ZC(J) and show how to construct a subset of finite

type (of TIC BO) containing p from subsets of finite type (of "RCd) containing Pi,i £ J.
For distinct i,j € J with i pj we have that

say, so that

We choose and fix gtj e G with (i,l,i) p (j, gtj, i). Suppose that for each i € J, pt G [i/,-,
where i/j = (Hi). We define if,!/ and K by

} { , l , k ) , O ) : k G

and

It is easy to see that p G [^i^]- Moreover, if 0 G [i/, i f] , then 0 G HC(J) and for each
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LEMMA 3 . 3 . Let p,H,u and K be as above. If 9 £ [v, K] and 9t = pt for each

i G J, then pCO.

P R O O F : We know that 9 G TZC(J) so that in particular U is the 0-class of 0 and

en(u xu) = u xu = pn{u xu).

Suppose now tha t ( i , a , k ) p ( j , b , k) for some i,j G J . Then (i, l,i)p(j,6a"1, i ) . If

i — j then (i, 1, i) pi (j, ba'1, i); but pt = 9t so that (i, 1, i) 9 (j, ba'1, i), thus (i, a, k) 6 (j, b, k).

Consider now the case where i ^ j . As i pj we have a pair ((i, 1, i), (j, gtj, i)) G H.

Hence

Lemma 3.2 and the fact that 9j = pj now yield

{j,ba

Since H C 6 we have that

so that
{i,

and p C. 9 as required. D

LEMMA 3 . 4 . Let p,H,u and K be as above. If 9 € [v, K], 9{ = pt for each i G J
and 9 = p, then 9 = p.

P R O O F : By Lemma 3.3, we know that p C 9. For the opposite inclusion, suppose
that (i,o, k) 9(j, b,k) for some i,j £ J. If i ^ j then as i6j we must have that ipj so
that there is a pair ((i, 1, i), (j, gtj, i)) € H. Arguing as in the proof of Lemma 3.3 yields
the result. D

We can now proceed to complete our proof that if p G ~RC{J), then p has S-rank.
We use induction on

where the product set has the lexicographic ordering.

Suppose first that S(pi) = 0 for each i G J and \p\ = 1. Then each pt is isolated,
say by [vu Ki\. Let [v, K] be constructed as above, so that p G [v, K\. If 9 G [v, K], then
9i G [vi, Ki) so that as pi is isolated by this set, 9i = Pi for each i G J. By Lemma 3.3 we
have that p C 9. Hence

1 = III > l«l
forces |p| = |0| so that p — 9. By Lemma 3.4 we have that p = 9. Thus [u, K] isolates p

and S(p) = 0.
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Proceeding by induction, we suppose that for all ip G HC(J) with

) , IPI)

we have that S(^) < oo.
For each i G J let a< = S(/9j) and let [I'ijA'i] isolate # amongst right congruences

of d with 5-rank greater than or equal to at. Construct [u, K] as above. If 6 G [u, K],
then 0 G ftC(7) and ^ € [vi,Ki]. Consequently, S(^) < S(#) for each i. If 5(6,) < S(p.)
for some i, then

(S(*i), S(02), • • •, S(0m), |0|) < (S(Pl), S(p2),..., S(A»), \P\)

so that S(#) exists by our inductive assumption.
Otherwise, S(#<) = S(#) = a< for each i. But then Oi = Pi for each i, so that by

Lemma 3.3, p C 6, giving that \p\ ̂  \0\. If this inequality is strict, then again we have
that

(sft), s(e2),...,s(0m), \e\) < (s(ft), S(P2),..., s(^m), |p|)

and so S(0) exists. On the other hand, if \p\ = \0\, then p = 6 so that p = 9 by Lemma 3.4.
Our conclusion then is that for 9 e [v, K] we have that 9 = p or S(0) < oo. Now

if a is an ordinal larger than S(0) for any 9 € [v, K] with 0 ^ p (and a certainly exists
since [v, K] is a sei), we cannot have that S(p) ^ a + 1. Hence S(p) < oo as required. D

4 . 5-RANK FOR INVERSE SEMIGROUPS HAVING A CHAIN OF IDEMPOTENTS

We recall that a semigroup 5 is E-unitary if for any e G E'(S') and a 6 S,eae E(S)
implies that a € E(S). We say that 5 is a chain semigroup if £(5) forms a chain under
its natural partial order. We prove in this section that if 5 is a ranked E-unitary inverse
chain semigroup, then E(S) is finite. In view of Proposition 2.2, any ranked semigroup
S cannot contain an E-unitary inverse w-semigroup as a ,7-class. In particular, it cannot
contain a bicyclic ,7-class.

