
A Rapid Geometry Engine for Preliminary Aircraft Design

David L. Rodriguez1

* and Peter Sturdza2

†

Desktop Aeronautics, Inc., Palo Alto, CA, 94301

A rapid geometry engine (RAGE) has been developed to allow for preliminary design
analysis without labor-intensive CAD support. The geometry tool builds complex aircraft
configurations using a component-based approach. Basic algorithms for creating the pri-
mary components are presented and discussed. Examples of many widely varying geometry
models are shown. A select geometry model is analyzed with several aerodynamic analysis
methods ranging in fidelity to further demonstrate the versatility of the geometry tool. Ex-
ample uses of the tool in optimization problems are also presented. Future plans for the ge-
ometry engine are also discussed.

I. Background

Preliminary aircraft design methods have advanced tremendously in the past few decades due to rapidly devel-
oping computer technology and overall algorithmic improvements. Analysis methods that were once considered
only feasible for advanced and detailed design are now available and even practical at the preliminary design stage.
Rapid analysis methods also allow for simple and even multidisciplinary optimization methods to be utilized in pre-
liminary design. To fully exploit these advanced analysis and optimization methods, the geometric model of the air-
craft must be easily and rapidly generated so as not to inhibit the preliminary design process.

Current geometry generation methods usually involve computer-aided design (CAD) software, although there
are some examples of parametric geometry tools such as Boeing’s proprietary tool, GGG1,2 (General Geometry Gen-
erator), NASA’s RAM3,4 (Rapid Aircraft Modeler) tool, and Avid’s PAGE5 (Parametric Aircraft Geometry Engine)
application. Unfortunately, CAD-based modeling can be detrimental to efficiency as geometry must usually be gen-
erated manually and then converted to something usable by an analysis method. Generating the initial geometry
model in CAD can be tedious and time-consuming. Converting the CAD model to something useful to a design
analysis method can also be laborious and often problematic. The design process efficiency can be hindered signifi-
cantly if multiple conversions are necessary for different analysis methods. Another shortcoming of CAD-based
geometry models is that they are usually built from splined surfaces as opposed to aircraft-centric design parameters.
The parameters that define the splined surfaces are rarely directly related to the parameters that actually define the
aircraft geometry (such as the wing sweep or thickness). Ideally, an aircraft geometry model would be directly
parameterized to allow for quick trade studies and even design optimization. For all these reasons and perhaps more,
CAD-based geometry model generation is far from ideal for preliminary design methods.

Another geometry generation technique commonly used in trade studies or optimization is the perturbation
method. The method begins with an analysis model created from a CAD design or some other source. Then, to vary
the geometry, this initial model is physically perturbed. For example, beginning with a panel code model of a wing,
the local camber of an airfoil section can be altered by making the corresponding local perturbations to the original
wing surface. Similarly, geometric changes can be made to a Navier-Stokes computational grid by perturbing the
surface and local flowfield grid. Often these perturbations are based on smooth shape functions to keep the modified
geometry smooth. This method can be very effective and even efficient for small local geometric changes. However,
small perturbations are not enough to address gross alterations (such as moving a wing-mounted pylon outboard or
changing a wing’s vertical location on a fuselage), which are often necessary in conceptual design. In fact, in some
cases the surface grid or panel topology may have to be altered making the perturbation technique very difficult to
apply and indeed impractical. Not to mention that after the computational grid or mesh is modified, the changes
have to then be communicated back into the CAD system, involving more tedium and approximation of the geome-
try.

Perhaps a better method for creating geometry models is to use the actual parameters that define the aircraft
design in the first place. Parametric geometry generation is the process of creating an aircraft model entirely from
the set of defining parameters. For example, a simple straight tapered wing geometry can be generated from a very

1
American Institute of Aeronautics and Astronautics

1

* Engineer/Scientist, Senior AIAA Member.

2

† Engineer/Scientist, not an AIAA member.

