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SUMMARY 

In this paper a rate-dependent isotropic damage model developed for the numerical analysis of concrete dams subjected 
to seismic excitation is presented. The model is shown to incorporate two features essential for seismic analysis: stiffness 
degradation and stiffness recovery upon load reversals and strain-rate sensitivity. The issue of mesh objectivity is 
addressed using the concept of the ‘characteristic length’ of the fracture zone, to show that both the softening modulus 
and the fluidity parameter must depend on it to provide consistent results as the computational mesh is refined. Some 
aspects of the numerical implementation of the model are also treated, to show that the model can be easily incorporated 
in any standard non-linear finite element code. The application of the proposed model to the seismic analysis of a large 
gravity concrete dam shows that the structural response may vary significantly in terms of the development of damage. 
The inclusion of rate sensitivity is able to reproduce the experimental observation that the tensile peak strength of 
concrete can be increased up to 50 percent for the range of strain rates that appear in a structural safety analysis of a dam 
subjected to severe seismic actions. 
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1. INTRODUCTION 

As it is well known, concrete exhibits a rate-dependent behaviour when subjected to high rate straining, with 

significant increase of dynamic strengths and decrease of non-linearity on the stress-strain response curves, 

when compared to those measured in static tests. This peculiar behaviour is rather important under 

impulsive loading, as it occurs when structures are subjected to impacts or explosions‘ (where straining rates zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
b zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> l op2  s-’), but the phenomenon is also important for seismic excitations (rates of straining within the 
interval s-  ’ < b < 10- ’ s-’). As it will be shown, dynamic strength can be enhanced, with respect to the 

static one, up to 80 per cent in tension and 25 per cent in compression, for these strain rates. 

The importance of this observed phenomenon had been recognized a long time ago, and attempts were 

made for the constitutive laws to be able to account for it. However, its complexity and the need for some 

sophistication in the numerical models precluded it from common usage, the customary practice being to 
account for rate sensitivity by means of empirical formulas and drastic simplifying assumptions. Contribu- 

tions from viscoplasticity were some of the first attempts to deal with rate dependency with theoretical 
consistency. Among others, Bicanik and Zienkiewicz2 proposed one of these models, with similarity to the 

‘bounding-surface’ concept. In recent years, rate dependency has drawn the attention of researchers in 

Computational Mechanics as a way to circumvent the difficulties posed by the consideration of softening 
behaviour in the constitutive modelling of materials such as concrete (see Reference 3 for a review of these 

difficulties and most of the up-to-date proposed remedies). Pioneered by the works of Valanis6 and 

Needleman,s the use of the so-called ‘viscous regularization’ of the constitutive models has found a theoret- 

ical motivation, complementary to the physical grounds to advocate it. 
Observational experience shows that rate sensitivity is mainly due to the fact that the growth of internal 

microcracking (for a particular level of strain) is retarded at high strain Being known that for 

concrete (and other geomaterials) damage is essentially due to the nucleation and growth of microvoids and 
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microcracks, it is understandable that a diminishing of microcracking with increasing strain rate will induce 
a reduction in macroscopic nonlinear behaviour, and an increase of dynamic strengths. More recently, 
experimental and theoretical contributions have been introduced to show that the presence of free 
water in the pores of the concrete may explain the exhibited rate sensitivity, and that the relative importance 
of this is mainly controlled by the water/cement ratio of the mixture. These experiments also show that the 
enhancing of the elastic modulus due to the rate effect is less significant than that of the tensile strength. 

Starting from the observed evidence that this particular behaviour is in fact a consequence of the 
above-described strain-rate dependency of the internal damage evolution, material models based on the 
Continuum Damage Mechanics Theory (CDMT) have been proposed. This theory was firstly introduced in 
the context of creep-related problems, but it has afterwards been accepted as a valid alternative to deal with 
complex material behaviour. It is nowadays used for materials so different as metals, ceramics, rock and 
concrete, and within a wide range of applications (creep, fatigue, progressive failure, etc.). The reason for its 
popularity is as much the intrinsic simplicity and versatility of the approach, as well as its consistency, based 
on the theory of thermodynamics of irreversible processes. Among the different possibilities that such 
a framework offers, this work will make use of an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAisotropic damage model based on the rate-independent 
model developed by Faria and Oliver,15~’6 with only two scalar internal variables to monitor the local 
damage under tension and compression, respectively. This will provide a simple constitutive model which, 
nevertheless, is able to capture the overall non-linear behaviour of concrete displayed under seismic loading, 
including the strain-softening response, the stiffness degradation and stiffness recovery observed under 
multiple stress reversals and the experimentally observed strain-rate dependency. Furthermore, the model 
can be implemented in a strain-driven form which leads to an almost closed-form algorithm to integrate the 
stress tensor in time. This is a most valuable feature for a model intended to be used in large-scale 
computations. 

The paper is organised as follows. Section 2 describes a rate-independent constitutive model for concrete 
based on CDMT which allows for independent tension and compression damage and exhibits stiffness 
recovery upon load reversals. Section 3 describes a viscous regularization of the proposed model to account 
for rate-dependent effects. Section 4 deals with the numerical implementation of both models in a standard 
FEM framework. Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 presents some numerical examples to show the performance of the model. 
Section 6 presents the application of the proposed models to the seismic analysis of a gravity dam subjected 
to seismic excitation. Section 7 closes the paper with some conclusions on the proposed model. 

