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ABSTRACT

This paper concerns quadratic programming prob-
lems subject to quadratic equality constraints such as
arise in broadband antenna array signal processing and
elsewhere. At first, such a problem is converted into a
semidefinite programming problem with a rank con-
straint. Then, a rank preserving flow is used to ac-
commodate the rank constraint. The associated gradi-
ent formulas are carefully developed. The convergence
of the resulted algorithm is also guaranteed. Our ap-
proach is demonstrated by a numerical experiment.

1 PROBLEM DESCRIPTION

Consider the following general quadratic programming
problem:

min Jo(X) := tr(XTQOX + BOX) (1)

subject to: Ja(X) := tr(XTQaX + BiX) = c~,

i=l,2, . . ..?n. (2)

where X E W’xq, Q. is a positive definite matrix, and
Qi, i=l,2,..., m are positive semi-definite matrices.
A linear constraint is covered as a special case where
the matrix Qi for the corresponding index i is a zero
matrix.

For given generic Qi, i = 1,2,,.., m, it is a difficult
task to solve the problem (1) (2). One of the main
reasons is that the admissible set in the generic case
is disconnected. Hence, any gradient based methods
for the searching of the optimal solution is bound to
lead to a local optimal. Another reason is that, even-
though one can use a gradient based method to solve
it, the computation of the gradient of the cost func-
tion is complicated for problems of large size. Also
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because this problem is not convex, quadratic equality
constraints can not be touched by the popular interior-
point polynomial methods such as reported in [1], [3]
and [4].

However, this quadratic optimization problem arises
in applications. For inst ante, in the area of broad band
antenna array signal processing, the global minimum
of such a problem leads to an optimal design. See [2]
for details. It is of interest to developed appropriate
algorithm to solve this problem.

In this paper, motivated by a desire to achieve
improved optimization techniques, we convert the
quadratic programming problem into an optimization
problem of a linear matrix function subject to linear
equality, linear matrix inequality, and matrix rank con-
straints. Then, an algorithm is developed to solve the
converted problem based on gradient flow with respect
to certain Riemannian metric.

The paper is divided into four sections. Section 1
introduces the problem of interest. Section 2 converts
the problem into an optimization problem for linear
matrix function subject to linear equality, linear ma-
trix inequality, and matrix rank constraints. The re-
lated convex problem is also discussed. Sections 3 is
devoted to the development of an algorithm. The vari-
able evolves in a set of positive semi-definite matrices
of a fixed rank. Section 4 contains a numerical experi-
ment using the algorithm developed.

2 CONVERTED PROBLEMS

First, we note the following lemma.

Lemma 1 The rnatr-izequality

Y = XXT (3)

;s equivalent to

“=(:’w“ ‘ank(:0=”‘4)

Copyright 1997 IEEE 67



We also note that the original problem is equivalent
to the problem defined as follows:

min JO = tr (QOY + BoX) (5)

{

Ji = tr(QiY + BiX),
subject to: 2=1,2, . . ..m. (6)

Y = XXT i.e. (3) holds.

The original problem is equivalent to the following:

min tr(KOZ) (7)

subject to:

{

where

(
Ka = $,

tr(KiZ) = cit i = 1,2, . . ..m.
ZT = Z, Z ~ O, rank(Z) = q, (8)
diag(O, lq)Zdiag(O, IQ) = diag(O, lg)

~BT2%
)o’ i=(), l,. ...m. (9)

To simplify the formulation of (8), note that the last
equality constraint can be converted into a group of
equality constraints on the trace of some linear matrix
function. More specifically, it is equivalent to the fol-
lowing ~ equality constraints:

tr(e~ej Z) = 1, ~= P+l, p+2,..., p+q. (lo)

tr([eti + eV]T[eU+ eV]Z) = 2,

p+l<u, v<p+q, u#v (11)

where ej is the the j-th elementary column vector
whose j-th component is 1 and other components are
zero. Let Ci =lform+l<i<rn+q, ~= 2

form +q+l<i<L, where L:=m + ~ and

let the K1 be the corresponding coefficient matrices in
the equalities (10) and (11). The optimization problem
defined by (7) (8) now is converted into the following
form:

min tr(KoZ) (12)

{

tr(KiZ)=ci, 2=1,2, . . ..L
subject to: ZT=Z, z~o. (13)

and: rank(Z) = q. (14)

This problem is easy to solve if the rank condition
is removed. In fact, the optimal problem defined by
(12) and (13) is a standard semi-definite programming
problem. As an important class of convex problem, it
has been extensively studied recently and is known to
be solved by interior-point methods in polynomial time
with respect to the size of the problem. For details, see
[1], It is also referred to as a linear matrix inequality
(LMI).