44th AIAA Aerospace Sciences Meeting and Exhibit
9 - 12 January 2006, Reno, Nevada

AIAA 2006-929

Copyright © 2006 by David L. Rodriguez. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.

simple set of parameters: the root and tip chords, the wing sweep and span, and an airfoil definition. This parameter
set is near the bare minimum required and of course more parameters can always be included; the twist distribution
can be specified, for example. Other possible defining parameters include the airfoil thickness, airfoil camber, and
wing dihedral. Internal airfoil section definitions could be incorporated adding a whole new set of parameters, in-
cluding the way the wing geometry is lofted between sections. The key to this geometry generation process is that
the geometry model is mathematically built using the design parameters directly as opposed to creating splined sur-
faces as done with CAD-based software. While CAD models can be as general as necessary for detailed design, pre-
liminary design methods normally do not require fine detail in the geometry definition. On the other hand, by in-
creasing the number of parameters that describe a geometry model, the model can become quite detailed and even
general enough for detailed analysis, as will be shown in examples to follow.

There are many applications for a rapid geometry modeler. As already pointed out, preliminary aircraft design is
one of the more obvious examples. If a sufficient parameter set is chosen, an entire aircraft configuration can be
modeled and analyzed based on the parameter set alone. During the design process, trade studies on specific indi-
vidual parameters or even functional relations involving a subset of parameters can be performed very easily. Taking
this concept a step forward, the parameters can be used as design variables in an optimization framework. Simple
aerodynamic shape optimization and even multidisciplinary optimization become practical with a rapid parametric
geometry generator. Another less obvious example of application is the quick generation of marketing graphics.

This paper presents a new rapid geometry engine which employs parametric geometry generation. The basic
architecture and algorithms of the RAGE (Rapid Aerospace Geometry Engine) tool are first presented. The capabili-
ties of the tool are then demonstrated by presenting examples of various aircraft geometries generated with RAGE.
The application of the tool is also demonstrated in a sweep of aerodynamic analyses of varying fidelity on a selected
aircraft geometry. Results from previously published optimization problems that utilized RAGE are briefly cited for
completeness. Finally, future development plans for the RAGE tool will be presented and discussed.

II. Methodology

The geometry tool is composed in the Java programming language primarily to help ensure platform-
independency. The object-oriented capabilities of Java are fully exploited including aggressive use of abstract and
interface classes. This allows developers and even users to quickly add new capabilities and extensions to the tool.
In effect, users can customize the rapid geometry engine for specific needs. This is possible because of the
component-based approach which is presented in the the following section. The basic underlying algorithms of the
primary components available in the RAGE tool are first detailed. The following section then discusses the currently
available model output formats and some of the analysis tools that can directly use these models.

A. Primary Components

RAGE uses a component-based approach to generate models; a full aircraft configuration is built from a set of
simpler components. Currently, the tool can generate basic aircraft components including fuselages, wings, and na-
celles. Many other aircraft components can be generated as special versions of these primaries. For example, tails
and pylons can be generated as special wing components. External fuel tanks and inlet spikes can be created as spe-
cial fuselage components. Most geometry components are built from sub-components; for example, wings are lofted
from a stack of airfoils. In all cases, the sub-components can also be customized providing even more flexibility. In
general, most parts of an aircraft can be built as either an axially splined body or as a lofted stack of airfoils. The
following sub-sections describe the underlying methodology for building these primitive aircraft components.

1. Fuselages (Axially-Splined Bodies)

The axially-splined body is used to create components such as fuselages, rocket bodies, external fuel tanks,
canopies, and many other types of components. As will be shown in a later section, the concept of the axially splined
body can also be used to generate certain nacelle shapes. The body is built mathematically by creating a stack of
cross-sections and then lofting in between these sections to create a smooth shape. The cross section is the primary
building block of this type of component.

Cross sections available in the RAGE code vary from simple to complex to general as can be seen in Fig. 1.
Perhaps the simplest section is the ellipse where only the width and height become parameters. Another section is
the ovate ellipse which introduces a parameter to control “ovateness.” The super-ellipse introduces a parameter (the
exponent) that makes the standard ellipse either more square (as shown in Fig. 1) or flatter. The offset super-ellipse
includes a parameter that can shift the maximum width of the ellipse vertically. It also allows the upper and lower
super-ellipse exponents to be different. Figure 1 shows an example of this type of section which has a flatter ellipse
on top, a more square ellipse below, and a downward-shifted maximum width axis. All cross sections can also be
split at any location vertically to allow for different widths above and below a wing intersection for example. A gen-

2
American Institute of Aeronautics and Astronautics

eral cross section shape is also imple-
mented where the user specifies points
that are then splined by RAGE (see
example in Fig. 1).

