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A flow of a rarefied gas caused by a discontinuous wall temperature is investigated on the basis of

kinetic theory in the following situation. The gas is confined in a two-dimensional square container,

and the left and right halves of the wall of the container are kept at different uniform temperatures,

so that the temperatures of the top and bottom walls are discontinuous at their respective middle

points. External forces are assumed to be absent. The steady flow of the gas induced in the container

by the effect of the discontinuities is analyzed numerically on the basis of the Bhatnagar–Gross–

Krook model of the Boltzmann equation and the diffuse reflection boundary condition by means of

an accurate finite-difference method. The features of the flow are clarified for a wide range of the

Knudsen number. In particular, it is shown that, as the Knudsen number becomes small ~i.e., as the

system approaches the continuum limit!, the maximum flow speed tends to approach a finite value,

but the region with appreciable flow shrinks to the points of discontinuity; thus, the overall flow in

the container vanishes nonuniformly in the continuum limit. The behavior of the molecular velocity

distribution function is also investigated in detail. © 2001 American Institute of Physics.

@DOI: 10.1063/1.1389283#

I. INTRODUCTION

Let us consider an ideal gas around solid boundaries at

rest with arbitrary but steady temperature distributions. We

assume that there is no external force in the field and also

that the gas is at rest and its pressure is uniform at infinity

when an infinite domain is considered. If we investigate the

steady behavior of the gas on the basis of the ~compressible!
Navier–Stokes system ~i.e., the conservation equations of

mass, momentum, and energy with Newton’s law of stress

and Fourier’s law of heat flow and the boundary condition of

nonslip or nonjump type!, we find that v50 and p5const,

where v is the flow velocity and p is the pressure, are the

obvious solution of the continuity and momentum equations

satisfying the nonslip boundary condition for the velocity.

Then the temperature field is determined by the energy equa-

tion, which reduces to the steady heat-conduction equation

for the temperature, and the nonjump boundary condition.

This fact indicates that for any temperature distribution of

the boundaries, no flow is induced in the gas. The Navier–

Stokes system is generally accepted as the correct system to

describe the behavior of a gas in the continuum limit where

the Knudsen number vanishes. Here, the Knudsen number is

the ratio of the mean free path of the gas molecules to the

characteristic length of the system. Therefore, it is concluded

that no steady flow is induced by the temperature field in the

continuum limit. This conclusion, drawn from the Navier–

Stokes system, is correct in spite of the fact that the Navier–

Stokes system has a serious defect in describing the behavior

of a gas even in the continuum limit. We will come back to

this point at the end of this section.

In contrast, in a rarefied gas where the Knudsen number

is not vanishingly small, the situation is different. The tem-

perature field can cause a steady flow of the gas without the

help of external forces. Such flows have extensively been

investigated on the basis of kinetic theory for a wide range of

the Knudsen number.1–22 In particular, in the case of small

Knudsen numbers ~i.e., the case near the continuum limit!,

the features of the flow have been understood systematically.

To be more specific, for small Knudsen numbers, a general

theory ~asymptotic theory!23–30 that describes the steady be-

havior of the gas around arbitrarily shaped boundaries by

means of a system of fluid-dynamic-type equations and slip

boundary conditions ~and the Knudsen layer correction near

the boundary! has been established by a systematic

asymptotic analysis of the Boltzmann equation and its ki-

netic boundary condition. According to the theory, the flow

induced by the temperature field is classified into the follow-

ing three types: ~i! thermal creep flow,1–7 ~ii! thermal stress

slip flow,24,8–11 and ~iii! nonlinear thermal stress flow.12,13

The flow ~i! is induced along the boundary from the colder

part to the hotter when the temperature of the boundary is not

uniform. The flow ~ii! is induced along the boundary when

the temperature gradient normal to the boundary in the gas is

not uniform along the boundary. The flow ~iii! is induced in

the gas when the space between isothermal surfaces varies

along the surfaces. The flow speed, divided by a quantity of

the order of the sound speed, is of the order of the Knudsen

number for the flows ~i! and ~iii! and the Knudsen number

squared for the flow ~ii!. In the systems where the deviation

from an equilibrium state at rest is small, the flow ~iii! is
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negligibly small compared to the flows ~i! and ~ii!.

The asymptotic theory mentioned above is based on the

assumption that the local Knudsen number, the local mean

free path divided by the local length scale of variation of

physical quantities, is uniformly small. This means that the

radius of curvature of the boundary should be much larger

than the mean free path, and the boundary condition speci-

fied on the boundary should be smooth enough. If this con-

dition is not fulfilled, therefore, there is a possibility that

flows other than the above three types are caused by the

temperature field even when the Knudsen number is small.

Such an example is given in Refs. 31 and 32. Let us now

consider a flat plate placed in a rarefied gas in a container

kept at a uniform temperature and suppose that the plate is

heated or cooled uniformly. Then, although the thermal creep

flow @the flow ~i!# is absent because of the uniform tempera-

ture of the plate and of the container, a rather strong and

localized flow is induced around the edges of the plate. This

is due to the following fact. Although the temperature of the

plate itself is uniform, there arises a steep temperature gra-

dient in the gas along the plate near the edges because of the

presence of the edges. The temperature gradient then causes

a flow by the same mechanism as the thermal creep flow ~see

Refs. 28–30!. This new type of flow was first found by the

numerical computations31,32 by the use of the direct simula-

tion Monte Carlo ~DSMC! method33,34 and then verified

experimentally.32 A rough estimate in Ref. 32 shows that the

local flow speed near the edges, divided by a quantity of the

order of the sound speed, is likely to be of the order of Kn1/2

for small Kn, where Kn is the overall Knudsen number. This

fact was confirmed35 with a reasonable accuracy in a subse-

quent finite-difference analysis based on the Bhatnagar–

Gross–Krook ~BGK! model36–38 of the Boltzmann equation.

Therefore, the flow has a stronger effect than the flows ~i!–

~iii!.
A similar localized and steep temperature gradient along

the boundary arises when the temperature of the boundary

changes abruptly along it, as in the case of a discontinuous

temperature distribution. Also in this case, a flow that cannot

be covered by the asymptotic theory is expected to be in-

duced along the boundary even when the overall Knudsen

number is small and the boundary is geometrically smooth.

In the present study, we are going to investigate such a flow,

i.e., a flow induced by a discontinuous wall temperature.

More specifically, we consider a gas in a two-dimensional

square container, the wall of which has a discontinuous and

sectionally uniform temperature distribution ~see Sec. II A

for the details!. We investigate the steady behavior of the

gas, especially the flow induced around the point of discon-

tinuity, numerically for a wide range of the Knudsen number

with special interest in the behavior for small Knudsen num-

bers. Making use of the BGK model of the Boltzmann equa-

tion and the diffuse reflection condition as our basic system,

we carry out an accurate numerical analysis by means of a

finite-difference method that is able to describe the behavior

of the discontinuity in the molecular velocity distribution

function introduced by the discontinuity in the boundary

temperature ~see Sec. III!.
We conclude this section with a brief discussion on the

validity of the Navier–Stokes system in the continuum limit.

