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A Rapidly Convergent Series for Computing

xpiz) and Its Derivatives

By Peter McCullagh

Abstract. We derive a series expansion for i//(z) in which the terms of the expansion are

simple rational functions of z. From a computational viewpoint, the new series is of interest

in that it converges for all z not necessarily real valued, and is particularly rapid for values

of z near the origin. From a mathematical viewpoint the series is of interest in that, although

\fr(z) has poles at the negative integers and zero, the series is uniformly convergent in any

finite interval a < Re(z) < b.

A Series Expansion for xpiz). The derivative of the log gamma function, usually

denoted by xpiz) ( = d log r(z)/dz), is a regular function with simple poles at the

negative integers and zero. No power series can therefore have infinite radius of

convergence and this constraint limits the speed at which the coefficients in such a

power series decrease. In this paper we give a series expansion for xp(z) that has

infinite radius of convergence despite the poles. The expansion is not a power series

but converges uniformly to xp(z) in any finite interval. Convergence is particularly

rapid for small z-say \z\ < 1.0-and, in this range, ten terms of the expansion give

accuracy to at least ten decimal places. For computational purposes, the recurrence

relation xp(z + 1) = xp(z) + l/z can be used for real z to obtain a value of z near

the origin. Extremely large values of z are best dealt with by asymptotic expan-

sions.

The Taylor series expansion for xp(l + z) about z = 0 (Abramowitz and Stegun

[l,Eq. 6.3.14]) is

(1) xp(l+z) = -y + S(-l)r+,f(r+l)z',        |z|<l,
r=l

where y is Euler's constant, and f(r + 1) = ^,%.xk'r~l is Riemann's zeta function.

The coefficients of the power series (1) do not tend to zero, so that the speed of

convergence depends entirely on the magnitude of \z\. To obtain a more rapidly

convergent series we rewrite (1) as a double series and regroup to obtain

(2) *(1 + z) = -y + f (-1)'+V{c, + aj (z + r)},        \z\ < oo,
r=l

where ar = r~r and cr = ~Zk0=r+xk~r~\ It is readily shown that lhn,,^ rr+lcr =

(e - l)"1 = 0.582, so that both ar and cr diminish rapidly to zero. The series (2)

therefore converges pointwise for all finite z, and it is therefore the analytic

continuation of (1). To establish uniform convergence in any finite interval a <

Re(z) < b, let gn(z) be the sum of the first n + 1 terms in (2) counting the constant,
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-y, as the first term. Then, for sufficiently large n, (n > -a), xp(l + z) — g„(z) is

analytic in the interval a < Re(z) < b and a straightforward calculation shows that

\xpil+z)-gniz)\<2{\z\/in+l)}n + *

for n > max(-a, b). Clearly, therefore, the series (2) is uniformly convergent in any

finite interval a < Re(z) < b. Uniformly convergent series for the derivatives of

xp( 1 + z) follow from (2) by termwise differentiation.

For \z\ < j, g-i(z) is accurate to about 10 decimal places. For real values of z

outside this range, the recurrence relation can be used. If z lies outside the unit

circle, ten or more terms are required to give accuracy to ten decimal places. Table

1 gives values of the coefficients {cr}, to twenty places of decimals.

Table 1

y  = 0.57721 56649 01532 86061
c, = 0.64493 40668 48226 43647

c2 = 0.07705 69031 59594 28540

c3 = 0.00747 75546 98792 51251

c4 = 0.00058 59663 05921 36666

c5 = 0.00003 81792 46966 28649

c6 = 0.00000 21226 09760 61834

c7 = 0.00000 01027 77899 64424

c8 = 0.00000 00044 04848 35162

c9 = 0.00000 00001 69268 61255

cx0 = 0.00000 00000 05893 95031

c„ = 0.00000 00000 00187 58797

cI2 = 0.00000 00000 00005 49733

c,3 = 0.00000 00000 00000 14926

c14 = 0.00000 00000 00000 00377

c15 = 0.00000 00000 00000 00009

Values in this table are accurate to at least 19 d.p.

A referee has pointed out that other methods are available for computing xp(z).

For example, Y. L. Luke [2] gives coefficients of the Chebyshev polynomials in the

expansion of xp(x + 3), valid for 0 < x < 1. For complex z, Luke [3] has given

rational approximations for xp(z) + y.

The method used in this paper could in principle be applied to any function

analytic except at a countable number of isolated poles. For such functions, an

expansion in terms of appropriately chosen functions ought to be much more

rapidly convergent than a simple power series.
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