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Introduction: 
In MRI the problem of reconstructing non-uniformly sampled Fourier 

datz arises when an image is acquired using a non-Cartesian, or non- 
rectangular, k-space trajectory. Such trajectories may be desirable for a 
variety of reascms such as rapid acquisition times or good artifact 
properties. 

The methods for reconstructing non-uniformly sampled k-space data 
can be broadly grouped into those relying on the discrete Fourier 
transform (DFT) and various gridding algorithms. If these algorithms 
could be implemented in a computationally efficient manner, more rapid 
reconstruction would be obtained. This would be a necessary precursor to 
a truly real time combined acquisition and reconstruction scheme. Such a 
scheme would be invaluable, for example, for interventional MRI 
applications. 

Look-up tables are a commonly used tool for increasing the 
computational effXency of many algorithms, and the purpose of this work 
was to determine if they could be effectively exploited to achieve real time 
reconstruction, or to achieve real time gridding. 

Material and Methods: 
Any linear operation on MRI data can be written as 

f = CT(I). F(k,) where 
i=o 

where F(k,) are the Fourier data points, T is the linear operation to be 
performed (e.g. gridding or DFT) and f is the result. 

Thus, a gridding operation [ 11 can be performed by defining T as 

T(i,k) = (C(k)*(p?(k,).6(k-k,)))~comb(k) i = O,l;‘.,M-1 

where M  is the number of frequency samples, C(k) is a convolution kernel, 
such as the commonly used Kaiser-Bessel window, and comb is a set of 6 
functions used to represent uniform sampling. The result, f, then becomes 
the gridded k-space data; the image is reconstructed by performing the 
2D-FFT. 

Alternatively, a DFT can be performed by defining T as 

T&n) = $p-‘(k,).d- n=O,l;..,N-1 i=O,l;..,M-1 

where, N is the number of spatial samples (pixels), the F(k,) are the 
Fourier data points, and pm’ is the density compensation function. Then f 
becomes the reconstructed image. This follows directly from the DFT 
synthesis equation 

where the usual requirement for equidistant frequency samples has been 
relaxed. 

Whenever all the k, are known beforehand, as is the case in MRI, T can 
be calculated in advance and can be stored in memory as a look-up table. 
Then either the DFT reconstruction or the gridding can be performed by 
multiplying each T(i), or each entry in the table, by each F(k,), or each 
acquired data point, and accumulating the results into f, the final result. 

The principal advantage of the gridding table is that, for a small 
convolution window, the vast majority of the points in the table, T, are 
equal to zero. This allows the use of a sparse matrix representation (see 
Fig. 1) with the zeroes neither being stored nor calculated at run time. 

Both the DFT and the gridding methods were implemented and 
compared using such tables. The convolution kernel (gridding tables 
only), was 4 by 4 array of grid points, which is larger than is typically 
used elsewhere in situations where time is critical 121. Several numerical 
phantoms were reconstructed in order to simulate a variety of trajectories 
and to test the method. In-viva trials were also performed during an IMRI 
procedure on a porcine neck using a 180 view, 256 points/view (echo at 
center), radial k-space true-FISP acquisition on a Siemens 0.2T Magnetom 
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Open MRI system. The sequence had a TE of 9.4 ms, TR of 20.8 ms, 
akquisition time of 3.8 s and BWipixel of 78 Hz. 

table 

mask [O][O] mask [O][l] mask [0][2] mask [0][3] 

mask [l][O] mask [l][l] mask [1][2] mask [1][3] 

mask [2][0] mask [2][1] mask [2][2] mask [2][3] 

mask [3][0] mask [3][1] mask [3][2] mask [3][3] 

FIG. 1. Structure of the gridding table for a 4 by 4 convolution window. 
The x and y offset values accomplish the sparse matrix representation. 
The mask elements are the only non-zero elements. 

FIG. 2. Reconstructed magnitude image of pig neck (a). Gridded in 60 
ms using the table-based method described above. Filtered back-projection 
(b) of same data, included for comparison. 

Results: 
The reconstructed images for the pig experiment are shown in Fig. 2. 

The gridded and FFT reconstructed image shows reduced artifacts relative 
to the filtered back-projection reconstructed image. The reconstructed 
phantom images showed peak deviations (relative to analytical 
reconstruction) of less than 2% of the total gray-level range. 

The gridding table required 3 MB of memory. Due to memory 
constraints the DFT tables were kept small (32’ points in reconstructed 
image) and only tested with the phantoms. 

The table-based gridding took 60 ms on a 350 MHz Pentium II. For 
comparison a 512’ point FFT took 390 ms on the same system, the 
standard gridding [l] took 4.78 s, and the filtered back-projection took 1 
min. The DFT tables would take 7.5 min (extrapolated from small tables). 

Conclusions: 
A table-based gridding operation can be executed in much less time 

than the acquisition, despite the large size of the tables (relative to the size 
of the data cache), even using modest computational resources. Further, 
the method can be more computationally efficient than conventional 
gridding since many calculations need only be performed once and stored 
in a look-up table. Currently, the DFT tables arc too large to use on a PC 
(2.8 GB for the radial sequence, extrapolated from small tables). The DFT 
tables remain interesting because they directly yield the reconstructed 
image without recourse to the FFT. With sufficient computer power, this 
should allow the image to be updated after acquiring each data point. 
Even with modest computational power the limiting step is the FFT, not 
the gridding. This represents a significant step towards a truly real time, 
non-Cartesian, acquisition/reconstruction scheme by demonstrating a more 
temporally efficient method for arbitrary K-space trajectory 
reconstruction. 
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