The following results concern properties of the cor-
responding solution.

Theorem 1 Suppose X* is the optimal solution to the
problem (12) (13).

(1). If X* is of full rank, then, K. can be repre-
sented as a linear combination of K1, i=l,2, . . ..L.
i.e., there em”st real numbers ki, i = 1,2,. ... L such
thatK. = ~~=1 kzK1, In this case, the cost (12) is

invariant for all admissible solutions.
(2). If X* is not of fdl rank, let Nj, j = 1,..., r

for integer r = p + q - rank(X*) be independent null

vectors of it. Then, K. is a linear combination of
Ki, i=l,2,..., Land NiN~, i=l,...,ln th isis
case, all positive semi-definite matrices Z that satisfy
the following conditions

tr(KiZ) = C2, i=l,2, . . ..L

tr(NiN~Z) = O, i = 1,..., r.

are the optimal solutions and have the same cost.
(3). If the optimal solution for the problem (12)

(13) is not unique, there are a group of common zero
eigenvectors N;, i = 1,2, . . . ,s for some positive in-
teger s such that (a) K~, i = 1,2,. ... m and N~, i =
1,2 ,.. .,s are independent and (b) K. is a linear com-
bination of K~, i=l,27. . .,mand N$*7i=l,2, . . . ,s.

Proof (l). Since X* is of full rank, there exists
a neighborhood of it where all symmetric matrices are
positive definite. Furthermore, there exists a positive
real number 6 >0, such that, for all symmetric matrix
H satisfyhg

tr(KiH’) =0, i=l,2,.. .,L,

(X* + If) is an admissible solution for the constraints
(13) and tr(KO(X* + If)) ~ tr(KoX*). This leads to
tr(Kolf) = O. Therefore, K. is a linear combination of
K~, i=l,2 ,. ... L. Obviously, the cost of any admissi-
ble point is also the corresponding linear combination
of ci, and hence a constant.

(2). Let NL be defined as:

NL = {y ~ ~(P+4x(P+d ,

YT=Y, YNi==O, il l,..., }.}.

Then, it is straight forward to show that there is a
positive real number $>0 such that, for all H E N1,
if II H [1~< $, then, X* + H is positive semi-definite.
Following the argument for (1) we obtain the validity
of (2).

(3). First, we claim that for two optimal solutions
Xl and X2, ~(Xl + X2) is alSO an optimal solution
and, furthermore, only a common zero eigenvector of
Xl and X2 can be its zero eigenvector.
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The first part of the claim is clearly implied by the
convexity of the problem and its constraints. For the
second part, assume V is a zero eigenvector of ~(Xl +
X2). Then, VT(X1 + X2)V = O. Since both X1 and X2
are positive semi-definite, VTX1 V = O and VTX2 V =
O. Therefore, Visa common zero eigenvector of Xl and
X2.

Hence, if the property of (3) does not hold, there
exists a group of optimal solutions Zi, i = 1,2, ..., h
for some positive integer h such that their common
eigenvectors, denoted as Uj, j = 1, . . . . g, together with
K1, i = 1,2 ,. ... m can not be organized as a linear
representation for K.. Similarly, we can show that
*(21 +22+... + Z~) is an optimal solution and
7Jj, j = 1,.. ., g are a group of its zero eigenvectors.
This is a contradiction to the results in (2). Hence the
proof is complete. •1

It is possible that the optimal solution to the convex
programming problem defined by (12) and (13) haa p
zero eigenvectors. If it is the case, based on Theorem
1, the optimal solution of the convex problem and that
of the optimization problem defined by (12), (13) and
(14) coincide, However, numerical results conducted by
the authors imply that it is not always the case. In the
next two sections, an algorithm will be developed to
search for a solution to the problem subject to a rank
constraint.

3 RANK PRESERVING

RITHM

FLOW ALGO-

Let the set P(q) denote all (y+ q)-dimensional positive
semi-definite matrices of rank g. From Proposition 1.1
in [5, page 134], we know that P(q) is a connected
smooth manifold and its tangent space is calculated as:

TzP(q) = {AZ+ ZAT I A c !l#p+qjxtp+q)}.