A recent study26 based on kinetic theory showed that, in the

situation considered in the first paragraph of this section,

though v50 and p5const are correct, the steady heat-

conduction equation does not give the correct temperature

field even in the continuum limit. This is due to the fact that

gas flows of the order of the Knudsen number, which there-

fore vanish in the continuum limit, give a finite effect on the

temperature distribution in this limit. Since it is an effect of

the flows that do not exist in the continuum fluid dynamics, it

was termed the ghost effect.39,22 This effect is particularly

important because it reveals the fatal defect contained in the

Navier–Stokes system for a gas. The effect manifests itself

in a wide class of problems. The reader is referred to Refs.

29, 30, and 40–44 in addition to Refs. 26, 39, and 22 for

further information.

II. FORMULATION OF THE PROBLEM

A. Problem

Let us consider a rarefied gas confined in a two-

dimensional square container 2L/2<X1<L/2, 2L/2<X2

<L/2, where X i is a rectangular coordinate system ~Fig. 1!.
The left half (X1,0) and the right half (X1.0) of the wall

of the container are kept at different uniform temperatures T1

and T2 , respectively. Therefore, the temperatures of the top

and bottom walls are discontinuous at their respective middle

points (X150, X256L/2). External forces are assumed to

be absent. We investigate the steady flow of the gas induced

in the container by the effect of the discontinuities of the

wall temperature, for a wide range of the Knudsen number,

on the basis of kinetic theory. Our basic assumptions are as

follows: ~i! the behavior of the gas is described by the BGK

model36–38 of the Boltzmann equation; ~ii! the gas molecules

are reflected diffusely on the wall of the container.

FIG. 1. A rarefied gas in a two-dimensional square container with a discon-

tinuous wall temperature.
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B. Basic equation

The BGK model of the Boltzmann equation in the

present steady and spatially two-dimensional problem is

written as28,45

j1

] f

]X1

1j2

] f

]X2

5Acr~ f e2 f !, ~1!

f e5

r

~2pRT !3/2
expS 2

~j i2v i!
2

2RT
D , ~2!

r5E f dj, ~3a!

v i5

1

r
E j i f dj, ~3b!

T5

1

3Rr
E ~j i2v i!

2 f dj, ~3c!

where j i is the molecular velocity, dj5dj1 dj2 dj3 ,

f (X1 ,X2 ,j i) is the velocity distribution function of the gas

molecules, r(X1 ,X2) is the density of the gas, v i

5(v1(X1 ,X2),v2(X1 ,X2),0) is its flow velocity, T(X1 ,X2)

is its temperature, R is the gas constant per unit mass, and Ac

is a constant (Acr is the collision frequency of a gas mol-

ecule!. The domain of integration with respect to j i in Eqs.

~3a!–~3c! and in Eqs. ~9b! and ~9c! below is its whole space.

The boundary condition on the wall of the container is

written as follows:28,45

f 5

rw

~2pRTw!3/2
expS 2

j i
2

2RTw
D ~j jn j.0 !, ~4!

rw52S 2p

RTw
D 1/2E

j jn j,0
j jn j f dj, ~5!

where n i is the unit vector normal to the wall pointing into

the gas, and

Tw55
T1 for S 2

L

2
<X1,0, X256

L

2
D

or S X152

L

2
, 2

L

2
,X2,

L

2
D ,

T2 for S 0,X1<
L

2
, X256

L

2
D

or S X15

L

2
, 2

L

2
,X2,

L

2
D .

~6!

The problem is symmetric with respect to the X1 axis.

Therefore, we can analyze the problem only in the lower half

(2L/2<X2<0) of the container by imposing the specular

reflection condition on the X1 axis, namely,

f ~X1 ,0,j1 ,j2 ,j3!5 f ~X1 ,0,j1 ,2j2 ,j3!

for j2,0, S 2

L

2
,X1,

L

2
D . ~7!

Then, the solution in the upper half (0,X2<L/2) is

given by

f ~X1 ,X2 ,j1 ,j2 ,j3!5 f ~X1 ,2X2 ,j1 ,2j2 ,j3!

for S 2

L

2
<X1<

L

2
, 0,X2<

L

2
D ,

~8!

in terms of that in the lower half.

The pressure p(X1 ,X2), stress tensor p i j(X1 ,X2) (p13

5p2350), and heat-flow vector q i(X1 ,X2) (q350) are ex-

pressed as

p5RrT , ~9a!

p i j5E ~j i2v i!~j j2v j! f dj, ~9b!

q i5

1

2
E ~j i2v i!~j j2v j!

2 f dj. ~9c!

C. Dimensionless variables

Let us now introduce the following dimensionless vari-

ables:

x i5

X i

L
, z i5

j i

~2RT1!1/2
,

f̂ 5

~2RT1!3/2

rav

f , r̂5

r

rav

,

~10!

v̂ i5

v i

~2RT1!1/2
, T̂5

T

T1

, p̂5

p

RravT1

,

p̂ i j5

p i j

RravT1

, q̂ i5

q i

~rav/2!~2RT1!3/2
,

where rav is the average density of the gas in the container.

Then, the BGK equation, Eqs. ~1!–~3c!, is written in the

following dimensionless form:

z1

] f̂

]x1

1z2

] f̂

]x2

5

2

p1/2Kn
r̂~ f̂ e2 f̂ !, ~11!

f̂ e5

r̂

~pT̂ !3/2
expS 2

~z i2 v̂ i!
2

T̂
D , ~12!

r̂5E f̂ dz, ~13a!

v̂ i5

1

r̂
E z i f̂ dz, ~13b!

T̂5

2

3 r̂
E ~z i2 v̂ i!

2 f̂ dz, ~13c!

Kn52~2RT1 /p !1/2~AcravL !21
5l1 /L ,

~14!
dz5dz1 dz2 dz3 ,

where Kn is the Knudsen number, and l1 is the mean free

path of the gas molecules in the equilibrium state at rest with

temperature T1 and density rav . The domain of integration
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with respect to z i in Eqs. ~13a!–~13c! and Eqs. ~19b! and

~19c! below is its whole space. On the other hand, the di-

mensionless form of the boundary condition ~4!–~6! re-

stricted in the lower half of the container is

f̂ 5

r̂w

~pT̂w!3/2
expS 2

z i
2

T̂w

D ~z jn j.0 !, ~15!

r̂w52

2p1/2

T̂w
1/2 E

z jn j,0
z jn j f̂ dz, ~16!

with

T̂w55
1 for ~2

1
2<x1,0, x252

1
2!

or ~x152
1
2,2 1

2,x2,0 !,

T2 /T1 for ~0,x1< 1
2,x252

1
2!

or ~x15
1
2,2 1

2,x2,0 !,

~17!

and that of the condition ~7! is

f̂ ~x1 ,0,z1 ,z2 ,z3!5 f̂ ~x1 ,0,z1 ,2z2 ,z3!

for z2,0, ~2
1
2,x1,

1
2!. ~18!