2. RATE-INDEPENDENT MODEL 

The Continuum Damage Mechanics Theory (CDMT) is based on the definition of the effective stress 
concept, which is introduced in connection with the hypothesis of strain equivalence: the strain associated 
with a damaged state under the applied stress r~ is equivalent to the strain associated with its undamaged 
state under the effective stress zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5. In the present work the effective stress tensor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 (second order) will assume 
the following form: 

In this expression Do is the usual fourth-order linear-elastic constitutive tensor E is the second-order strain 
tensor, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(:) denotes the tensorial product contracted on two indices. As our aim is to use a scalar damage 
model, with separated internal damage variables for tensile and compressive stress contributions, a split of 
the effectiue stress tensor into tensile and compressive components is needed. In order to identify clearly 
contributions with respect to each one of these independent effective stress tensors, ( + ) and ( - ) indices will 
be extensively used, referring to tensile and compressive entities, respectively. In this work, the stress split will 
be performed as: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA15,  

5 =DO:& (1) 

2 
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOi denotes the ith principal stress value from tensor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5, pi represents the unit vector associated with its 
respective principal direction and the symbol zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 denotes the tensorial product. The symbols zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(.) are the 
Macaulay brackets (thus giving the value of the enclosed expression when positive, and setting a zero value if 
negative), and symbols ).( are such that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(x) + )x( = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx. 

Hence, according to this stress splitting, the constitutive law proposed in this work can be defined 
explicitly, rendering for the Cauchy stress tensor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt~ the final expression 

0 = ( 1  - d + ) i i +  + ( 1  - d - ) a -  ( 3 4  

O $ d + $ 1  and O G d - G l  (3b) 

with 

where d+  and d -  are the tensile and compressive damage variables, respectively. Thermodynamic consider- 
ations about the non-negativeness of the di~sipat ion’~ demand that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd’ > 0 and d -  > 0. The model is 
completed with appropriate evolution laws for these internal damage variables. 

It is worth noting that equations (3) characterize the full stress tensor, and therefore, the two damage 
variables control the degradation of all the elastic properties that describe the material: Young’s modulus, 
Poisson’s ratio, shear modulus, etc. Thus, the model is not only devised to predict mode I failures, but it can 
also deaf with mixed failures (modes I and 11). It may also be remarked that equation (3) defines an isotropic 
model. Although CDMT can accommodate anisotropic models and they are often justified in the literature 
by macroscopic damage observations, there is some doubt about their consistency with thermodynamic 
principles when opening and closure of the cracks (damage areas) occur during the load history.’* In the 
context of strong discontinuity modelling, it has been shown” that isotropic models can deal with 
anisotropic directional damage in a consistent manner. 

In order to define clearly concepts such as loading, unloading, or reloading, a scalar positive quantity, 
termed equivalent stress, will be defined. This permits a comparison of different tridimensional stress states. 
With such a definition, distinct tridimensional stress states can be mapped to a single equivalent unidimen- 
sional stress test, which makes possible their quantitative comparison. As a consequence of the stress split, an 
equivalent effective tensile norm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf+ and an equivalent effective compressive norm Z- will be used. In the 
present work they will assume the following forms: 

? +  =Jm (44  

f- = Jm (4b) 

In equation (4b) c0;, and foil are, respectively, the octahedral normal and shear stresses, obtained from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK ;  
K is a material property which depends on the ratio between the biaxial and uniaxial compressive strengths 

of the concrete, 6, so that K = a(/l - 1)/(26 - 1) (typical values for concrete are /? = 1.16, K = 0.171). 
With the above definitions for the effective equivalent norms, two separated damage criteria g+ and g-  will 

be introduced,” the former for tension and the latter for compression: 

g + ( f + , r + ) = . r +  - r +  $ 0  ( 5 4  

g- ( T - ,  r - )  = z -  - r -  0 (5b) 

Variables I +  and r -  are current damage thresholds, in the sense that their values control the size of the 
expanding damage surfaces. For the initial stage, that is, when no loading has yet been applied, values r: and 
r i  (assumed material properties related to the uniaxial tensile and compressive peak strengths) are attributed 
to these thresholds. As it can be deduced from definitions (4a) and (4b), equation (5a) corresponds to 
a damage bounding surface which is an ellipsoid centred at the origin in the space of principal undamaged 
tensile stresses,21 and equation (5b) defines a Drucker-Prager cone for compression. Equation (5a) states that 
tensile damage tends to increase if S+ = r + ,  and so it will be initiated when for the first time 2’ = r: (a 
similar reasoning can be applied for compression). Figure 1 shows the initial damage bounding surface 
resulting from the combination of both criteria in a biaxial effective principal stress space. Note the good 
qualitative agreement with the experimental results for concrete obtained by Kupfer.*’ 
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--- Experiment01 results [Kupfer] 

Figure 1. Initial damage bounding surface in a biaxial effective principal stress space, compared with experimental results [22] 

With these definitions, and after enforcement of the consistency conditions for loading, unloading and 
reloading situations via the Kuhn-Tucker relations, the kinematics of the tensile and compressive internal 
variables are defined as 2o 

= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG+ ( r+)  >, o a G  + (r +) 

dr + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 +  = + +  20 ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd +  = 3 +  

with G + and G- being appropriate monotone-increasing functions derived from experimental observation. 
The particular form assumed by the rate equations (6a) and (6b) allows the specification of the following 
damage evolution laws, after performing a trivial integration (with the initial condition of null damages): 

r +  = max(rJ, max(T+)), d +  = G+(r+) (74  

r-  = max(r,, max(f-)), d -  = G - ( r - )  (7b) 

These equations put into evidence that the (rate-independent) model is strain-driven in a closed form: once 
the current strain tensor, E, is known, damage variables can be easily evaluated, as they only depend on the 
equivalent norms ? +  and 7 - ,  which are evaluated from E. So, the selection for the particular forms of 
functions G +  and G- will determine the specific damage evolutions to be considered, and consequently some 
care must be devoted to this subject, so that a realistic representation of experimental behaviour might be 
obtained. Anyway, the change from one particular set of evolution laws to a different one does not put any 
special problem, thus enabling this model to have substantial updating versatility. 