The RAGE code creates a fuselage
component by taking a stack of cross
sections and then axially splining them
parametrically. A lofting algorithm is
implemented that allows for different
kinds of cross sections to be used in the
same component. The geometric cen-
ters of the cross sections are also
splined allowing for fuselage camber in
all directions normal to the axis. The
algorithm ensures smoothness for all
reasonable and even some unreason-
able stacks of cross sections. Figure 2
shows the resulting smooth geometry
from a significantly varying stack of
user-defined cross sections.

2. Wings (Lofted Stack of Airfoils)

Wings, pylons, diverters, tails, and other wing-like objects can almost all be generated by this type of compo-
nent. Wing components are similar to fuselages in how they are built; stacks of airfoil sections are lofted spanwise to
create the wing surface. Currently, the lofting algorithm for the wing component is different than that of the fuse-
lage; airfoils are built mathematically and then points on the airfoils are splined spanwise to build the surface. Sev-
eral lofting methods are available including simple linear lofting and spline lofting for wings with spanwise curva-
ture. Symmetric, asymmetric, and half wings can all be generated. Also, several types of wing cap shapes are avail-
able to close off the ends of the wing. Blunt trailing edges are also supported.

Figure 3 shows a wing geometry created using RAGE from a set of initial user-defined airfoils. The inboard
section uses a blending of splined and linear spanwise lofting to form a smooth, curved leading edge and a
piecewise-linear trailing edge. Other combinations of splined and linear loftings are available. The outboard panel of
the wing also has some dihedral which accounts for what appears to be a spanwise discontinuity where the outboard
section begins. The inset in Fig. 3 also shows the elliptic wing cap generated by RAGE. The grid is what RAGE

3
American Institute of Aeronautics and Astronautics

Ellipse Ovate Ellipse Super-Ellipse

Offset Super-Ellipse Split Ellipse General

Figure 1. Example cross sections generated by RAGE.

Figure 2. Example smooth fuselage surface generated from a stack of rather different cross section shapes. Note the

axially smooth discontinuity boundary created by the split sections where the wing (not shown) intersects.

actually generates in this case, so the cap is actually
faceted; more points could be added to the mathemati-
cally smooth cap if necessary.

3. Nacelles

In the current version of RAGE, nacelles are built
as two separate axially-splined bodies and then at-
tached at the nacelle leading edge. Figure 5 depicts this
method with an example supersonic nacelle. The blue
cross sections along with the black leading and trailing
edges are used to define the interior duct of the nacelle.
Likewise, the red cross sections and the black edges
define the outer geometry. This method for creating
nacelles is ideal for supersonic nacelles since it pre-
serves the sharp leading edge that is normally neces-
sary. Any type of cross section which is available for
axially-spline bodies is also available for nacelles. The
defining sections can also be yawed or canted about
their centers allowing for beveled leading and trailing
edges. This capability also allows for two-dimensional
inlet design.

Another method for creating nacelles which is
being added to the RAGE code treats the nacelle as a
circular wing. Airfoil sections are defined at several
angles around the axis and then lofted circumferen-
tially to create the full nacelle. This method will be
more appropriate for subsonic nacelles because it eas-
ily generates blunt leading edges.

B. Output Analysis Models

In its current infant state, RAGE can output two geometry model formats for aerodynamic analysis. These out-
put formats are geared toward advanced CFD methods. While the RAGE internal geometry model definition is truly
a mathematical surface definition, this representation is not terribly useful in discrete CFD analyses. Therefore, the
geometry engine is capable of outputting a geometry as an array of points that can be directly input to a CFD analy-
sis method.

One output format is the almost universally used PLOT3D6 format based on the NASA visualization tool cre-
ated in the infancy of CFD. The RAGE tool creates a structured grid on each geometry component and then writes

4
American Institute of Aeronautics and Astronautics

Figure 5. Example nacelle generated from a stack of internal

and external sections.