The dimensionless forms of Eqs. ~9a!–~9c! are given by

p̂5 r̂T̂ , ~19a!

p̂ i j52E ~z i2 v̂ i!~z j2 v̂ j! f̂ dz, ~19b!

q̂ i5E ~z i2 v̂ i!~z j2 v̂ j!
2 f̂ dz. ~19c!

D. Further transformation

By means of a standard method,46 we can eliminate the

x3 component, z3 , of the molecular velocity from the sys-

tem, Eqs. ~11!–~18!. That is, if we multiply Eqs. ~11!, ~15!,

and ~18! by 1 and z3
2 and integrate the respective results over

the whole range of z3 , we obtain two simultaneous integro-

differential equations and their boundary conditions. To sum-

marize the result, we first introduce the following ~nondi-

mensional! marginal velocity distribution functions

ĝ(x1 ,x2 ,z1 ,z2) and ĥ(x1 ,x2 ,z1 ,z2) and column vector

F(x1 ,x2 ,z1 ,z2) composed of ĝ and ĥ:

F5F ĝ

ĥ
G5E

2`

` F 1

z3
2G f̂ dz3 . ~20!

The simultaneous equations for F, derived from Eq. ~11!,
are given by

z1

]F

]x1

1z2

]F

]x2

5

2

p1/2Kn
r̂~Fe2F!, ~21!

Fe5

r̂

2p
expS 2

~z12 v̂1!2
1~z22 v̂2!2

T̂
D F2T̂21

1
G , ~22!

r̂5E
2`

` E
2`

`

ĝ dz1 dz2 , ~23a!

v̂ i5

1

r̂
E

2`

` E
2`

`

z i ĝ dz1 dz2 ~ i51,2!, ~23b!

T̂5

2

3 r̂
E

2`

` E
2`

`

$@~z12 v̂1!2
1~z22 v̂2!2# ĝ1 ĥ%

3dz1dz2 . ~23c!

The boundary condition on the wall of the container, derived

from Eq. ~15!, is

F5

r̂w

2p
expS 2

z1
2
1z2

2

T̂w

D F2T̂w
21

1
G ~z1n11z2n2.0 !,

~24!

r̂w52

2p1/2

T̂w

E
z1n11z2n2,0

~z1n11z2n2!ĝ dz1 dz2 ,

~25!

where T̂w is defined in Eq. ~17!, and the symmetry condition

on the x1 axis, derived from Eq. ~18!, is

F~x1 ,0,z1 ,z2!5F~x1 ,0,z1 ,2z2!

for z2,0, ~2
1
2,x1,

1
2!. ~26!

The p̂ i j ( p̂135 p̂2350) and q̂ i ( q̂350) in Eqs. ~19b! and

~19c! are written as

p̂ i j52E
2`

` E
2`

`

~z i2 v̂ i!~z j2 v̂ j!ĝ dz1 dz2 ~ i , j51,2 !,

~27a!

p̂3352E
2`

` E
2`

`

ĥ dz1 dz2 , ~27b!

q̂ i5E
2`

` E
2`

`

~z i2 v̂ i!$@~z12 v̂1!2
1~z22 v̂2!2# ĝ1 ĥ%

3dz1 dz2 ~ i51,2 !. ~27c!

III. NUMERICAL ANALYSIS

We analyze Eqs. ~21!–~26! numerically by a finite-

difference method. One of the difficulties in the numerical

analysis arises from the fact that the velocity distribution

function is discontinuous in the gas. In this section, we first

discuss it briefly and then give an outline of the numerical

method.

A. Discontinuity in velocity distribution function

If the velocity distribution function at a point in space,

say X i
(0) , is discontinuous at a certain molecular velocity, say

j i
(0) , then the discontinuity propagates in the direction of

j i
(0) from X i

(0) ~i.e., along the characteristic of the Boltzmann

equation!.47 Such a propagation of discontinuity is com-

monly observed in the gas around a convex boundary,

namely, the velocity distribution function is generally discon-
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tinuous there. In the present problem, the discontinuous

boundary condition causes the discontinuity in the velocity

distribution function in the gas, as seen below. For a general

discussion on the discontinuity, including its relation to the

Knudsen layer and Sone layer48 for small Knudsen numbers,

the reader is referred to Ref. 47 ~a brief discussion is also

found in Ref. 39!. The propagation of discontinuity is also

discussed in the framework of propagation phenomena asso-

ciated with the Boltzmann equation in a recent paper by

Cercignani.49

Let us consider the velocity distribution function of the

gas molecules leaving the bottom wall (X252L/2 or x2

521/2) in the present problem. At the point of discontinuity

of the wall temperature (x150, x2521/2), the limit from

the left @F(02 ,21/2,z1 ,z2)# is prescribed by the boundary

condition ~24! and ~25! (n150, n251) with T̂w51, whereas

the limit from the right @F(01 ,21/2,z1 ,z2)# is prescribed

by Eqs. ~24! and ~25! (n150, n251) with T̂w5T2 /T1 .

~Here we are considering the dimensionless marginal veloc-

ity distribution functions F, but the situation is essentially

the same for the original velocity distribution function f̂ or

f.! Therefore, these two limits, in general, do not coincide

@F(02 ,21/2,z1 ,z2)ÞF(01 ,21/2,z1 ,z2)# for any fixed

molecular velocity (z1 , z2) (z2.0). This discontinuity

propagates in the gas in the direction of (z1 , z2), i.e., along

the characteristic of Eq. ~21!. Therefore, at a point (x1 , x2)

in the gas, the velocity distribution function is generally dis-

continuous in the direction z1 /z25x1 /(x211/2) in the z1z2

plane. It is easily shown that the discontinuity attenuates

over the distance of the order of the molecular free path in its

propagation because of the effect of molecular collisions.47

These properties are essentially the same as those of the dis-

continuity originating from the leading and trailing edges in

the case of a rarefied gas flow past a ~thickless! flat plate.50

In the present problem, the velocity distribution function at

(x1 , x2) is also discontinuous in the direction z1 /z2

5x1 /(x221/2) because of the presence of the discontinuity

in the temperature of the top wall at x150, x251/2. In the

framework of the boundary-value problem, Eqs. ~21!, ~24!,

and ~26!, in the lower half of the container, the second dis-

continuity corresponds to the discontinuity propagating in

the direction z1 /z25x1 /(2x211/2) from the middle point

of the bottom wall (x150, x2521/2), reflected on the

specularly reflecting boundary (x250), and reaching the

point (x1 , x2) (x2,0). The discontinuity point of the

boundary temperature is also a singular point for the macro-

scopic variables in the sense that their limiting values at the

point are different depending on the direction of approach

~see Ref. 50!.

