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I. Introduction. Let Xx(co), X2(co),..., Xn(co) denote n identically distributed,

mutually independent random variables uniformly distributed over the interval

[0, 1], i.e. P{0SXiSt} = t,0StSl.We denote by (Xf(w), X$(w),..., X*(w)) the

set of n observations (Xx(co),..., Xn(co)) arranged in increasing order, thus

Xf(co) < X*(co) < ■ ■■ < X£(w). Xf(oS) is called the rth order statistic and we refer

the reader to [2] or [7] for a discussion of this topic. We denote by Fn(t, co)

the empirical distribution function corresponding to the random sample

(Xx,...,Xn)(2).Thus

(1) nFn(t, co) = number of observations X¡St, and

(2) Fn(t, co) = k/n for Xf S t < *?+1.

The stochastic process An(t, w) where

(3)An(t,co) = n1'2(Fn(t,oJ)-t)

has been studied by Kolmogorov [8], Doob [5], Donsker [4] and Anderson and

Darling [1] in connection with the Kolmogorov-Smirnov and Cramer-Von Mises

statistics. Let D(t, w)= W(t, w)-tW(l, co), OStSL where W(t, co) is the one

dimensional Brownian motion process with F{IF(0) = 0} = 1 and covariance

function r(s, i) = min (s, /)• Then, as was shown by Donsker [4], the A„(z) process

tends to the process D(t) in the sense of weak convergence of stochastic processes,

an account of which is to be found in references [9] and [10]. These general results

of Donsker's, as is well known, include as special cases the results of Kolmogorov-

Smirnov and Cramer-Von Mises. We now give two examples.

Let x(i) denote a bounded measurable function on the interval [0, 1] and define

functionals ||x|| and J^x) as follows(3):

(4) ||x(z-)||=Max0Stsl|x(r)|,

(5)áF(x) = P0(x(t))2dt.

Let us now define cumulative probability distribution functions Kn(X), K(X),

F„(A), V(X) as follows:

(6) Kn(X) = P{\\K\\^X},
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(2) Whenever it is convenient we shall suppress the w in the term Xn(u>) and similar terms.

(3) The appropriate hypothesis is to assume that x{t) e D[0, 1] and we refer the reader to

[9] for a discussion of the function space Z>[0, 1].
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(7) Kn(A) = F{^(A„)¿A},

(8) F(A)=F{||F||áA},

(9) F(A) = P{,F(F)áA}.
It is an immediate consequence of Donsker's theorem that lim,,.,^ F„(A) = F(A)

and lim^oo Vn(X)= V(X). It is an interesting and important problem to determine

the rate of the convergence of Kn to K and Vn to V.

It is a consequence of a theorem of Chan-Li-Tsian, (see p. 155 of [6]), that-

(10) MaxA |Fn(A)-F(A)|g^1«-1/2aszz^oo.

The purpose of this paper is to derive the following estimate:

Theorem 1. MaxA \Vn(X)- V(X)\ ̂ (log«)3'2-«"1'5 as «->oo.

Our method is based on the Skorokhod representation which the author has

used previously in a similar context [11]. The fact that the Skorokhod representa-

tion can be applied to the Kolmogorov statistics is due to Breiman [2] and our

method is essentially an application of Breiman's idea to the Von Mises statistic Vn(X).

II. Proof of the theorem. We begin by considering the following sequence of

random points in the plane (X^(co),kjri). We denote by Fn(t,w) the "random

broken line" that connects (X£, k/n) to (X$+x, (k+l)/n) by a straight line. Thus

Fn(t, w) is a continuous, monotone increasing function on the interval [0, 1], and

Fn(t, oS) = Fn(t, w) when t= X*(a>). Fn(t, of) itself is a step function with jumps of

size 1/« at the points t = X£. Thus Fn(t, <o) is a continuous function that approxi-

mates Fn(z, cu). We shall now study how good this approximation is.

Lemma 1. Let en denote a sequence of positive numbers decreasing to 0 at a rate

of speed to be specified later. Then

(11) F{||An|| ^ en(ny12} Í 2exp(-2ne$) + Axn-112.