For the present work, the following damage evolution rules will be adopted: 

(84  
d +  = 1 - - ro' e A + ( l  - r + / r ; )  

r+  
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Equation (8a) is able to reproduce the softening branch of a concrete unidimensional tensile test, asymp- 
totically to the strain axis. With this evolution law for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd + ,  a finite area is retained between the stress-strain 
curve and the strain axis. This area defines the available energy to be dissipated in the control volume. As it is 
well known, this energy has to be appropriately related to the fracture energy of concrete (regarded to be 
a material property) to satisfy the requisites of mesh objectivity when dealing with softening  material^.'^'^' 
The fundamental issue here is the introduction of a geometrical factor, lch, called characteristic length, which 
depends on the spatial discretization and ensures conservation of the energy dissipated by the material.23 
Therefore, the determination of the parameter A +  is made by equating the material fracture energy per unit of 
characteristic length to the time integral of dissipation, to renderI5 (see the appendix): 

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA+ 1 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2R+ (t-".) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 0  

(9) 

where R' = (rof)2/2G: = ( f ; ) * /2EG: depends on the material properties, as G: is the (tensile) fracture 
energy per unit area, fof  is the uniaxial tensile strength and E is the elastic modulus. In the framework of local 
models and finite element analysis, the state variables are computed at the integration points in terms of the 

local strain (and/or stress) history. The characteristic length is thus related to the area (or volume in 3D 
applications) of each finite element. In this work its value will be approximated by the square root of the area 
of the individual element. It is clear from equation (9) that the introduction of the characteristic length implies 
a limitation on the maximum size of the finite elements used in the mesh, lch ,< l /R+.  The greater the 
elements, the steeper is the softnening branch of the response, and, locally, the fracture process is more brittle. 

By means of equation (8b) it is possible to reproduce the hardening effect on concrete subjected to 
compression, as well the softening which occurs after the compressive strength is attained. Besides r,, for its 
characterization two parameters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(K ,  B-) must be defined, usually by imposing that the evolution curve 
satisfies two selected points of a unidimensional experimental test. If softening is also contemplated under 
compressive strains, these parameters must also be related to the characteristic length of the element lch and 
to the (compressive) fracture energy, also assumed to be a material property.21 

3. RATE-DEPENDENT MODEL 

As mentioned in the introduction, there is a strong coupling between non-linear rate sensitivity in concrete 
(and other geomaterials) and damage growth. Therefore, it is natural to develop a rate-dependent constitut- 
ive model within the framework of CDMT, evolving from the above presented rate-independent damage 
model, and which accounts for strain rate dependency via the damage evolution laws. This will lead to 
a viscodamage model in which the tensile and compressive peak strengths are rate-dependent. However, such 
a model will not account for the observed rate sensitivity of the elastic properties (such as the elastic 
modulus), also an observed phenomenon, even if less intense than the strength sensitivity.12 It must be 
remarked that this effect can also be included in the proposed constitutive model via an additional 
viscoelastic c ~ n t r i b u t i o n . ~ ~  Also, an extension of the proposed model to take into account unrecoverable 
strains during unloading is possible via an additional plastic c~ntr ibut ion. '~  Both mentioned extensions of 
the model yield a visco-elastic plastic viscodamage model that is currently under development by the authors. 
As the final goal of this work is to capture the seismic response of concrete dams (large-scale structures), 
emphasis is placed on developing a model which is strain driven (and thus, suitable for application within the 
Finite Element Method) and where the constitutive relationship can be integrated as efficiently as possible 
(and thus, being feasible for large size computations). 

To this end, let us consider a viscous regularization of the rate-independent damage thresholds evolution 
laws defined by the left-hand side of equations (6), so that these are replaced by 
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$+ and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4- are scalar functions called the viscous damage threshold flow functions; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8+ and 8- are the 
fluidity parameters. Note that the modification of the evolution laws only affects the integration of the 
damage thresholds zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(r' and r - ) ,  but not the damage variables zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(d' and d - )  themselves. These are still obtained 
in a closed form, through the explicit definition of the functions G + ( r + )  and G - ( r - ) .  Additionally, it is worth 
to remark that, since equations (10) guarantee monotone increasing damage variables (d' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 0 and d -  2 0), 
the condition of non-negative dissipation required from the thermodynamic principles is satisfied. 

The viscous threshold damage flow functions may assume the following form: 

++ (z+ - r + )  = ro + (<Z+ ,. r + ) ] '  

Note that a', a -  are positive exponents, also supposed to be material properties. The determination of these 
exponents, as well as that of the fluidity parameters is done by means of uniaxial tensile and compressive 
tests. Note that different values can be attributed to the tensile and compressive parameters and exponents, 
and this will allow to account for the different rate sensitivities (greater under tensile than under compressive 
loading) exhibited by concrete. 

The reasoning behind the above laws is analogous to the classical Perzina viscoplastic regularization often 
used in the framework of Computational Plasticity. It can be seen that this assumed rate-dependent 
formulation is a general form for the damage threshold and damage evolution, controlled by the fluidity 
parameters. The inverse values of these parameters are usually called 'viscosities' in the literature of visco 
damage and visco-plastic models. Viscosity is measured in time units and it controls the 'amount' of rate 
dependency, so that for a zero value of the viscosity (that is, for an infinity value of the fluidity parameter), the 
rate-independent (or inviscid) damage evolution law is recovered, while for an infinity value of the viscosity 
(that is, for a zero value of 8), evolution of the damage variables is prevented, thus rendering an instan- 
taneously elastic response. 

An alternative regularization of the viscodamage model was proposed by Simo and Ju?' which can be 
expressed as 

Note firstly that here the closed form for the damage variable is lost, and thus the model is necessarily less 
efficient. However, the main drawback of this approach is the dependency of equations (12) on aG(f)  /aZ, 
which precludes the evolution of damage when this derivative vanishes. For a given G function, this will 
happen for a fixed value of Z, independently of the rate of straining. From the authors' point of view this 
makes this alternative not suitable for the modelling of the mechanical behaviour of concrete, as rate 
dependency would only be active for a limited range of strain. 