It should be mentioned that the discontinuity of the ve-

locity distribution function is also caused by the four corners

of the container. At these points, the limit of r̂w @Eq. ~25!#

from the bottom or the top wall is generally different from

that from the side wall because the domain of integration as

well as the integrand in Eq. ~25! is different. Therefore, the

boundary condition ~24! is discontinuous there. These dis-

continuities also propagate into the gas. However, the dis-

continuities caused by the corners are much smaller than

those caused by the discontinuities of the wall temperature.

~Note that the discontinuities in r̂w at the corners disappear

when the velocity distribution of incident molecules there is

isotropic and that the velocity distribution approaches a local

Maxwellian near each corner for small Knudsen numbers.!

Finally, we make a brief comment on mathematical

theory for the propagation of discontinuities. The above dis-

cussion about the behavior of the discontinuities is based on

the assumption that the gain term of the collision integral of

the Boltzmann equation is continuous inside the gas region

~in the case of the BGK model, this is equivalent to assuming

that the density, flow velocity, and temperature are continu-

ous there!. Although it is plausible, to show this continuity

rigorously is a difficult mathematical problem even for the

BGK model that is much simpler than the original Boltz-

mann equation. In time-dependent problems, discontinuities

~or, more generally, singularities! contained in the velocity

distribution function at the initial time also propagate in the

gas, attenuating because of molecular collisions, as time goes

on. Reference 51 deals with such propagation successfully

with mathematical rigor on the basis of the Boltzmann equa-

tion. However, it shows that the propagating singularities can

be discriminated only from a slightly less singular remainder.

In Ref. 52, on the other hand, the discontinuities induced by

discontinuous boundary data are studied mathematically for

a simple one-speed linear transport equation which has a

similar structure to the linearized BGK model, and it is

proved that the gain term is continuous and the discontinui-

ties can be separated from a continuous remainder. The

mathematical results obtained for this simple transport equa-

tion are consistent with the situation described in the second

paragraph in this subsection.53

B. Outline of numerical analysis

The finite-difference methods that are capable of de-

scribing the correct behavior of the discontinuity of the ve-

locity distribution function have been devised and developed

in Refs. 54–58, and 50 in various situations. The type of

propagation of the discontinuity in the present problem is

almost the same as that in Ref. 50, where a supersonic rar-

efied gas flow past a flat plate is investigated. Therefore, we

can exploit the finite-difference scheme developed there with

a slight modification. Since the detailed description of the

method is found in Ref. 50, we give only a brief outline of

the method.

~i! For the numerical analysis, we restrict the z1z2 plane

to a finite domain uz1u<Z1 , uz2u<Z2 , where Z1 and Z2 are

positive constants chosen in such a way that F is negligibly

small at uz1u.Z1 and uz2u.Z2 . The discrete solution F# of

F at the lattice points in the (x1 , x2 , z1 , z2) space is con-

structed as the limit of the sequence F#
(n), where F#

(n) de-

notes the F# at the nth step of iteration; the F#
(n) is obtained

as follows by the use of a finite-difference equation, corre-

sponding to Eq. ~21!, that gives a relation between F#
(n) and

F#
(n21). Let (z1

(k) , z2
(l)) denote the lattice points in the z1z2

plane. We choose appropriate initial distributions F#
(0). Let

F#
(n21) be known. For each z1

(k)
.0, F#

(n) is determined from

x1521/2 to 1/2 and from x2521/2 to 0 ~or from x250 to

2649Phys. Fluids, Vol. 13, No. 9, September 2001 Rarefied gas flow caused by a discontinuous wall temperature

Downloaded 04 Jun 2007 to 130.54.110.22. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp

A Self-archived copy inKyoto University Research Information Repositoryhttps://repository.kulib.kyoto-u.ac.jp



21/2) by the use of the finite-difference equation, the

boundary condition on the left wall, and the boundary con-

dition on the bottom wall ~or the specular reflection condi-

tion on x250) for all z2
(l)>0 ~or for all z2

(l)
,0) @Fig. 2~a!#.

Similarly, for each z1
(k)

,0, F#
(n) is determined from x1

51/2 to 21/2 and from x2521/2 to 0 ~or from x250 to

21/2) by the use of the finite-difference equation, the

boundary condition on the right wall, and the boundary con-

dition on the bottom wall ~or the specular reflection condi-

tion on x250) for all z2
(l)>0 ~or for all z2

(l)
,0) @Fig. 2~b!#.

For z1
(k)

50, F#
(n) is determined from x2521/2 to 0 ~or from

x250 to 21/2) by the use of the finite-difference equation

and the boundary condition on the bottom wall ~or the specu-

lar reflection condition on x250) for all z2
(l)>0 ~or for all

z2
(l)

,0).

~ii! As explained in the preceding subsection, F is dis-

continuous in the gas. Here, we neglect the discontinuities

caused by the four corners of the container ~see the third

paragraph of Sec. III A; the discontinuities of r̂w at the cor-

FIG. 2. Schematic figure for the procedure of numerical computation. ~a!

z1>0, ~b! z1,0.

FIG. 3. Flow induced in the lower half of the container for T2 /T152. ~a!

Kn55, ~b! Kn52, ~c! Kn50.5, ~d! Kn50.2. The arrow indicates the two-

dimensional flow velocity vector (v1 , v2)/(2RT1)1/2 at its starting point.

The reference length of the arrow is shown in the right margin of each

figure. The symbol s indicates the point with the maximum flow speed.

FIG. 4. Flow induced in the lower half of the container for T2 /T152. ~a!

Kn50.05, ~b! Kn50.02, ~c! Kn50.01, ~d! Kn50.005. See the caption of

Fig. 3.
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ners can be estimated from the numerical result, and it turns

out to be negligibly small for small Kn!. Then, for

(z1
(k) , z2

(l))5(a , b) @or (z1
(k) , z2

(l))5(a , 2b)] (a.0, b

.0), F is discontinuous along the line x25(b/a)x121/2

@or x252(b/a)x111/2], i.e., the boundary between the re-

gions I and II ~or II and III! in Fig. 2~a!. When we discretize

Eq. ~21!, we should not apply finite-difference approxima-

tion to the derivative terms ]F/]x1 and ]F/]x2 across the

discontinuity. Therefore, we need to make a local correction

in the finite-difference scheme. That is, we first separate the

regions I and II1III ~or I1II and III! in Fig. 2~a! and then

use the same finite-difference equation as in ~i! in each re-

gion. Since these two regions are disconnected, we need, as

the boundary condition for the region II1III ~or III!, the

limiting value of F from the right along the line of discon-

tinuity in the process of determining F#
(n) from x1521/2 to

1/2 in the procedure ~i!. This limiting value is obtained sepa-

rately with the aid of another finite-difference equation for

Eq. ~21! along ~the right-hand side of! the discontinuity line.