Suppose that S is an .E-unitary inverse semigroup with chain of idempotents
E = E(S). We aim to utilise the results of [7] for ranked chains by describing certain
elements of HCs by their restriction in HCE- We say that a partition

£ = {Ei : i e /}

of E is a convex partition if each Ei is convex. Certainly such a partition inherits a partial
ordering from E, so that Ei < Eii if x < y for all (any) x € Eit y G Ej. It is easy to see
that if p G "RCE, then the p-classes form a convex partition. Conversely, the equivalence
relation associated with a convex partition is a congruence on E.
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We recall that the least group congruence on an inverse semigroup 5 is given by the
rule

a a b if and only if ea = eb for some e £ E.

Clearly, if 5 is E-unitary, then E forms a a-class.

Suppose that 5 is an inverse chain semigroup and let £ be a convex partition of E.
Let p£ be the relation on 5 given by

pg = {(a,b) :3i € I such that aa', bb' G E{ and ea = eb for some e G Ei},

where we use s' throughout to denote the inverse of an element s £ S.

LEMMA 4 . 1 . Let S be an inverse chain semigroup, and let £, p£ be as above.

Then p£ is a right congruence on S, contained in a, which induces the partition £ of E.

PROOF: It is clear that a convex partition satisfies condition (N) of [10]. The left-
right dual of [10, Theorem 3.1] gives that pg is a right congruence, indeed the minimum
right congruence inducing the partition £ of E. Clearly p£ C a. Q

The following technical result, which makes implicit use of the natural partial order
on an inverse semigroup, will be used repeatedly.

LEMMA 4 . 2 . Let S be an E-unitary inverse chain semigroup, and let a, b G S

with aab. Then ba' = ab' £E. Ifb^ca then ba' = bbf.

PROOF: Since aab we have that ea = eb for some e G E. Now

eaa' = ebal

so that 6a' G E as 5 is E-unitary. If b < £ a then 6 = ba'a so that

b ^ii ba' ^ b

and consequently, ba' = bb1 since 5 is inverse. D

For an inverse semigroup S we let Q denote the set of right congruences contained
in a.

LEMMA 4 . 3 . Suppose that S is an E-unitary inverse chain semigroup. Then for
P,reG,

pCr if and only if pn{E x E) CTC\{E X E).

PROOF: We suppose that p n (E x E) C T n (E x E) and show that p C r.

Let a,b G S with apb. Without loss of generality we assume that b ^c &\ Lemma 4.2
gives that ba' = bb'. Since aa' pba' and p(l(E x E) C T D(E x E) we must have that
aa' T ba'. Hence, as r is a right congruence,

a = aa'a r ba'a = b.

D
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COROLLARY 4 . 4 . Suppose that S is an E-unitary inverse chain semigroup.

Then there is a bijection between Q and the set of convex partitions of E.

P R O O F : If r e Q and S is the partition of E induced by T, then as commented
earlier, £ must be convex. On the other hand for any convex partition T of E, p?
induces J-. Invoking Lemma 4.3 gives our result. D

Since the set of convex partitions of E is in bijective correspondence with HCE, it

follows that there is a bijection between Q and TZCE-

We proceed to examine sets of generators for right congruences in Q.

LEMMA 4 . 5 . Let S be an E-unitary inverse chain semigroup.

For any p e Q, if

then

p

P R O O F : Let p e Q with

P=({(ai,bj):je J}).

Let j € J and assume that bj <£ o.j- By Lemma 4.2 we have that bjb'j = bjdj and

aja'jpbja'^bjb'j.