It has been known for a number of years,*' and it is evident from the analysis performed in the appendix 
that to be able to obtain mesh-independent time responses exhibiting proper localization when using 
viscous-type models, the fluidity parameters must also be mesh-dependent. Otherwise, the width of the 
localization band is greater than one element, and the inviscid model is not recovered as a limit case of the 
viscous regularization. Coming from the analysis presented in the appendix we will assume in this work 
that 
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9' and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR' are material properties (see equation (9)) and Ich is the characteristic length. A similar 
relationship would be adopted for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9- if softening should also be modelled under compression. 

It is worth noting that even if equations (9) and (13) have been obtained in the appendix considering the 
conditions for mesh objectivity in a uniaxial tensile test, the recently developed framework for the analysis of 
strong discontinuities' indicates that they are valid approximations for the analysis of weak discontinuities 
localization induced by strain-softening constitutive models under general stress conditions. In particular, 
they can be used for the biaxial stress states that arise in applications like the analysis of gravity concrete 
dams (see Section 6). 

4. NUMERICAL IMPLEMENTATION 

A numerical algorithm needs to be implemented for the time integration of the damage constitutive 
equations presented in the previous sections. In the following this algorithm is presented, in a strain-driven 
form which leads to an almost closed-form algorithm to integrate the stress tensor in time. This is most 
appropriate within the context of the application of the finite element method. 

Figure 2 presents the scheme followed for the evaluation of the stress tensor corresponding to a given 
strain tensor for each time step in a displacement-based finite element code. Each time step begins at time 
t ,  with all state variables known and it ends at time t,+ with the state variables updated according to the 
given total strain tensor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE.  The time step size is At = t,+ - t,. 

Note that the only difference between the rate-independent and dependent models is the updating of the 
damage thresholds when evolution of the damage occurs, that is, upon loading conditions. For the 
rate-dependent model, these may be evaluated using a generalized mid-point rule to integrate equations (lo), 
i.e. 

r,+ = I ,  + At 94(Z, - r,) (14) 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ, and r,  are defined by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ra = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1 - a) r, + N I , + ~  ( 1  5b) 

Then, substitution of equations (15) into equation (14) renders 

r n +  1 = r n  + A t  $4 ((1 - a) (Z, - r n )  + a(?,+ 1 - r,+ 1)) (16) 

Note that for a = 1, equation (16) corresponds to a backward-Euler difference scheme. It is easy to show that 
the algorithm of equation (16) is unconditionally stable for a > 0.5 and second-order-accurate only for 
a = 0.5 (Crank-Nicolson or trapezoidal rule), which allows the use of larger time step sizes for rate- 
dependent analysis. 

It is obvious that the explicit determination of r,+ is possible only for small integer values of the exponent 
a in equation ( l l ) ,  as the cases a = 1,2,3 lead to linear, quadratic and cubic expressions for equation (16), 
respectively. In the general case, equation (16) may be solved by the iterative Newton-Raphson method, 
which ensures a fast rate of convergence. To this purpose, equation (16) may be rewritten as 

f ( r n +  1) = - r n +  1 + I n  + A t  9 4((1 - a)(fn - rn) + a(Z,+ 1 - I , +  1)) = 0 (17) 

so that the problem is now to find the root of equation (17) by an iterative Newton-Raphson procedure given 

by 
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"PUT: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr:, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr ; ,  

OUTPUT: r:+, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr;+l,un+l 

(1) Evaluate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(2) Split 5,+l into 

(3) Compute equivalent stresses 7:+1 and according to Eq. (4) 

(4) Compute equivalent stresses ?$ and 7; according to Eq. (15.a) 

(5) Check for ?: > r$ 

= Do : zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtn+l 

and 5;+l according to Eq. (2) 

YES: Check for 6+ > 0 (rate dependent case 7 )  

YES: Update threshold r:+l according to Eq. (17) 

Compute r t  according to Eq. (15.b) 

If?: < r i  then reset r;+, = r R  

NO: Update threshold according to P $ ~  = 

NO: Set r:+l = r$ 

(6) Check for +: > zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr; 

YES: Check for 6- > 0 (rate dependent case ?) 

YES: Update threshold r;+l according to Eq. (17)  

Compute rp according to Eq. (15.b) 

If?; < r, then reset = P, 

NO: Update threshold according to = ?;+l 

NO: Set r;+l = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT; 

(7) Evaluate damage variables: 

C+l = G+(T,+tl) 

d,+l = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG-(T,,) 
(8) Compute final stress tensor: 

~ 

Figure 2. Algorithm for the evaluation of the stresses 

where rLf,', indicates an improved approximation to the exact root obtained from the previous rL+ approxi- 
mation andf '  is the first derivative of functionfwith respect to r , ,  The iteration procedure starts for i = 0 
with rE+ = r,  and finishes when a preselected convergence criterion is satisfied. 

Note that in equation (14) the condition to update the damage threshold is fa > r,. However, 2, cannot be 
computed before a new value for r ,  + is found. Therefore, the previous condition is changed in the algorithm 
of Figure 2 by an alternative check, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ, > Y,. Consequently, once a converged value for rn t l  has been 
computed according to the described procedure, equation (1 5b) is used to evaluate the corresponding 
ru value. Then a check is performed to ensure that the condition fa > ra is satisfied. Otherwise, there is no 
evolution of damage in the time step and, therefore, r , ,  = Y,. 
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Figure 3. Cyclic behaviour of the rate-independent model in a uniaxial test 