First of all, let us show that the cost function (12)
has compact sublevel sets. Since KO is in the form

(

of Qo ~B;
)lBO O ‘

one can always choose a positive

defini?e matrix C of an appropriate dimension such that

(
x := IQ;+~T) is positive definite. Therefore,

~o
tr(KoZ) = tr(l?Z) – tr(C), bearing in mind that Z

‘Shthe form of ( :T : )Hence7thefwtt hat
tr(KoZ) is bounded implies that Z is bounded.

Based on the compactness of sublevel sets of the cost
function Jo defined by (12), the following two proper-
ties concerning the optimal point set hold:

●

●

The set of all optimal point contains at most fi-
nite number of connected closed branches. These
branches are isolated.

Any algorithm, as long as it guarantees the descent
of the cost function Jo, will converge to one of
those connected branches.

Now we are going to compute the gradient of the
cost function. At any point Z E P(g), decompose
$@+9)X(p+g) ~ S @ S’l such that S is the kernel of

the linear map:

‘7r:!W+Q)x(~+q)!+ !i#p+g)x(P+q),
T(A) = AZ + ZAT. (15)

Denote Pr as the corresponding projection such that
Pr(S) = 0, Define a Riemannian metric as:

<< AI, Az >:= 2tr{[Pr(Al)]TP~ (A2)}. (16)

Since

DJO [2 (A) = tr{Ko(AZ + ZAT)} = 2tr(ZKoA),

the gradient of Jo associated with the Riemannian met-
ric defined by (16) is calculated as:

gradJo = Koz2 + z2Ko. (17)

The projected gradient onto the constrained surface
by (13) can be calculated as:

GradJO = (Ko – ~ kiKi)Z2 +
i=l

L

22(K0 – ~ kiKi), (18)

where ki satisfy:

f kitr{[Pr(KiZ)]TP~(KjZ)} =
i=1

tr{[Pr(KoZ)]TPr( KjZ)}, j = 1,2,... ,L.

The associated negative gradient flow is defined as:

2 = –GradJo. (19)

Along any trajectory of this flow, the cost function Jo
always decreases until arriving an equilibrium point.

Copyright 1997 IEEE 69



4 NUMERICAL SIMULATION

In this section, we conduct a numerical experiment us-
ing the gradients developed in Sections 3. The param-
eters for the problem defined by (1) and (2) are chosen
by random number generator mndn in Matlab as:

(
0.3180 1.6065 –0.9235

QO=
)

–0.5112 0.8476 –0.0705 ,
–0.0020 0.2681 0.1479

(

1.5578 1.1226 0.4142
Q1 = –2.4443 0.5817

)
–0.9778 ,

–1.0982 –0.2714 –1.0215

(
–0.5077 –0.7262 –0.2091

Q2 = 0.8853

)

–0.4450 0.5621 ,
–0.2481 –0.6129 –1.0639

‘O=(%?);‘l=(%!’)“=o;

()
0.3516

B2 = 1.1330 , C’2=0,
0.1500

for X E 3?3,m = 2. The parameter matrices
Ko, KI, K2 is calculated based on these parameters.

For the Rank Preserving Flow, we compute the Pro-
jection operator first.
vec(rA) = Avec(A) := (ZT @ 1 + (1@ Z)P(4, 4))vec(A),
where vet(A) is the column vector where the column
vectors of A are stacked in order, @ is the matrix Kr&
necker product, and P(4, 4) is the fourth-order permu-
tation matrices defined as:

and .?3i,jis the matrix that the (i, j)-th component is 1
and the component elsewhere is zero. Therefore,

vec(Pr(S) ) = A+ Avec(S),

where d+ is the pseudo-inverse of the matrix A.
Then, use 0DE23 in Matlab to search for an optimal

solution. The initial condition is chosen as

/oooo\
Zo= [)0000

0000”
0001

In Figure 1, we can see that, eventhough the
cost function is not convex, the algorithm still con-
verge quickly. The solution obtained is X =
(0.0286, -0.0305, -0.2124) T. The corresponding cost is
Jo = –0.0888.

Another possible approach is to penalize the rank of
the symmetric matrix Z in the semidefinite program-
ming problem by some means so as to obtain the min-
imal rank one. This approach may result in a convex
problem. Further detail is to be investigated.
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Figure 1. The convergence of all components of Z
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