Hence
T = ({(aja'j,bjb'j):j6J})cP.

Conversely,
bj = bja'jdj = bjb'jdj T aja'jdj = ajt

so that pCr and we have that p = r. D

For the purposes of the next result, we denote the right congruence on a subsemi-
group T of S generated by H C T x T as ( # ) T .

LEMMA 4 . 6 . Let S be an E-unitary inverse chain semigroup, let H C Ex E and

let p = {H)s. Then p € Q and pn{E x E) = (H)E-

P R O O F : Let H C E x E. If apb, then o = b (so that a a b), or there is a sequence

a = citu dih = c ^ , • • • > diU = 6,

where for each k, (c*, d*) or (die, c*) belongs to H and £* € Sl. Since E is a chain we can
find a least element e in

{cudi,...,ci,di}

and then
ea = ec\t\ = et\ = edit\ ~ ec-it-i = ... = editt = eb
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so that aab and p € Q.

Clearly

{H)ECpn(ExE).

On the other hand, if e, / € E and epf, then e = / or there is a sequence

e = u i S x , u i S ! = u2s2,...,visi = f,

where for each k, {uk,Vk) or (vk,Uk) is in H and s* € S1. Since 5 is inverse we have a
sequence

e = U 1 S 1 S 1 , v i S i s [ = U 2 S 2 s ' 2 , . . . , vtsts'f = / ,

so that e(H)Ef. Thus

Pn{ExE) = (H)E. •

PROPOSITION 4 . 7 . Suppose that S is an E-unitary inverse chain semigroup

and let p € Q. Then p is finitely generated (in TiCs) if and only if p D (E x E) is Gnitely

generated (in 1ZCE)-

P R O O F : If p is nnitely generated, then by Lemma 4.5, p has a finite set of generators
H where H C E x E. By Lemma 4.6,

pn{ExE) = (H)E

and thus is finitely generated.

Conversely, suppose that p n (E x E) is finitely generated by F. If a pb, then by
Lemma 4.5, aa' pbf so that aa' (F)E bb1. Hence aa! = bbl or there is a sequence

a a ! = C i t \ , d i t \ = c - j t - i , . . . , d j i j = bb',

where for each k, (ck, dk) or (dk, Ck) € F and tk e E1. Without loss of generality, assume
that 6 ̂ £ a so that bb' = ba'. If aa' = bbf then

a = aa'a = bb'a = ba'a = b.

Otherwise,

o = aa'a = C\t\a, d\t\a = C2t2a,..., djijo = bb'a = ba'a = b,

so that a (F)s b. Consequently, p = (F)s and hence is finitely generated. D

We are finally in a position to prove the main result of this section. To do so we call
upon the corresponding result in [7] for the case of 5 a chain.

THEOREM 4 . 8 . Suppose that S is an E-unitary inverse chain semigroup. If S is

ranked, then E is finite.
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PROOF: We proceed by transfinite induction to show that for any p G G that is not
finitely generated, and for any ordinal a, S(p) ^ a. As usual, the step at limit ordinals
is trivial. Suppose now that S(fi) ^ a for all \i € Q that are not finitely generated. Let
p e Q where p is not finitely generated and suppose that

where [v, K] is a subset of finite type. Clearly

v C p C a.

By Proposition 4.7, v n (E x E) is finitely generated but p C\ (E x E) is not. From [7,
Lemma 5.6], we can find a non-finitely generated congruence 0 on E such that

i/n (E x E) c e c pn (E x E).

Let ip = (8)s so that tp € Q from Lemma 4.6 and

ipn(Ex E) = (9)E = 0.

From Proposition 4.7 we have that ip is not finitely generated. Lemma 4.3 gives that

v Cip C p.

Thus ip € [u, K] and tp ^ p. Our inductive hypothesis tells us that S(^) ^ a, so that
S(p) 2 a + 1.