5. NUMERICAL EXAMPLES 

5.1. Rate independent model. Tension-compression cyclic test 
This first example is presented to demonstrate the ability of the model to simulate the characteristic tensile 

and compressive behaviour of concrete for slow strain-rate situations. Figure 3 shows the calculated cyclic 
behaviour of the proposed rate-independent continuum damage model in a uniaxial test performed with 
a single finite element (4 nodes, Ich = 1) subjected to prescribed axial displacements. The figure is plotted in 
a non-dimensional mapped form (fversus e )  obtained by dividing the stress by the respective damage stress 
thresholds zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(f= a[:/-) and the strain by the respective strain thresholds (e  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&/f0fi-/E)). The material 
properties used here are: E = 30 GPa (elastic modulus), v = 0.2 (Poisson ratio), with a tensile strength 

f0f = 2.0 MPa and a fracture energy G f  = 250 N/m, and a compression stress threshold for damagefi  = 

12.0 MPa. The corresponding parameters that define this model concrete behaviour are: A -  = 1.000 and 
B -  = 0.890. 

The load sequence and the response are described as follows. The element is firstly stretched until damage 
in tension occurs (path ABC); then the imposed displacements are reversed so that secant unloading, recovery 
of the stiffness and damage in compression occur (path CADE); a new reversal shows secant unloading, 
reloading and further damage in tension until the stress virtually vanishes (path EACF); a new reversal shows 
a new recovery of stiffness to the damaged compression one and evolution of damage under further loading 
(path FAEG); the final reversal shows secant unloading to the origin (path GA). 

5.2. Rate-dependent model. Strain-rate dependency efSect 
In order to show the strain-rate dependency effect that the viscous model is able to simulate, a model 

concrete will be used with the same material properties as in the previous example. Figure 4 shows the 
stress-strain curves obtained for uniaxial tension tests performed at different strain rates (in the figure u = i), 
using the viscous damage flow proposed in equation ( 1  la). It can be noted that for higher strain rates the 
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Figure 4. Strain-rate dependency effect in a tensile uniaxial test 

Figure 5. Calibration of peak strength ratio versus strain rate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
peak stress increases, which corresponds to the experimental evidence. It is also noted that the energy 
dissipated during the test is also larger for higher strain rates. In the limit, for very slow straining, the 
rate-dependent model simulates the inviscid behaviour, and it dissipates the expected fracture energy per unit 
length. 
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The additional material parameters needed for the viscous model have been calibrated to match the 
response of the model to the experimental zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApeak strength ratio uersus strain-rate curves obtained by Suaris and 
Shah,' where the peak strength ratio is the relation between the dynamic and static peak strengths. Figure 
5 shows the comparison between the experimental and the computed peak stress values obtained with the 
following parameters: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9' = 870 m/s, 9 = 40000 m/s and a' = a -  = 5 .  These values will be used throughout 
this work. Note the satisfactory agreement between the experimental and the analytical peak stress values. 

5.3. Performance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the time integration scheme 
Figure 6 shows the relative performance of the generalized mid-point time integration scheme used for the 

rate-dependent model. This scheme is used here to track the response for a tensile uniaxial test with strain 
rate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 = 10- ' s -  '. Figure 6(a) shows the curves obtained using zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1.0 (backward Euler) with 100, 10 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 time steps. Figure 6(b) shows the same curves obtained using a = 0.5 (Crank-Nicolson). Although both 
algorithms are unconditionally stable, the second one is much more accurate (second order), and it is able to 
capture the peak strength with greater time step sizes. 

5.4. Mesh independence test 
Let us now consider the test problem depicted in Figure 7 for.an uniaxial tension test. The test is carried 

out by imposing a free-end displacement d( t )  = ut + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdo as a linear function of time, and with do zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= f o f / / E ,  so 
that t = 0 is the time for the onset of damage. The material properties are the same used in previous examples. 
The total length of the bar is 1 and it is discretized using a row of n four-noded elements. One of the elements 
is slightly perturbed so that damage will develop in a band equal to Ich (the width of the perturbed element, 
Ich = l /n). 

Figure 8 shows the results obtained for the numerical simulation of the tension test using a linear softening 
law (see the appendix, equation (29)) for three different straining rates (u = 10- I ,  and lop4 m/s) and for 
three different discretizations (n  = 2,20 and 200 elements). As shown in the appendix, results are mesh 
objective, as the curves for the different discretizations literally overlap for each straining rate. This shows 

Figure 6.  Performance of the time integration scheme: (a) Backward Euler 
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Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6.  Performance of the time integration scheme: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(b) Crank-Nicolson zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Figure 7. Uniaxial tension test problem. Geometry 

that the expressions obtained for the dependence of the softening modulus and the fluidity parameters on the 
characteristic length are correct. 

Figure 9 shows the results obtained for the numerical simulation of the tension test using an exponential 
softening law (see equation (8a) and the appendix, equation (38) for the same straining rates ( u  = lo-', lo-' 
and m/s) and the same discretizations (n  = 2,20 and 200 elements). As shown in the appendix, results in 
this case are not exactly mesh-independent, as the curves for the different discretizations do not overlap for 
each straining rate. However, it is very clear from the figure that results do converge on mesh refinement, and 
curves for n = 20 and n = 200 elements almost overlap and, consequently, mesh objectivity is achieved. This 
shows that the conclusions reached in the appendix for the dependence of the softening modulus and the 
fluidity parameters on the characteristic length are correct. 