Proof. The proof is an immediate consequence of (10) and the well-known

estimate

(12) P{\\D\\ ä A} ̂  2exp(-2A2)       (p. 396 of [5]).

We now "smooth out" the process A„(z, to) by introducing the following process

(13) K(t,co) = n^2(Fn(t,co)-t).

We note, without proof, the following two inequalities

(14) |A„(z,<o)| ^ |Àn(z,cU)|+«-1'2

(15) \àn(t,o>)\   ï   |AB(/, «01+«-»*.

The proofs of (14) and (15) are elementary and are therefore omitted. The follow-

ing two inequalities are immediate consequences of (14) and (15).

(16) F(An)-F(Àn) ^ 2«"1'2 £ \&n(t, co)\ dt+n-\

(17) .FÍA,,)-.FÍA) ë 2b-1» j1 \K(t, *>)\ dt+3n-\
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Combining (16) and (17) we obtain

(18) \&(An)-3F(Kn)\ S 2n~1'2 £ \&n(t, co)\ dt + 3n~\

Let us also note that

(19) ||AJ ä ||Än||.

Lemma 2.

P{\áF(An)-¿F(An)\ ^ 2((logzz)/zz)1'2} S A2n~^2.

Proof. It follows from (18) that

p\\P(*J-P(K)\ ^ 2^)1,2| S p{£ \An(t,<»)\ dt ^ e^n^X

where en = [(logzz)/zz]1,2-3/2zz. Now Än(/, co) is a continuous function of t, hence

f{£ |ä.(0| dt ï enn112} S P{\\K\\ ^ *n-n112}

S F{||An||ä£n.«i'2} ¿ 2exp(-2ne2)+Axn-1'2,

where the last inequality is a consequence of Lemma 1. With our choice of en it is

easy to see that 2 exp ( - 2«£2) = 0(n~ 1,a), and this completes the proof of Lemma 2.

In other words, in so far as the functional J5" is concerned we make a small error

in considering the Ä„(z) process instead of the An(z) process.

Let us now consider the process Fn(t, co) obtained from the process Fn(t, w) " by

reflecting the latter process across the line y = x". More precisely, Fn(t, co) is the

"random broken line" connecting the points (k/n, X^w)), k=0, 1,2,.. .,n. Note

that

Fn(t, co) = X¡*(co)   when t = k/n,   whereas   Fn(t, w) = k/n

when / = X^(w).

To put it another way, the Fn(t) process has jumps of fixed size 1/zz at the random

times X£ whereas the Fn(t) process has random jumps at the fixed times k/n.

We now define a process Dn(t, co) as follows

(21) Dn(t,co) = nll2(Fn(t, co) -t).

The process Dn(t, co) is of course not the same as the process Kn(t, co), neverthe-

less we have the following remarkable fact.

Lemma 3. &r(A¿=&r(Dn).

Proof. It is easily seen that Lemma 3 is equivalent to the following result(4):

Suppose/(/) is a monotone strictly increasing function on [0, 1] with/(0) = 0,

/(1) = 1. Then, as is well known,/(i) has an inverse function g(t) with the same

(4) For the proof of Lemma 3 I am indebted to Professor Ray Mayer. The geometrical

interpretation of this result is due to Professor S. R. S. Varadhan.
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properties. Now g(t) is obtained geometrically by reflecting the curve (t,f(t))

across the line y = x and so it is enough to show that:

(22) ^((f(t)-t)) = /F({g(t)-t)).

Now a moment's reflection will show that both sides of (22) equal, except for a

constant factor independent off, the volume of the solid of revolution obtained by

rotating the curve (t,f(t)), O^Zá 1, about the diagonal line y = x.

The reader can easily verify for himself that this result extends to monotone

increasing functions of the form Fn(t, w) and their "reflections Fn(t, w) across the

line y=x" to conclude that

(23) ^(nll2(Fn(t, to) - i)) - &(nll2(Fn(t, ») -1))

and this completes the proof of Lemma 3.

We now define a probability distribution function Vn(X) as follows

Vn(X) = F{F(An) áA} = P{&(Dn) ^ A}.