The treatment for (z1
(k) , z2

(l))5(a8, b8) @or (z1
(k) , z2

(l))

5(a8, 2b8)] (a8,0, b8.0) is essentially the same. That

is, we decompose the original domain into two regions I8

and II81III8 ~or I81II8 and III8) in Fig. 2~b! by the discon-

tinuity line x25(b8/a8)x121/2 @or x252(b8/a8)x111/2]

and apply the same finite-difference equation as in ~i! in each

region. In this case, we need, as the boundary condition for

the region II81III8 ~or III8), the limiting value of F from

the left along the line of discontinuity in the process of de-

termining F#
(n) from x151/2 to 21/2 in the procedure ~i!.

This limiting value is obtained separately with the aid of a

finite-difference equation for Eq. ~21! along ~the left-hand

side of! the discontinuity line.

FIG. 5. Flow near the point of discontinuity for T2 /T152. Magnified figure

of the range 20.1<X1 /L<0.1, 20.5<X2 /L<20.4 of Fig 4. ~a! Kn

50.05, ~b! Kn50.02, ~c! Kn50.01, ~d! Kn50.005. See the caption

of Fig. 3.
FIG. 6. Isolines of the density for T2 /T152. ~a! Kn55 (r/rav50.875

10.025m; m50, 1, . . . , 10), ~b! Kn50.5 (r/rav50.810.05m; m50, 1,

. . . , 9), ~c! Kn50.05 (r/rav50.810.1m; m50, 1, . . . , 6), ~d! Kn

50.005 (r/rav50.810.1m; m50, 1, . . . , 6).
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IV. RESULTS OF NUMERICAL ANALYSIS

The computation has been carried out for a fixed tem-

perature ratio T2 /T152 and for various values of the Knud-

sen number in the range 0.005<Kn<5. In this section, we

show and discuss the results of the computation.

A. Flow induced in the gas

The flow velocity field in the lower half of the container

in the case of T2 /T152 is shown in Figs. 3 and 4 for various

values of Kn in its descending order, i.e., for Kn55, 2, 0.5,

and 0.2 in Figs. 3~a!–3~d! and for Kn50.05, 0.02, 0.01, and

0.005 in Figs. 4~a!–4~d!. The arrow in the figures indicates

the two-dimensional flow velocity vector (v1 , v2) normal-

ized by (2RT1)1/2, and its length corresponding to 0.001,

0.0025, 0.01, or 0.02 is shown in the right margin of each

figure ~note the difference in the scale of the arrow!; the

point at which the flow speed takes the maximum is indi-

cated by s . Recall that the wall temperature is discontinuous

at X1 /L50, X2 /L520.5.

For all Kn in Figs. 3 and 4, a counterclockwise circulat-

ing flow is observed. The flow, which is very weak at Kn

55, is intensified as Kn decreases ~Fig. 3!. But, as Kn de-

creases to 0.05 and to 0.02 @Figs. 4~a! and 4~b!#, though the

flow near the point of discontinuity of the wall temperature

remains of the same order of magnitude, the flow in the other

part becomes weaker. With further decrease of Kn @Figs. 4~c!
and 4~d!#, the region where the flow is appreciable shrinks to

the close neighborhood of the point of discontinuity, and the

FIG. 7. Isolines of the temperature for T2 /T152. ~a! Kn55 (T/T151.2

10.1m; m50, 1, . . . , 5), ~b! Kn50.5 (T/T151.110.1m; m50, 1, . . . ,

7), ~c! Kn50.05 (T/T151.110.1m; m50, 1, . . . , 8), ~d! Kn50.005

(T/T151.110.1m; m50, 1, . . . , 8).

FIG. 8. Isolines of the pressure for T2 /T152. ~a! Kn55 (p/RravT151.3

10.025m; m50, 1, . . . , 10), ~b! Kn50.5 (p/RravT151.3510.025m; m

50, 1, . . . , 6), ~c! Kn50.05 (p/RravT151.3810.02m; m50, 1, . . . , 8),

~d! Kn50.005 (p/RravT151.4210.01m; m50, 1, . . . , 9).
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flow itself seems to be weakened. When Kn is relatively

large (Kn55 and 2), a flow toward the left is observed on

the bottom wall in the parts near the side walls, and it in-

duces two weak clockwise circulating flows at both bottom

corners. Although the leftward flow is seen for all Kn, it

becomes weaker and thus the two circulating flows become

weaker and smaller as Kn becomes small. The maximum

speed is attained on the wall far from the point of disconti-

nuity ~i.e., in the leftward flow! for Kn55, whereas it is

attained in the gas near the point of discontinuity for other

Kn. As Kn becomes small, the point with the maximum

speed approaches the point of discontinuity.

In order to see the local structure of the flow field of Fig.

4 near the point of discontinuity, we show in Figs. 5~a!–5~d!
the magnified figures of the part 20.1<X1 /L<0.1, 20.5

<X2 /L<20.4 of Figs. 4~a!–4~d!. For Kn50.005 @Fig.

5~d!#, the flow is very localized even in this small region and

almost vanishes on the outer edge of the region. However,

the flow speed in the vicinity of the discontinuity point is not

slow in comparison with that for other Kn @Figs. 5~a!–5~c!#.
In the case of free-molecular gas (Kn5`), where the

effect of collisions between gas molecules is neglected, no

flow is induced in the gas. This fact was proved by Sone59,60

in a very general situation ~arbitrary shape, arrangement, and

temperature distribution of the boundary, the Maxwell-type

diffuse-specular reflection condition with an accommodation

coefficient varying along the boundary, etc.!. On the other

hand, as mentioned in Sec. I, no flow is induced by the

temperature field in the continuum limit (Kn501). How-

FIG. 9. Distributions of the density along the lines X2 /L5const for

T2 /T152. ~a! Kn55, ~b! Kn50.5, ~c! Kn50.05, ~d! Kn50.005.
FIG. 10. Distributions of the temperature along the lines X2 /L5const for

T2 /T152. ~a! Kn55, ~b! Kn50.5, ~c! Kn50.05, ~d! Kn50.005.
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ever, one should note that this conclusion, which is drawn

from the Navier–Stokes system, is validated by the

asymptotic theory26 and that the latter theory cannot be ap-

plied to the present problem because of the discontinuous

temperature distribution. Therefore, the situation in the con-

tinuum limit is not obvious, though the flow is likely to van-

ish intuitively. We will discuss this point later.