6. SEISMIC ANALYSIS OF A GRAVITY DAM 

The computational model for concrete described in the previous sections is now applied to the analysis of 
a concrete gravity dam subjected to seismic action. The geometry of the problem is depicted in Figure lqa) ,  
where the foundation and the reservoir included in the numerical model are also shown. Fluid-structure 
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Figure 8. Uniaxial tension test and mesh objectiveness for linear softening law 

2.2 I 1 1 1 1 1 1 1 1 

2.0 

1.8 

1.6 

1.4 

1.2 

1 .o zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0.8 

0.6 

0.4 

0.2 

0 0  !f 1 1 1 1 1 1 1 1 1 

0 Oe+00 5.0e-05 1 Oe-04 1 5e-04 2 Oe-04 2 5e-04 3 Oe-04 3 5e-04 4.013-04 4 5e-04 5 Oe-04 
end-displacernenffl 

Figure 9. Uniaxial tension test and mesh objectiveness for exponential softening law 

interaction is dealt with in a block-iterative manner, so the ‘fluid’ and the ‘solid’ phases are in fact solved 
separately. Appropriate boundary conditions must be imposed on all the boundaries labelled r on the figure. 
In particular, the ‘repeatability condition’ has been enforced on the lateral boundaries of the foundation, r,,, 
by prescribing the displacements on the left-hand side of the foundation to be equal to those on the 
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Figure 10. Koyna Dam: (a) computational model showing the dam with the foundation and the reservoir; (b) computational mesh used 
for the dam 

right-hand side.'6926 The bottom side of the foundation, Tsi, is a 'transparent' boundary which allows the 
prescribed in-coming seismic wave to enter the domain and propagate vertically towards the dam, and 
simultaneously, it allows the reflected out-going waves travelling downwards to leave the domain without 
spurious reflections. The boundaries labelled Tsf and Trs are 'interaction boundaries' where fluid-solid 
interaction is enforced. The fluid free surface, Tfr, is modelled imposing zero pressure, and the fluid lateral 
boundary, rfr, is a 'transparent' boundary which allows the out-going pressure waves to leave the domain 
without spurious reflections. The detail of the actual procedures used to account for fluid-structure 
interaction, as well as the imposition of the boundary conditions and input of the seismic action will not be 
described here. The interested reader may refer to Reference 16, where the same problem was considered. The 
dam selected resembles very closely Koyna Dam in India (107 m high) that has been studied by many 
researchers interested in seismic analysis. Mostly quadrilateral 4-noded elements are used for the solid and 
fluid meshes, with triangular 3-noded elements in the refined zone where the non-linear behaviour is expected 
(see Figure 10(b)). 

The material properties for the concrete of the dam are the same as those used for the previous examples, 
with density zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAps zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 2600 kg/m3. The soil is considered elastic with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE = 10 GPa, v = 0.2 and p s  = 1830 kg/m3. 
With this geometry and material properties, the four largest vibration periods of the dam-foundation system 
are: T1 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0-585 s, T 2  = 0.438 s, T 3  = 0.353 s and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT4 = 0.291 s. The four largest vibration periods of the dam 
on a rigidfoundation are: TI = 0.315 s, T 2  = 0.121 s, T 3  = 0090 s and T4 = 0060 s. This compares well with 
the results obtained in Reference 27, where a very close geometry was considered. The natural damping is 
tuned to provide a damping ratio of 5 per cent for the first and second modes of the dam-soil system 
(Rayleigh parameters a = 0.8 s-l, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb = 0,003 s). The water level in the reservoir is 100 m. The fluid properties 
are pf = 1019 kg/m3 and c = 1439 m/s (speed of acoustic waves). 

With the objective of analysing the response of this large concrete dam subjected to seismic action an 
artificial velocigram has been generated.26 The generated velocigram (see Figure 11) has a total duration of 
10s. The dominant period of the signal is 0.4 s. The corresponding velocity signal is applied at the bottom 
boundary of the computational model as an horizontal seismic excitation along the canyon direction. This 
produces a peak ground acceleration of 0.400g and maximum free-field ground velocities around 0.40 m/s 
(occurring about t = 3.7 s). The time step used for the analyses is At = 0.002 s, with a 0.1 per cent tolerance on 
residual forces over total forces. The analyses are performed using the rate-dependent damage model 
presented in this work with material properties 9' = 870 m/s and a' = 5 (no compression damage ever 
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Figure 11 .  Koyna Dam: input velocity signal 

arises), and repeated for the rate-independent damage model. This allows to evaluate the importance of the 
rate effects accounted for with the viscous model in a seismic analysis like this one. 

Figure 12 shows the computed horizontal displacements at the top of the dam (relative to the ground) for 
the two models. Although non-linear effects are significant for this seismic intensity, the displacement 
response for the two models appears to be very similar. The difference is greater for the vertical component of 
the displacements (not shown), but the magnitude of this is quite small (less than 1 cm). These non-linear 
effects are evident in Figure 13, which depicts the evolution with time of the mean square value of the tension 
damage on the dam, 6'. Note that the mean square value of the damage over the dam is only an average 
value, not directly useful to assess the influence of damage on the stability of the structure. It is used here only 
to highlight the influence of rate sensitivity in the evolution of damage. In Figure 13 the difference between 
the rate-dependent and independent models is more clearly appreciated, with final values 6' = 0227 for the 
rate-independent model and 6' = 0.166 for the rate-dependent model. Note that the evolution of damage is 
mostly concentrated in a few intervals of time where the maximum positive and negative displacements occur 
(close to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt = 1.6 s, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt = 3.2 s and t = 4.0 s). 

The evolution of damage with time is again shown in Figures 14 and 15, which show the distribution of 
damage at selected times ( t  = 3.0 s, t = 4.0 s, t = 4.5 s and t = 12-0 s) for both analyses. For the rate- 
independent model the tensile damage is localized in a zone that almost bridges across the 'neck' of the dam. 
It is initiated firstly at the up-stream wall and then it appears at the down-stream wall and it propagates 
inwards while the maximum amplitude oscillations occur (between t = 3.0 and 4.5 s). However, global 
structural collapse does not occur, as the up-stream and down-stream faces are never under tensile stress at 
the same time, and the dam retains its overall stability at all times. This is consistent with the results obtained 
by other researchers using rate-independent damage models.27 

For the rate-dependent model damage develops in a similar fashion, but the rate straining is high enough 
to avoid the progression of damage at mid-height of the up-stream wall at time t = 1.685 s, and it does 
not develop afterwards. This difference in the behaviour can be explained by Figure 16, which shows 
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Figure 12. Koyna Dam: horizontal (relative) displacement at the top of the dam 
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Figure 13. Koyna Dam: evolution of the tensile damage index (mean square value) 

the evolution of the first principal stress precisely for the element situated in that location. For the 
rate-independent model the stress exceeds the tensile strength off: = 2.0 MPa and the element is damaged 
completely and instantaneously. For the rate-dependent model, the attainable stress is higher, and damage 
does not occur at that time, even though the stress reaches a value over 2 3  MPa. Figure 17 shows how the 
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Figure 16. Koyna Dam: evolution of the first principal stress at the up-stream wall of the dam 

strain rate evolves with time at this element for the rate-dependent model. Note that strain rates zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE‘ > 
occur. According to Figure 5 this would translate in an increase of the strength between 30 and 50 per cent 
which would account for the different behaviour. 