It is an immediate consequence of Lemma 2 that

(24) Vn(X-en)-A2n-v2 á Vn(X) á Vn(X+en) + A2n^>2,   where en = 2^^"''■

We also note that (24) remains valid for sequences e'n that decrease to zero no faster

than does the sequence en.

We now study the Dn(t) process in more detail; in particular, following Breiman

(Chapter 13 of [2]), we shall show that the Dn(t) process converges to the tied down

Brownian motion process D(t), and what is most important we shall be able to

estimate the rate of the convergence by techniques similar to those used in a previous

paper of the author [11].

Let Yi, Y2,..., Yn + i be n+l mutually independent random variables with the

common distribution G(y) = l-exp(-y) i.e. the random variables F¡ are ex-

ponentially distributed and we note that E(Yi)= V(Y¡)= 1.

Let Zk = 2f= i F¡. It can be shown (see [2] or [7]) that the joint distribution of the

random variables

(25) Zx/Z.n + X, Z.2/Zn + X, . . ., Z.n/Z,n + X

is the same as the joint distribution of the random variables X?, X$,..., X*. Let

us now apply this result to the Dn(t) process defined at (21). Clearly Dn(t) =

nll2(Xj*-k/n) when t = k/n. Using (25) we can represent the Dn(t) process for

t=k/n as follows:

(26) D (t) = nV2[—_-\ = JL-{Z"~k_^Z" + i~"V
{b) Á) \Zn + 1   nj      Zn + X\ Vn     «     Vn    J

Remark. The representation (26) is due to Breiman [2].

If we now define Xni = (Yi—l)/\/n it is clear that the random variables Xni

satisfy conditions (4) and (5) of [11], with a = 2.
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If we now define Sn(t) to be the following random broken line:

(27) Sn(t) = lxni = ^       t = \

and define Sn(t) for k/nStS(k+l)/n by linear interpolation, then Dn(t) can be

written in terms of Sn(t) as follows:

(28) D¿t)=*(SJ(t)-tSJLi))-t^--Z%i-

Now by the law of large numbers limn_„o (Zn + x/n)= 1, with probability one and

limn-.x (t(n/Zn+x))(Yn + x/^n) = 0, with probability one. Thus the Dn(t) process

is close to the Sn(t) — tSn(l) process as zz -> oo and the Sn(t) — tSn(l) process in turn

is close to the tied down Brownian motion process D(t). We now proceed to esti-

mate how close is the Dn(t) process to the D(t) process.

It follows from (28) that

(29) Dn(t)-(Sn(t)-tSn(l)) = {\-h¿±yjt)-t^-

Hence,

(30) \\Dn(t)-(Sn(t)-tSn(l))\\ S |l-Zrt+1/zz|-||/)n(0|| + |Tn + 1/V«|.

We note that P{\ Tn+1/\/«l ^(logn)/^n} = I/n; this is because P{Yn+x>y}

= exp(-y).

It follows from (30) that

(31) P{\\Dn(t)-(Sn(t)-tSn(l))\\^en} S P{|l-ZB+1/»liA,(0|| è yn} + l/n,

where yn = £„-(log n)n~112. We shall choose en = y(logri)n~112 with y>l. Thus

yn = (y-l)(logzz)zz_1/2. We now write yn = an-ßn with an = (y- l)[(log n)/n]112, and

ßn = (logny'2.

Lemma 4. (i) P{\Zn + x/n-l\^an}S5(n/27ryi2 exp (-na2/8) = rx(n),

(ii) P{||F>„|| >ßn}S2 exp (-2ßl) + Axn'll2 = r2(n).

Proof. We prove (i) first.

P{\Zn + x/n-l\  > an} = P{Zn + x > /z(l+an)} + F{Zn + 1 < zz(l-an)}.

Now the probability density function of Zn + X is (xn/n !) exp ( — x), x > 0. Thus

1   f00
P{Zn + x > zz(l + o¡J} = -: xnexp(-x)ox.