Figures 6–8 show the isolines of the density, tempera-

ture, and pressure in the lower half of the container in the

case of T2 /T152 for four values of the Knudsen number

Kn55, 0.5, 0.05, and 0.005. The isolines concentrate on the

point of discontinuity of the wall temperature. This means

that the point is a singular point at which the values of the

macroscopic quantities are not determined uniquely, namely,

their limiting values are different depending on the way of

approach to the point. For smaller Kn, isodensity and isother-

mal lines of wider ranges concentrate on the point. The pres-

sure tends to become uniform for small values of Kn @Figs.

8~c! and 8~d!#. In Figs. 9–12, we show the distributions of

the density, the temperature, and the X1 and X2 components

of the flow velocity along the bottom wall and the lines

parallel to it for Kn55, 0.5, 0.05, and 0.005. As is under-

stood from the concentration of the isolines in Figs. 6–8, the

distributions on the wall in Figs. 9–12 exhibit a discontinuity

at the singular point. The fact that the X1 component v1 of

the flow velocity on the bottom wall (X2 /L520.5) does not

vanish on the side walls (X1 /L560.5) in Figs. 11~a! and

FIG. 11. Distributions of the X1 component of the flow velocity along the

lines X2 /L5const for T2 /T152. ~a! Kn55, ~b! Kn50.5, ~c! Kn50.05, ~d!

Kn50.005.

FIG. 12. Distributions of the X2 component of the flow velocity along the

lines X2 /L5const for T2 /T152. ~a! Kn55, ~b! Kn50.5, ~c! Kn50.05, ~d!

Kn50.005.
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11~b! @see also Figs. 3~a! and 3~b!# might seem to be un-

physical. However, as is seen from the discussions in Sec.

III A, the four corners of the container are also singular

points at which the macroscopic quantities are not deter-

mined uniquely, i.e., their limiting values there are different

depending on the way of approach. In Figs. 9–12 as well as

in Figs. 3 and 4, the limiting values along the bottom wall

@X1 /L56(0.520), X2 /L520.5] are shown as the values

at the corners. Therefore, the nonzero v1 appears there. This

does not contradict the condition that there is no net mass

flow across the wall of the container because the limiting

values of the flow velocity at the corners are finite though

they are not unique ~note that if a point is a source or sink of

the mass, the flow speed should be infinite there!.
Figure 13~a! illustrates the variation with Kn of the flow

speed of the gas at five fixed points on the line X2 /L

520.495 near the point of discontinuity, i.e.

(X1 /L , X2 /L)5(0, 20.495), (0.005, 20.495), (0.02,

20.495), (0.05, 20.495), and (20.05, 20.495), and at two

points (X1 /L , X2 /L)5(20.3, 20.4) and (0.3, 20.4),

whereas Fig. 13~b! illustrates that at five points the positions

of which change depending on Kn but are the same in the

scale of the mean free path l1 relative to the point of discon-

tinuity, i.e. (X1 /l1 , (X210.5L)/l1)5(0.5, 0.5), (1, 1),

(5, 5), (2, 1), and (5, 1). The maximum speed in the flow

field is also shown in Fig. 13~b!. It is seen from Fig. 13~a!
that, as the Knudsen number decreases from 5 to 0.005, the

flow speed at each fixed point first increases, reaches the

maximum, and then decreases. The maximum is attained at

smaller Kn for the point closer to the point of discontinuity.

On the other hand, in Fig. 13~b!, the speed at each point as

well as the maximum speed in the flow field tends to ap-

proach a finite value as the Knudsen number vanishes. This

fact indicates that the flow field near the point of discontinu-

ity for small Kn exhibits a similarity in the sense that the

structure of the field expressed in the scale of the mean free

path approaches a limiting field as Kn tends to zero. This is

also supported by Fig. 14, where the isolines of the density,

temperature, and flow speed near the point of discontinuity at

Kn50.05, 0.02, 0.01, and 0.005 are shown in the coordi-

nates normalized by l1 . To summarize, the numerical results

presented so far, in particular, Figs. 13 and 14, support the

following conclusion for the behavior of the flow induced in

the gas in the continuum limit. As the limit is approached,

FIG. 13. Flow speed at various points in the gas vs the Knudsen number for

T2 /T152. ~a! The flow speed uv iu at (X1 /L , X2 /L)5(0,20.495) is shown

by s , (0.005,20.495) by h , (0.02,20.495) by L , (0.05,20.495) by n ,

(20.05,20.495) by m , (20.3,20.4) by . , and (0.3,20.4) by , . ~b! The

flow speed uv iu at (X1 /l1 ,(X210.5L)/l1)5(0.5,0.5) is shown by s , (1,1)

by h , (5,5) by L , (2,1) by n , and (5,1) by ,; the symbol d indicates

the maximum speed in the domain. In each figure, the same symbols are

joined by straight lines.

FIG. 14. Isolines of the density, temperature, and flow speed near the point

of discontinuity at small Knudsen numbers for T2 /T152. ~a! Density, ~b!
temperature, ~c! flow speed. Here, the dotted line indicates the result for

Kn50.05, the dot-dashed line for Kn50.02, the dashed line for Kn

50.01, and the solid line for Kn50.005. The coordinates are normalized by

the mean free path l1 .
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the region where the flow is appreciable shrinks and con-

verges to the singular point where the wall temperature is

discontinuous. That is, as Kn tends to zero, the flow vanishes

at all the points except this singular point. In this way, the

flow induced in the container vanishes nonuniformly in the

continuum limit.

B. Velocity distribution function

Next, we show the behavior of the velocity distribution

function. The dimensionless marginal velocity distribution

function ĝ introduced in Sec. II D, i.e.,

ĝ~x1 ,x2 ,z1 ,z2!5E
2`

`

f̂ ~x1 ,x2 ,z i!dz3

5

2RT1

rav
E

2`

`

f ~X1 ,X2 ,j i!dj3 , ~28!