Figure 3. Example of wing lofted from initial user-defined airfoil sections. Note the leading edge is a smooth curve while

the trailing edge is a series of line segments. Also note the inset showing the elliptic wing cap.

the geometry model as a multi-block surface grid for
use in CFD analysis. The spacing of this structured
mesh is user-controlled; points can be clustered at the
leading edge of a wing for example. Spanwise cluster-
ing is also possible. Figure 6 shows a typical PLOT3D
output geometry. Note the grid on this model was in-
tentionally kept very sparse for clarity. However, the
fineness and even local distribution of the grid points
can be easily controlled with RAGE for accurate CFD
analysis. Also note the clustering of points at the wing
leading edge demonstrating the capability to control
grid spacing.

Referring back to Fig. 6, note that the component
grids are independent of one another; the fuselage and
wing have not even been intersected. Different CFD
methods have different requirements for the surface
grids. The CART3D7 Euler analysis tool could use this
geometry model directly as the triangulation and inter-
section of components are performed internally in the
code. A structured overset grid could also be created
directly from this output model with the exception of
collar grids which are usually necessary where compo-
nents intersect. However, some overset grid generation
methods (such as the Chimera Grid Tool8,9 set devel-
oped at NASA Ames) can generate the collar grids
semi-automatically from an original non-intersected
model such as that in Fig. 6. For this reason, the
PLOT3D output model is very useful for running over-
set Euler and Navier-Stokes methods such as the
OVERFLOW10 code developed primarily at NASA.

Since some aerodynamic analysis codes require
intersected geometries, RAGE has the capability to
intersect components as well. Panel methods are an
example of analyses that require intersected, point-
match surface grids. A50211, also known as PanAir, is
one of the few commercially available panel methods
that can solve both subsonic and supersonic flows.
RAGE can produce intersected geometries for bodies with multiple wings and tails. The various surfaces can be split
into multiple pieces (or networks) as required for the panel code. For instance, the wing is typically split into an
upper and lower surface, and a separate wing tip cap. Wakes can also be automatically generated behind wing sur-
faces and stitched along the fuselage. Blunt-body base networks and associated wakes are also automatically added
to the geometry. Control of wake placement is minimal at this time; however that is one of the black arts of panel
codes, so it is a planned future enhancement to the code.

An example of a wing-body A502 geometry is shown in Figure 7, with each network depicted in a different
color. RAGE allows significant control of panel spacings in both directions. For instance, on the wing, the usual
clustering of panels near the leading and trailing edges is easy to manipulate. The spanwise spacing of panels is also
user-adjustable, to allow a tighter spacing near the wing tip or near a break in the wing planform, for instance. If
there are breaks in the planform, the wing can also be split into multiple networks in the spanwise direction, if nec-
essary.

III. Applications

Even though RAGE is in its infancy, the geometry engine is already capable of generating a wide variety of
aircraft geometries from the very simple to the very complex. Figures 8a-f give six example geometry models that
were all generated with the RAGE tool. Note the fine detail in some of the geometry models including winglets,
pylons, and even rocket nozzles. The ability to model fine details allows an engineer (or perhaps optimizer) to per-
form detailed design of aircraft components. The designer can even analyze the geometry with several methods of
varying fidelity. The following sections demonstrate this feature.

5
American Institute of Aeronautics and Astronautics

Figure 6. Example PLOT3D output model from RAGE.

Figure 7. Example A502 output model from RAGE.

6
American Institute of Aeronautics and Astronautics

(a) sailplane (b) subsonic transport

(c) blended-wing-body

(e) oblique flying wing (f) rocket

(d) supersonic business jet

Figure 8. Example geometry models created by the RAGE tool.

A. Analysis of an Example Geometry

To demonstrate the current output capability of the RAGE tool, one sample geometry model was selected for
analysis with several methods of widely varying fidelity. This sample geometry, a swept wing supersonic business
jet design, is shown in Fig. 8d and was provided by the work completed in Ref. 12. The full geometry consists of a
fuselage, wing, T-tail empennage, nacelles with center-spike inlets, and pylons. Four analysis methods were selected
to analyze the geometry model generated by RAGE. As will be discussed in the section on future work, a good deal
more analysis and other output models are planned for RAGE.