The relative importance of the inclusion of rate sensitivity in the constitutive model is also established by 
computing the largest eigenvalues of the dam-soil system after the seismic analysis, that is, when damage has 
already developed. For the rate-independent model, these are: TI = 0.634 s, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT 2  = 0.507 s, T 3  = 0.359 s and 
T4 = 0.300 s. For the rate-dependent model, these are: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT ,  = 0.608 s, T 2  = 0.479 s, T 3  = 0.355 s and 
T4 = 0293 s. Naturally, the non-linear behaviour results in larger vibration periods for the damaged dam. 
Note that the first two fundamental modes are the most affected, while the others change comparatively little. 
The first mode changes 8.37 and 3.93 per cent, respectively, while the second changes 15.75 and 9.36 per cent. 
These differences are justified by the different damage maps shown in Figures 14 and 15, which would clearly 
affect the first and, more substantially, the second vibration modes. 

It has been customary for many years to account for the strain-rate effects in a simplistic manner by 
increasing the values of the ‘static’ tensile strength and fracture energy by a certain percentage, evaluated 
heuristically. We have found that for this particular example an increase of 45 per cent in these values 
produces results, using the rate-independent model, which are extremely close to those of the rate- 
dependent model. This is consistent with the strain rates computed for this case, but it cannot be easily 
extrapolated to other situations. In particular, a comment on the use of Rayleigh damping in conjunction 
with a viscodamage model can be made. As mentioned in Section 3, an extension of the proposed constitutive 
model to take into account the rate dependency of the elastic properties would yield a viscoelastic 
viscodamage model that would intrinsicly incorporate the (stiffness proportional) damping effects. This 
would make unnecessary the consideration of an additional Rayleigh-type damping mechanisms. Such 
a modification of the constitutive model could affect the evolution of the internal effective stresses and, 
therefore, the evolution of damage in the rate-dependent model.’’ This is clearly an area of interest for future 
work. 

s -  
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Figure 17. Koyna Dam: evolution of strain-rate at the up-stream wall of the dam (rate-dependent model) 

7. CONCLUSIONS 

The paper presents an isotropic damage model developed for the numerical analysis of concrete dams 
subjected to seismic excitation. The model is first introduced in a rate-independent format which incorpor- 
ates two separate internal variables to characterize damage under tension and compression. This is an 
essential feature for seismic analysis, as it allows the stiffness recovery upon load reversals (unilateral effect). 
Secondly, a viscous regularization of the model is presented to incorporate a second important feature: rate 
sensitivity. The issue of mesh objectivity when strain softening occurs is addressed using the concept of the 
‘characteristic length’ of the fracture zone, and it is shown that both the softening modulus and the fluidity 
parameter must depend on it to provide consistent results as the computational mesh is refined. Some aspects 
of the numerical implementation of the model are also treated, to show that both formats of the model can be 
easily incorporated in any standard non-linear finite element code prepared to perform structural analysis 
using a step-by-step time integration method. The resultant model proves to be a good candidate for the 
numerical simulation of fracture processes in concrete. On the one hand, it is firmly founded on consistent 
constitutive theory, and it is free from empirical factors of difficult physical interpretation. On the other hand, 
the simplicity of the formulation and the explicitness of the integration of the constitutive equation make it 
ideally suited for large scale computations. The application of the proposed model to the seismic analysis on 
a large gravity concrete dam shows the relative importance of the inclusion of rate sensitivity. It is found that 
the structural response is not greatly affected in terms of the computed displacement history, but it may vary 
significantly in terms of the development of damage. The inclusion of rate sensitivity via viscous regulariz- 
ation is able to reproduce the experimental observation that the tensile peak strength of concrete can be 
increased up to 50 per cent for the range of strain rates that appear in a structural safety analysis of a dam 
subjected to seismic actions. To conclude, the application of the proposed isotropic continuum damage 
model to the seismic analysis of a concrete dam shows that it is a useful tool for earthquake engineering and 
structural dynamic analysis. 
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APPENDIX 

Analysis of dissipation for rate-dependent damage model 

out by means of the concept of the specific dissipated energy in an uniaxial tension test: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 1  

The analysis of dissipation for the rate-dependent damage model introduced in this work will be carried 

g+  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAjr j d t  

It follows from the stress expression, (3a) that the rate of dissipation in a pure tension test would be 

where Yo' is the tensile energy potential, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd +  is the rate of damage in tension and equation (10a) has been used. 
Given the definition of Yo' and that of the tensile equivalent stress, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ+ (see equation (4a)), it is clear that 

(21) 

On the other hand, for monotonically increasing straining, equations (10a) and (1 la)  can be combined to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy +  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 = 1 2 6  - +  :D, ' :S+ = $ ( Z ' ) 2  

Superscript ( + ) will be dropped in the following for simplicity. 

yield 

Substitution of equations (22), (21) and (20) into equation (19) gives 

l / a  2 

g = j r ; [ l + ( $ )  ] r 2 G ' f d t  

Let us consider the energy g dissipated per unit volume over a domain which has a 'typical width' lch (the 
'characteristic length') be expressed as 

- 

(24) 
9 

9 = -  

with g having the meaning of dissipated energy per unit of surface. Let us assume that g depends on the 
material properties and on the rate of straining, but it is independent of lch. 