at various points in the gas in the case of T2 /T152 is shown

in Figs. 15–18 as a function of z1 @5j1 /(2RT1)1/2# and z2

@5j2 /(2RT1)1/2#; Figs. 15–18 correspond to the case of

Kn55, 0.5, 0.05, and 0.005, respectively. The actual com-

putation has been performed by the use of the lattice lines

that are much denser than those drawn on the surface of ĝ

~see Sec. IV C!. The figures ~a!–~d! in Figs. 15 and 16 and

the figures ~a!–~c! in Figs. 17 and 18 are the results at the

points almost on the line X1 /L50.1, the figure ~a! being

those on the bottom wall. On the boundary, the velocity dis-

tribution function is, in general, discontinuous along the mo-

lecular velocities that are tangent to the boundary. As de-

scribed in Sec. III A, in the present problem, the velocity

distribution function in the gas is also discontinuous in the

two directions, j1 /j25X1 /(X21L/2) ~for j2.0) and

j1 /j25X1 /(X22L/2) ~for j2,0), in the j1j2 plane, origi-

nating from the discontinuity of the temperature of the bot-

tom wall and that of the top wall, respectively. In Fig. 15,

where the Knudsen number is relatively large (Kn55), the

discontinuities in the two directions are large for all the fig-

ures. In Fig. 15~a!, which shows the velocity distribution on

the bottom wall, the discontinuity on the right originates

from the temperature discontinuity on the top wall, whereas

that on the left is due to the discrepancy between the velocity

distributions of impinging and re-emitted molecules. The

sharp decay of the discontinuities in the neighborhood of the

origin (z1 ,z2)5(0,0) is due to the fact that slow molecules

have more chances for collision. In Fig. 16, where Kn

50.5, the discontinuities are smaller than those at the corre-

sponding spatial positions in Fig. 15 because the effect of

molecular collision is larger in the former. In Fig. 17, where

FIG. 15. Dimensionless marginal

velocity distribution function ĝ @Eq.

~28!# at six points in the gas for Kn

55 and T2 /T152. ~a! (X1 /L , X2 /L)

5(0.101, 20.5), ~b! (0.101,

20.442), ~c! (0.101, 20.250), ~d!

(0.101, 0), ~e! (0.25, 20.349), ~f!

(20.25, 20.349).
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Kn50.05, the discontinuity in the gas originating from the

discontinuity of the wall temperature is appreciable only in

the close neighborhood of the point of discontinuity @Figs.

17~d!–17~f!#. Figure 18 shows ĝ for Kn50.005 at almost the

same points as in Fig. 17. The discontinuity is fairly small

even in the close neighborhood of the point of discontinuity

@Figs. 18~d!–18~f!#. Except in the vicinity of the points of

discontinuity on the top and bottom walls, the velocity dis-

tribution is close to the local Maxwellian, so that the discon-

tinuity is invisible even on the wall @Fig. 18~a!#.

C. Data on numerical computation

Finally we give some data on our numerical computa-

tion. Here we use the dimensionless space coordinates (x1 ,

x2) and molecular velocity (z1 , z2). The lower half of the

container 21/2<x1<1/2, 21/2<x2<0 is divided into 160

380 (Kn>0.1) or 3203160 (Kn<0.05) nonuniform rect-

angular regions by lattice lines. For x1 , the minimum lattice

interval is 4.6131024 (Kn>0.1), 1.9331024 (Kn50.05),

or 3.4231023Kn (Kn<0.02) at x150 ~and also at x1

561/2 for Kn>0.05; for Kn<0.02, the lattice interval at

x1561/2 is 2.1931024), and the maximum interval is

1.2031022 (Kn>0.1), 6.0631023 (Kn50.05), or 6.73

31023 (Kn<0.02) at x1561/4. For x2 , the minimum lat-

tice interval is 3.8731024 (Kn>0.1), 1.7531024 (Kn

50.05), or 3.4231023Kn (Kn<0.02) at x2521/2, and the

maximum interval is 1.2131022 (Kn>0.1), 6.0831023

(Kn50.05), or 5.6931023;6.6131023 (Kn<0.02) at x2

50. The molecular velocity space (z1 , z2) is restricted to a

finite domain 27.1<z1<7.1, 27.0<z2<7.0 ~i.e., Z157.1

and Z257.0), which is divided into 3203320 (Kn>0.1) or

1603160 (Kn<0.05) nonuniform rectangular regions by

lattice lines. For z1 , the minimum lattice interval is 4.44

31025 (Kn>0.1) or 8.8931025 (Kn<0.05) at z150, and

the maximum interval is 1.7631021 (Kn>0.1) or 3.48

31021 (Kn<0.05) at z1567.1. For z2 , the minimum lat-

tice interval is 4.5531025 (Kn>2), 4.3931024 (0.1<Kn

<1), or 8.8931024 (Kn<0.05) at z250, and the maximum

interval is 1.3031021 (Kn>0.1) or 2.5831021 (Kn

<0.05) at z2567.0.

The lattice systems are chosen carefully on the basis of

various numerical tests. An example of such tests is the ob-

servation of the change in macroscopic quantities when a

coarser ~or finer! lattice system is used. Let Gx and Gz de-

note, respectively, the standard lattice system in (x1 , x2) and

that in (z1 , z2) described in the preceding paragraph (Gx and

Gz are different depending on Kn!; let Gx
(1/4) and Gz

(1/4) de-

note, respectively, coarser lattice system with about one-

fourth lattice points corresponding to Gx and that corre-

sponding to Gz ~i.e., Gx
(1/4) and Gz

(1/4) are obtained by

FIG. 16. Dimensionless marginal

velocity distribution function ĝ @Eq.

~28!# at six points in the gas

for Kn50.5 and T2 /T152. ~a!

(X1 /L , X2 /L)5(0.101, 20.5), ~b!

(0.101, 20.442), ~c! (0.101,

20.250), ~d! (0.101, 0), ~e! (0.25,

20.349), ~f! (20.25, 20.349).
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removing every second lattice line in Gx and Gz , respec-

tively!; and let Gz
(4) be a finer lattice system with about four

times more lattice points corresponding to Gz . For Kn

50.5, the difference between the result based on (Gx , Gz)

and that on (Gx , Gz
(1/4)) is less than 1.6331026 in r̂ , 4.85

31027 in v̂1 , 4.5131027 in v̂2 , and 8.4831027 in T̂ , and

the difference between (Gx , Gz
(1/4)) and (Gx

(1/4) , Gz
(1/4)) is less

than 3.3031024 in r̂ , 1.0131024 in v̂1 , 6.1631025 in v̂2 ,

and 8.9431025 in T̂ . For Kn50.05, the difference between

the result based on (Gx , Gz) and that on (Gx
(1/4) , Gz) is less

than 2.3131024 in r̂ , 3.0231024 in v̂1 , 4.5831025 in v̂2 ,

and 2.6631024 in T̂ , and the difference between

(Gx
(1/4) , Gz) and (Gx

(1/4) , Gz
(4)) is less than 2.9931026 in r̂ ,

2.5931026 in v̂1 , 1.6531026 in v̂2 , and 3.5431026 in T̂ .

For Kn50.005, the difference between the result based on

(Gx , Gz) and that on (Gx
(1/4) , Gz8), where Gz8 is a lattice sys-

tem with the same number of lattice points as Gz but with

slightly different lattice intervals, is less than 5.4731024 in

r̂ , 5.6231024 in v̂1 , 2.5831024 in v̂2 , and 7.1831024 in

T̂ , and the difference between (Gx
(1/4) , Gz8) and

(Gx
(1/4) , Gz8

(4)) is less than 6.6031025 in r̂ , 7.8231026 in

v̂1 , 6.0931026 in v̂2 , and 1.1731024 in T̂ .