1. Linear Aerodynamic Analysis

The first analysis of this geometry was performed
with LinAir13, a linear vortex-lattice method. Note that
RAGE did not output this model directly, but en-
hancements are currently being made to allow it to do
so. However, to demonstrate the planned wide range of
output models, the LinAir model is included here for
completeness.

Since LinAir, like all vortex-lattice methods, only
models lifting surfaces, it does not directly model wing
or fuselage thickness. As shown in Fig. 9, wings and
tails are flattened and fuselages and nacelles are mod-
eled with independent vertical and horizontal elements.
Also, wing camber, twist and control surface deflec-
tions are input as boundary conditions rather than ex-
plicitly appearing in the geometry. Most vortex-lattice
models require similar simplifications of the geometry.
Additionally, there are restrictions on the allowable
paneling of the surfaces such as the spanwise spacing
of panels on a canard and wing to avoid undesirable
interactions between the canard’s trailing wake and the
control points on the wing.

Due to these large differences in geometry defini-
tions between vortex-lattice codes and higher-fidelity
CFD analyses, it is a laborious process to generate
LinAir model from a complete 3D geometry, or vice-
versa. But with RAGE’s parametric description of the
geometry the process could be greatly simplified.

2. Nonlinear Panel Method

A panel method (A502) was used for the second
analysis method of this demonstration. Unfortunately,
the panel method is not robust with nacelles in super-
sonic flow, so they are not included in this analysis.
Wakes were generated automatically by RAGE for the
wing and horizontal tail. Fuselage and vertical tail
wakes can also be generated if necessary. Wing-
fuselage intersections were also automatically per-
formed by RAGE, forcing the wing and fuselage net-
works to match point for point, even in the wing wake. Additionally, freestream flow properties and reference values
can be input into RAGE, permitting a complete A502 deck to be generated. The path from a RAGE-defined geome-
try to an A502 solution is practically automatic.

The nacelles for this analysis are built as axisymmetric bodies to at least model their effect on the rest of the
configuration. Fig. 10 shows an A502 solution on the RAGE generated model. Note that the wakes actually termi-
nate very far downstream but are not shown entirely for clarity. The contours shown are of surface pressure. As the
A502 code improves, nacelles and pylons can be modeled with RAGE as well.

3. Cartesian Euler Method

Increasing in fidelity, the CART3D Euler package was used to analyze the full geometry. Because the CART3D
package provides almost automatic grid generation of very complex geometry, the RAGE code is ideal for this type

7
American Institute of Aeronautics and Astronautics

Figure 9. LinAir model of example geometry.

Figure 10. RAGE A502 model and solution on example

geometry. Contours are local pressures.

of analysis. The computational grid used for this analysis is shown in Fig. 11. The pressure contours on the aircraft
from the CART3D analysis are depicted in Fig. 12.

The flexibility and robustness of CART3D has steered the development of RAGE to be able to model very fine
details of an aircraft. This geometry is actually quite simple for CART3D to analyze and was completed in less than
an hour from start to finish. The robustness of the combination of RAGE and CART3D makes it a very attractive
and powerful preliminary design tool, especially when optimization is involved as will be demonstrated in a later
section.

4. Overset Navier-Stokes Analysis

The final demonstration was initiated but not completed to conserve time and computer power. The RAGE code
was used to output surface grids for use in developing an overset Navier-Stokes grid to run in OVERFLOW. The
resulting grid set is shown in Fig. 13. Note that the Chimera Grid Tool package was used to generate the volume
grids and all the collar grids at component intersections. However, the initial surface grids were output directly from
RAGE, speeding up the process tremendously. While the grid has not been debugged or even tested, it was com-
pletely developed in less than a day using the combination of RAGE and the Chimera tool set. An attractive feature
of this method is that surface grids can be quickly altered and regenerated with RAGE. With new surface grids,
volume grids can be regenerated in very little time using input files and scripts for the Chimera tool set. This speeds
the grid linking process up tremendously, especially since surface spacing can be controlled directly with RAGE.

8
American Institute of Aeronautics and Astronautics

Figure 12. CART3D Euler solution on example geometry.