Let us now consider the situation depicted in Figure 7 for the uniaxial tension test. This test is carried out 
by imposing a free-end displacement 6 = d(t) as an arbitrary monotone-increasing function of time, and with 
d(t = 0) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA=fol /E ,  so that t = 0 is the time for the onset of damage. We expect the damage to develop in a band 
equal to lch (One element of the mesh in a numerical simulation of the test). Let us denote by &d the Strain 
within the localization band and by E ,  the (elastic) strain outside this band. Equilibrium of tractions along the 
bar allows to express 

ich 

E ,  = ( I  - d)&d (25) 

Boundary conditions demand that at any time 

6 = &dich + &,(I - Ich) 

Therefore, from equations (25) and (26) 

6 
Ed = 

lch + (1 - d)(l - Ich) 
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As for the uniaxial problem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2' = E E ~  in the damaged zone, equation (22) can be used to yield 

As d = G(r), equation (28) is a differential equation which can be solved for r,  with the initial condition 
r(t = 0) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA10. 

Linear softening law. Let us assume in the following a linear law for softening, which would correspond to 
a function G for the evolution of damage of the form 

where H 2 0 is the softening modulus, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAro = f o l d  and r, = ro /H.  Let us first consider the uniaxial tension 
test carried out under 'quasi-static' conditions, that is, with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi = 0. Now equation (23) can be particularized 
and integrated to give 

Imposing now condition (24), which for this particular case can be expressed as gqst = Gf/lch, Gf being the 
so-called 'fracture energy' of the material, the softening modulus is found to be 

where R is a material property. The additional condition d ( t  = 0) = (1/(1 - H)) i / r o  2 0 imposes that H 6 1, 
which yields the well-known limitation on lch: 

1 2Gf lch Q = = __ 
H r; 

Let us now consider the uniaxial tension test carried out under 'rate-dependent' conditions, that is, with 
I: # 0. Now equation (23) can be particularized to give 

l la 2 

gra te=  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1:: [1 + (5) ] (") 1 - H  dr 

Let us introduce the new variable s = ( I  - ro) /ro9, so that equation (33) can be rewritten as 

grate = jr i [ 1 + (S)'/']i (*) 1 - H  ds 

(33) 

(34) 

For grate in equation (34) to have the appropriate form (24), 9 must be of the form 

9 = 9 ( i - H ) 2 0  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(35) 

where 9 is a material property. Now s, = 1/H9 and equation (34) can be simplified to be 

It is easy to see that grate in equation (36) will have the appropriate form if the bracketed term inside the 
integral does not depend on !ch. To show that this is the case, let us introduce the softening law (29) in the 
differential equation (28). Some manipulation leads to the particularized equation (in terms of the new 
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variable s): 

(37) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE 
[l zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(+/a] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[CSS + l ]  = - s(r) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

f o  

with the initial condition s(r = 0) = 0. In equation (37) C = (1  - A/)/( l / lch - A), and therefore, in view of 
equation (35), the product C9does not depend on I&. Thus, it is clear that equation (37) does not depend on 
lch. The response zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs = s ( t )  is mesh-objective, and so will be the dissipated energy grate = grate as desired. 

Remarks: 

(i) For A, $2 0, the condition 8 > zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 does not impose a different upper limit on lch from that on equation 

(ii) The specific dissipation energy grate can be related to the ‘static’ fracture energy of the material in the 
form grate = grate /ch = arat,Gf, with arate 2 1 being a ‘magnification factor’ which depends on the rate of 
straining and the properties of the material. Its appearance agrees with the experimental observation 
that ‘fracture energy’ is larger at larger strain rates. 

(32). 

(iii) Mesh objectivity is achieved for any arbitrary monotone-increasing function s(t) .  

Exponential softening law. Let us assume in the following an exponential law for softening, which would 
correspond to a function G for the evolution of damage of the form 

, r o $ r d c o  (38) d = G(r)  = 1 - 2 eA(1  -r /ro)  

r 

where A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 0 plays the role of the softening modulus and ro = f o / f i .  Let us first consider the uniaxial tension 
test carried out under ‘quasi-static’ conditions, that is, with i = 0. Now equation (23) can be particularized to 
give 

gqst = Jro “ 1  (ro + Ar) eA(l-r/ro) dr = - ( 1 + - :>r :  2 

Imposing now condition (24), gqst = Gr/lch, the softening modulus A is found to be 

(39) 

where R is a material property defined above. The condition A > 0 imposes the same upper limit on lch as 
equations (32) and (35). 

Let us now consider the uniaxial tension test carried out under ‘rate-dependent’ conditions, that is, with 
i # 0. Now equation (23) can be particularized to give 

Due to the complicated expression of equation (41), it does not seem possible to establish a general condition 
for grate to have the appropriate form and, therefore, to ensure mesh objectivity. However, let us consider the 
situation on mesh rejrnent, that is, as reduces and tends to zero (and so does A, see equation (40)). Now it is 
possible to expand equation (38) in a Taylor’s series around the value A = 0, and retain only up to the linear 
term to have 

d = ( l + A ) ( l - : ) ,  

where ru = ro (1 + A)/A. Equation (42) represents the linear softening law which approximates the exponen- 
tial law (38) as lch tends to zero. The analysis already performed for the linear law allows to conclude that if 
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9has the form of equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(35) mesh objectivity will also be achieved for the exponential softening law if the 
localization band zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis sufficiently small (on mesh refinement). 

In fact, the procedure followed allows to conclude that if 9 has the form of equation (35) mesh objectivity 
will be achieved for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAany softening law zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAon mesh re$nement. 
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