A convenient measure of the numerical error is provided

by the conservation laws. Let us consider a rectangular do-

main, 2r1<x1<r1 , 20.5<x2<20.51r2 , in contact with

the bottom wall. Let the bottom side (2r1<x1<r1 , x2

520.5) be denoted by side I, the top side (2r1<x1<r1 ,

x2520.51r2) by side II, the left side (x152r1 ,

20.5<x2<20.51r2) by side III, and the right side

(x15r1 , 20.5<x2<20.51r2! by side IV. Further,

let rav(2RT1)1/2LM̂ (N), ravRT1LP̂ i
(N) , and (rav/2)

3(2RT1)3/2LÊ (N) be, respectively, the mass, the x i compo-

nent of the momentum, and the energy flowing out from the

rectangular domain through the side N (N5I, II, III, or IV!

~thus, M̂ (N), P̂ i
(N) , and Ê (N) are the corresponding dimen-

sionless quantities!. The sums of these quantities over the

all sides, M̂ T5(N5I
IV M̂ (N), P̂ iT5(N5I

IV P̂ i
(N) , and ÊT

5(N5I
IV Ê (N), should vanish theoretically because of the con-

servation of mass, momentum, and energy. However, these

do not vanish in the actual computation because of the nu-

merical error. These nonzero values give a convenient mea-

sure of accuracy. For example, for Kn50.5, r150.204, and

r250.201, we have M̂ T53.6531028 (M̂ (III)
525.40

31024 for reference!, P̂1T51.9831026 ( P̂1
(III)

522.80

31021), P̂2T523.7631027 ( P̂2
(II)

55.8431021), and ÊT

521.9131026 (Ê (III)
55.4431022); for Kn50.05, r1

FIG. 17. Dimensionless marginal

velocity distribution function ĝ @Eq.

~28!# at six points in the

gas for Kn50.05 and T2 /T152. ~a!

(X1 /L , X2 /L)5(0.101, 20.5), ~b!

(0.101, 20.442), ~c! (0.101,

20.250), ~d! (0.005, 20.497), ~e!

(0, 20.497), ~f! (20.005, 20.497).
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50.204, and r250.201, we have M̂ T522.0531027

(M̂ (III)
521.0031023), P̂1T54.4331027 ( P̂1

(III)
522.92

31021), P̂2T521.4731026 ( P̂2
(II)

55.9331021), and ÊT

521.2731026 (Ê (IV)
529.9831023); and for Kn

50.005, r150.200, and r250.198, we have M̂ T521.00

31026 (M̂ (III)
521.9231024), P̂1T523.4931026 ( P̂1

(III)

522.9031021), P̂2T527.4231027 ( P̂2
(II)

55.8631021),

and ÊT521.5931026 (Ê (IV)
526.2031024).

The present computation was mainly carried out on Cray

ORIGIN 2000 computers at the Institute for Chemical Re-

search, Kyoto University.

V. DISCUSSIONS

We conclude this paper with some physical discussions

about the numerical results. Here we suppose T1,T2 as in

the numerical analysis.

Let us examine the situation near the point of disconti-

nuity of the wall temperature on the bottom wall for rela-

tively small Kn. The gas in the upper right region with re-

spect to the point of discontinuity is hotter than that in the

upper left region, as seen from Figs. 7 and 14~b!. Therefore,

a flow toward the right is induced in the gas by the same

mechanism as the thermal creep flow.1–7 Here, we repeat the

explanation of the mechanism briefly ~see Refs. 22 and 28–

30!. Let us suppose that the gas is at rest, and let us consider

the molecules incident on a point on the bottom wall near the

point of discontinuity. Because the molecules impinging on

the point possess the property of the gas in the region about

a mean free path apart from the point, the molecules from the

upper right region are, on the average, faster than those from

the upper left region. Therefore, the incident molecules give

the leftward tangential momentum to the wall. Since the

molecules leaving the wall, which are isotropically distrib-

uted in the case of the diffuse reflection, do not contribute to

the transport of the tangential momentum, the leftward tan-

gential momentum is transferred to the wall by the gas mol-

ecules. As the reaction, the gas undergoes a force in the

rightward direction and moves in the same direction. The

speed of the gas motion is determined in such a way that the

tangential momentum given to the wall by the gas motion

compensates the above-mentioned leftward momentum

transferred by the impinging molecules.

Following Refs. 22 and 28–30, we can roughly estimate

the speed of the gas motion to be proportional to the tem-

perature difference, say DT , between two points that are

about a mean free path apart in the horizontal direction and

are located about a mean free path above the wall. This es-

timate applies to the general case with arbitrary temperature

distribution. In the case of the usual thermal creep flow

caused by an imposed temperature gradient ]Tw /]Xw ,

FIG. 18. Dimensionless marginal

velocity distribution function ĝ @Eq.

~28!# at six points in the gas for Kn

50.005 and T2 /T152. ~a!

(X1 /L , X2 /L)5(0.100, 20.5), ~b!

(0.100, 20.440), ~c! (0.100,

20.249), ~d! (0.005, 20.497), ~e!

(0, 20.497), ~f! (20.005, 20.497).
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where Tw is the temperature of the boundary and Xw is a

coordinate along it, the temperature difference DT is given

by l (]Tw /]Xw), where l is the reference mean free path.

The speed of the gas motion v is thus given as v

}l (]Tw /]Xw). Therefore, when l goes to zero ~the con-

tinuum limit!, the flow vanishes. In contrast, in the present

problem with a discontinuous wall temperature, the tempera-

ture field around the point of discontinuity is almost indepen-

dent of l if it is described in the scale of l @cf. Fig. 14~b!#.
Therefore, the temperature difference DT and thus the speed

of the gas motion v are almost independent of l. This means

that the flow does not vanish in the continuum limit. On the

other hand, because DT is appreciable only in the small re-

gion over a few mean free paths around the point of discon-

tinuity @cf. Fig. 14~b!#, the gas flow is driven only locally in

this region. Therefore, the region of the flow shrinks to the

point of discontinuity as the mean free path approaches zero.

In this way, the flow vanishes nonuniformly in the continuum

limit.

At small Knudsen numbers, the thermal stress slip

flow24,8–11 of the order of Kn2 ~here we refer to the flow

speed normalized by the average molecular speed! and the

nonlinear thermal stress flow12,13 of the order of Kn, men-

tioned in Sec. I, should also be induced in the gas. However,

the flow caused by the discontinuity of the wall temperature,

which is of the order of unity, has a dominant effect even

though it is localized.
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