Contours are of surface pressure.

Figure 11. Cartesian mesh generated on RAGE geometry

model for CART3D.

Figure 13. Overset grid system generated on example geometry. Major surface grids were directly output from RAGE

while collar grids were generated from these surfaces with the NASA Chimera Grid Tools.

Using RAGE to regenerate surface grids also reduces errors that are introduced when surface grids are re-splined by
grid generation tools; the surface grid always remains true to the mathematically defined geometry.

As previously stated, the solution for this Navier-Stokes grid was not completed. OVERFLOW solutions can
often be time-consuming and labor-intensive to ensure a quality solution. Several other proprietary geometries have
been analyzed successfully with RAGE and OVERFLOW. Work continues on RAGE to improve the quality of these
output surface grids. Future versions may even include the ability to generate collar grids speeding up the process
even more.

B. Optimization

Perhaps the most advantageous feature of the RAGE tool is its applicability to optimization. Because geometry
is parameterized using a fundamental approach, the tool can easily be linked with an analysis method and optimizer
of the designer’s choice to create very powerful preliminary design tool. Practical design variables are readily acces-
sible streamlining the process; even unique design variables can be selected with little effort. This applicability to
optimization is demonstrated in previously published work. Excerpts from these publications are given here for
completeness.

1. Optimization of a Supersonic Business Jet

Reference 14 details the optimization of a supersonic business jet using the CART3D Euler analysis method and
a response-surface-based optimization method. The baseline design, shown as a RAGE model in Fig. 14, was first
generated using the PASS15 preliminary design tool. A series of optimizations was applied to the geometry, including
modifications of the fuselage area distribution, the wing twist and camber distribution, the nacelle and pylon orien-
tation, and the pylon camber. The geometry was optimized for minimum drag at fixed cruise lift. As described in
Ref. 13, the response surface method worked well for a limited number of design variables and did lower the drag of
the aircraft significantly. Some final results from the optimization work are shown in Fig. 15 as drag polars of the
baseline and optimized designs. Note the marked improvement in inviscid cruise drag after the three optimizations
were completed. More details of the optimization process and results are given in Ref. 14.

2. Multidisciplinary Optimization of a Supersonic Inlet

The RAGE tool was coupled with CART3D, NEPP16 (a propulsion simulator), and a nonlinear simplex optimi-
zation method to optimize the performance of an isolated axisymmetric inlet. The inlet, which consists of a double-
cone spike inside a sharp axisymmetric nacelle, was optimized for maximum performance. Several definitions of
this performance were studied as described in Ref. 17, along with all other details of the optimization method and
results. The results given here are simply excerpts from this publication. Figure 16 shows Mach contours of the inlet
flowfield of two different optimized geometries. The results provided some interesting guidelines for designing

9
American Institute of Aeronautics and Astronautics

Figure 14. RAGE model of supersonic business jet design

used in example optimization.

L
if
t
C
o
e
ff
ic
ie
n
t

0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018
0

0.05

0.1

0.15

0.2

0.25

Baseline

Optimized Fuselage

Optimized Wing

Optimized Nacelle

cruise lift

Drag CoefficientInviscid

Figure 15. Optimization results on supersonic business jet.

spike inlets that operate at low supersonic Mach numbers. This example further demonstrates the versatility of a
rapid geometry engine.

3. Multidisciplinary Optimization of an Oblique Wing Business Jet

Reference 12 discusses the application of the RAGE tool in the design of an oblique wing supersonic business
jet. PASS and a CART3D-based design process were used to optimize the oblique wing design along with a more
conventional design for comparison. During the process, a large number of gross variations on the geometry were
necessary necessitating the use of RAGE. An optimized result from Ref. 12 is shown in Fig. 17.

10
American Institute of Aeronautics and Astronautics

Figure 17. Optimized oblique wing business jet analyzed with RAGE and CART3D. Contours are of surface pressure.

Figure 16. Mach contours on two inlets optimized using the RAGE tool. The left inlet was optimized for minimum fuel

burn while the right was optimized for maximum pressure recovery.

IV. Future Work

RAGE is still a very preliminary code. While the tool is easy to use by its developers, several improvements
must be made to make the tool truly versatile and efficient for the average user. This section describes some of the
improvements and enhancements that are planned for this tool.