It follows that for any non-finitely generated p € Q, S(p) = oo. If E is infinite,
then it contains an unbounded subset, so that as in [7, Proposition 5.7], TZCE contains
a non-finitely generated congruence 6. Then (9)s fails to be finitely generated, so that
S({0)s) = oo and 5 is not ranked. 0

COROLLARY 4 . 9 . Suppose that S is a ranked semigroup. Then S cannot con-

tain a J-class that is an inverse w-monoid. In particular, S cannot contain a J-class

isomorphic to B.

PROOF: Let 5 be ranked. If 5 contains an inverse w-semigroup T as a ,7-class, then
T is perforce ranked by Proposition 2.2. As T is a ,7-class of 5 , T is a simple inverse
w-semigroup: it need not be E-unitary but, from the characterisation of T as a Bruck-
Reilly semigroup, it is clear that there is an onto morphism from T to the bicyclic monoid
B. Thus by Proposition 2.1, B is ranked. But B is an E-unitary inverse ^-semigroup, so
cannot be ranked in view of Theorem 4.8. D
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5. T H E BICYCLIC MONOID IS RIGHT COHERENT

A monoid 5 is right coherent if every finitely generated 5-subset of any finitely
presented (right) 5-set is finitely presented. It is known that 5 is right coherent if and
only if the theory of 5-sets has a model companion; the model companion is then a set
of sentences which axiomatises the existentially closed 5-sets. Further details can be
found in [5, 14]. In [6] we show that an inverse monoid with central idempotents is right
coherent. The aim of this section is to extend this result to show that an inverse monoid
with an inversely well-ordered chain of idempotents is right coherent.

LEMMA 5 . 1 . Let I be a right ideal of a monoid S, let p£HC and let x,y € 5.

(i) The set

Ip — {sGS: spa for some a € / } = L){[a] : a € / }

is a right ideal ofS containing I.

(ii) The set
(I,x) = {t£S:xteI}

is empty or is a right ideal.

(iii) Ifxpy then

PROOF: It is easy to see that (i) and (ii) hold. For (iii), observe that xt € Ip if and
only if yt e Ip, since Ip is a union of /^-classes. D

THEOREM 5 . 2 . Let S be a regular monoid such that every right ideal is principal.

Then S is right coherent.

PROOF: Suppose that p is a finitely generated right congruence on 5. Since every
right ideal of 5 is principal, the set of right ideals of 5 is linearly ordered by inclusion.
Clearly then for [a], [b] £ S/p, we have that [a]S n [6]5 equals [a]S or [b]S. From [6,
Corollary 3.4], it remains to show that the right congruence

r([a\) = {(u,v) € 5 x 5 : aupav)

is finitely generated.

Let {(xi,yi)} be a finite set of generators for p and let [a] € S/p. Then (aS)p is a

right ideal of 5, so by assumption

{aS)p = eS for some ee E.

Clearly ea = a. Now e 6 (aS)p gives that epat for some t £ S. Consequently,

a = tap ata
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so that

(l,te)€r([o]).

For any i,

or
(eS, xt) = (eS, yi) = g{S for some g{ € E{S),

using Lemma 5.1. In the latter case,

so that
(tetfi, ty.-ft) €r([a\).

Putting
r =

we have shown that
rCr([o]) .

Conversely, suppose that (u, v) € r([o]), so that aupav. If au = av, then

urtau = tavrv.

Otherwise, we have a sequence

au = C\t\,d\ti = C2<2> • • •. diti = av,

where for each j € { 1 , . . . , /} , tj € S and

(cj.dj) = (iy,yy) or (c,,^) = (j/i,,^).

Observe that for each j ,

so that

We rewrite our sequence as

au = Cig^ti, dig^ti = Oigi2t2,..., digitti = av,

and multiply every equation by t to obtain

tau = tc\gh tx, tdig^ti = tC2gi2t2,..., tdig^ti = tav.

https://doi.org/10.1017/S0004972700039472 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700039472


68 V. Gould [14]

Since for each j we have that

jgi^jg^) or

is a generator of r, we obtain
urtaurtavTV,

so that

r([a]) C r

and we deduce that r([a]) = r is finitely generated as required. D

COROLLARY 5 . 3 . The bicyclic monoid is right coherent.
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