The geometry modeling algorithms will continue to be improved. More options for building geometry compo-
nents will be added to better model complex shapes. These improvements will be mandatory as new problems and
geometries will continue to challenge the limits of the tool. For example, the ability to build fuselages with multiple
loftings must be added as manufacturing requirements often affect the actual shape. Occasionally one section of a
fuselage must be a straight cylinder while the rest is a smooth, curved surface. This is just one example of an algo-
rithmic improvement that will be added to the tool. The ability to model deflected flaps would be another powerful
feature. As users continue to find cases that exceed the limits of RAGE, further enhancements will be incorporated.

The set of available output model types also must be expanded. Ideally, the RAGE tool would be able to output
geometry models for most analysis methods available to the preliminary designer. More CFD output models will be
added to the code including improved overset surface grids and triangulated surfaces for unstructured CFD methods.
An active LinAir model output capability would also prove useful in many instances. Naturally a complex geometry
would have to be simplified intelligently to be able to create the LinAir model. Another more ambitious enhance-
ment would be to allow RAGE to output a “CAD-friendly” representation of the geometry. Once a designer feels his
aircraft geometry is ready for more detailed design, a geometry file could be quickly created and handed to the CAD
expert for further design work.

Of course, RAGE in itself does not have to be limited to aerodynamic analyses. Expanding the method to ad-
dress other disciplines in aircraft design would prove to be extremely useful. Outputting structural analysis models
from a RAGE-defined geometry would be a powerful feature. This capability would allow the designer to perform
aeroelastic design work and even optimization with a truly common geometry. Ultimately, RAGE could be ex-
panded to produce models for heat-transfer and perhaps even electromagnetic analysis. The ability to perform differ-
ent kinds of analysis on one geometry definition is a very intriguing feature.

In terms of user-friendliness, the most useful enhancement would be the addition of a graphic-user-interface
(GUI). Since RAGE is written in the Java language, platform-independent toolboxes already exist for creating GUI
elements. This feature should allow for a relatively rapid integration of a GUI with RAGE.

To fully exploit the RAGE tool, the aircraft designer would need to apply optimization methods. The addition of
an integrated optimization tool set that would work seamlessly with RAGE would indeed prove to be a powerful
tool. Ideally, the designer would have a plethora of optimization schemes at his disposal including simplex methods,
gradient-based schemes, and genetic algorithms. The user would be able to quickly set up an optimization problem
by selecting design variables, objective functions, and constraints with minimal effort. Trade studies and sensitivity
analyses would also be possible with this type of approach.

To simplify integrating RAGE with optimizers or other user-supplied codes, an extensible data input interface is
planned. Currently RAGE reads its inputs from a human-readable text input file. Some prefer more computer-
readable formats such as XML or a variety of databases such as the CAFFE18 framework for multidisciplinary de-
sign. Multiple data input/output interfaces including user-customizable formats will be straightforward to add to
RAGE due to Java’s object-oriented programming capabilities. Each routine within RAGE that expects input could
query a database or possibly trigger a file read and be oblivious to the details of the input format. For each file for-
mat or database, customizable reader objects can be instantiated at run-time. This approach would permit RAGE to
act as a drop-in replacement for a legacy geometry-generation code in an existing optimization or CFD package It
also allows for the same RAGE executable to be integrated with high-fidelity analyses and optimization frameworks
in order to guarantee consistent geometry definitions.

V. Conclusions

A powerful geometry engine has been developed primarily for aerodynamic analysis in preliminary aircraft
design. The RAGE tool allows the designer to bypass any labor-intensive CAD work and directly analyze the ge-
ometry. Currently only a few analysis models are available, but future plans will expand the output capabilities of
the tool. Though improvements and enhancements continue to be implemented to the internal geometry algorithms,
RAGE can already generate complex geometries of gliders, conventional airplanes, revolutionary aircraft designs,
and even rockets. Results from a sweep of analyses of varying fidelity on one geometry model were presented dem-
onstrating its current versatility in terms of analysis. RAGE has also been used successfully in several optimization
problems. The rapid geometry engine has proven to be a vital tool for preliminary and even detailed design work by
allowing the designer to manipulate and analyze the geometry directly and efficiently. Enhancing the tool to expand
capability and improve user-friendliness along with the addition of an optimization tool set will truly make RAGE a
powerful tool for preliminary aircraft design and analysis.

11
American Institute of Aeronautics and Astronautics

Acknowledgments

The authors would like to acknowledge several people who were crucial in the development of the RAGE tool.
Professor Ilan Kroo and Desktop Aeronautics, Inc. provided guidance, impetus, and most importantly, funding for
this project. Mathias Wintzer of Desktop Aeronautics also helped debug by providing many test cases for RAGE. He
is also responsible for the birth of an online documentation detailing the ever-expanding features of RAGE. The
Aerion Corporation in Reno, Nevada also continually challenged the limits of the RAGE tool compelling the authors
to continue to make significant improvements to the tool.

References

1. Cramer, E. J. and Gablonsky, J. M., “Effective Parallel Optimization of Complex Computer Simulations,”
AIAA 2004-4461, August 2004.

2. Bowcutt, K., “ A Perspective on the Future of Aerospace Vehicle Design,” AIAA 2003-6957, December 2003.

3. McCormick, D. J., “An Analysis of Using CFD in Conceptual Aircraft Design,” M.S. Thesis, Dept. of Mechani-
cal Engineering, Virginia Polytechnic Institute, Blacksburg, VA, 2002.

4. Gloudemans, J. R., Davis, Paul C., and Gelhausen, Paul A., AIAA-1996-0052, January, 1996.

5. “AVID LLC - AVID PAGE,” URL: http://www.avidllc.biz/design_tools/AVID_PAGE [cited 5 January 2006].

6. Wakata, P. P., Buning, P. G., Pierce, L., and Elson, P. A., “PLOT3D User’s Manual,” NASA TM 101067, 1990.

7. Nemec, M., Aftosmis, M.J., and Pulliam, T.H., 42nd AIAA Aerospace Sciences Meeting and Exhibit, Jan. 2004.

8. Chan, W. M., “The OVERGRID Interface for Computational Simulations on Overset Grids,” AIAA-2002-3188,
June 2002.

9. Chan, W. M., Rogers, S. E., Nash, S. M., Buning, P. G., and Meakin, R. L., “User’s Manual for Chimera Grid
Tools, Version 1.6,” NASA Ames Research Center, September, 2001.

10. Buning, P. G., Jespersen, D. C., Pulliam, T. H., Klopfer, G. H., Chan, W. M., Slotnick, J. P., Krist, S. E., and
Renze, K. J., “OVERFLOW User’s Manual, Version 1.8s,” NASA Langley Research Center, November, 2000.

11. Carmichael, R. L. & Erickson, L. I., “PANAIR –A Higher Order Panel Method for Predicting Subsonic or Su-
personic Linear Potential Flows about Arbitrary Configurations”, AIAA-81-1255, June 1981.

12. Wintzer, M., Sturdza, P., and Kroo, I. M., “Conceptual Design of Conventional and Oblique Wing Configura-
tions for Small Supersonic Aircraft,” AIAA-2006-0930, Jan. 2006.

13. “LinAir 4 User’s Manual,” URL:http://desktopaero.com/manuals/LinAir_4_Manual.pdf [cited 5 January 2006].

14. Rodriguez, D. L., "Response Surface Based Optimization with a Cartesian CFD Method," AIAA-2003-0465,
January 2003.

15. Kroo, I. M., “An Interactive System for Aircraft Design and Optimization,” AIAA-92-1190, Feb. 1992.

16. Klann, J. and Snyder, C., “NEPP Programmer’s Manual,” NASA TM-106575, 1994.

17. Rodriguez, D. L., "Multidisciplinary Optimization of a Supersonic Inlet Using a Cartesian CFD Method,"
AIAA-2004-4492, August 2004.

18. Antoine, N., Kroo, I., Willcox, K., and Barter, G., “A Framework for Aircraft conceptual Design and Environ-
mental Performance Studies,” AIAA-2004-4314, August 2004.

12
American Institute of Aeronautics and Astronautics