"• Jn(l + <z„)

The change of variable x=m transforms the above integral into:

yjTi + lg-n   fx,

—-— exp[-«(T-l-logT)]i/f.
"•        Jl + an
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From Stirling's formula we conclude that nn + 1e'n/n\^(n/2Tr)112, hence

P{Zn + x > n(l+an)} ï [0" J"°    exp [-«(r-1 -log r)] at,

and a similar estimate holds for the other term.

Now we are assuming <xn j 0, so by a well-known estimate of Courant-Hilbert

(p. 523 of [3]) we conclude that:

çl-an r-oo

exp [-«(r-l-log t)] dt+ exp [-«(t— 1 — log t)] dt
Jo Jl + «n

Ú 5exp(-n«2/8).

It follows that

P{|Zn + 1/«-l|  > an} Ï 5(«/27r)1'2exp(-«a2/8),

and this completes the proof of (i).

We now prove (ii) by noting that

F{||Fn|| > ßn} = P{\\K\\ > ßn} í 2exp(-2ß*) + Ain-u\

the last inequality is a consequence of (19), (10) and (12).

Lemma 5. F{|Zn + 1/«-l| • ||Fn|| >an-ßn}^rx(n) + r2(n).

Proof. Let Bx={co : |Zn + 1/«- 1| ^a„} and B2 = {a> : ||F»„|| ̂ j8n). Then the set

Fj n F2 is contained in the set {co : \ Zn + Jn -11 • || Dn || á an ■ ßn}. Taking complement

(B' denotes .he set theoretic complement of B) we conclude

F{|Zn + 1/«-l|-||Fn|| > an-ßn} =£ P{B'i}+P{B'2} S rx(n) + r2(n).

We now apply these estimates to (31) and conclude

Lemma 6. P{\\Dn(t)-(Sn(t)-tSn(l))\\^en}èrx(n) + r2(n)+l/n where

en = y(logn)n-112,       y > 1;

z•1(«) = 5(27^)-1,2«4-<>'-1)2,8, a«a,r2(«) = 2«-2 + ^1«-1/2¿^3«-1'2, where A3>AX.

Remark, z-^«) and r2(«) are computed by substituting (y— l)[(log «)/«]1/2 for an

and (log «)1,z for ßn in Lemma 4.

If we now choose y ̂  4 then rx(n) = 0(n '1»).

The next step is to use the Skorokhod representation, as in [11], to estimate

P{\\Sn(t)-tSn(l)-D(t)\\  ^ en}.

To this end we define Wn(t) as follows:

Wn(t)= W^   fori = ^>

- ̂ HK^K/H) *•!*•**£
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In other words, Wn(t) is a polygonal approximation to the Brownian motion path

W(t). We define

(33) 4,(0 = Wn(t)-tWn(l),       0 S t á 1.

Lemma 7. P{\\ßn(t)-D(t)\\^en}S2exp(-2ne2n).

Proof. Dn(t)-D(t) = (Wn(t)-W(t)), because Wn(l)=W(l) and now apply

Lemma 3 of [11].

Lemma 8. í'í IK^nCO - ^n(O) - ^n(0 II i= 4(log n)1'2« -1/5} ̂ ^44n -1/s.

Proof. Sn(t)-tSn(l)-Dn(t) = Sn(t)-rVn(t) + t(Wn(l)-Sn(l)). Thus

\\Sn(t)-tSn(l)-Dn(t)\\ S ||Sn(í)-IFn(í)ll + l^(l)-5n(l)|

S2\\Sn(t)-Wn(t)l

Hence

P{\\(Sn(t)-tSn(l))-Dn(t)\\ ä £„} S P{\\Sn(t)-Wn(t)\\ = *«/2}.

It is a consequence of Lemma 6 of [11] that for £n/2 = 2(log zz)zz_1/5 we have the

following estimate :

(34) P{\\Sn(t)- Wn(t)\\ = £n/2} = Of«"1'5).

This completes the proof of Lemma 8.

We note that (log n)en'llb decreases to zero at a much slower rate than quantities

of the form (log n)en~112. Thus Lemmas 2, 4, 5, 6 and 7 remain valid for sequences

£n = 0((logzz)^-1'5).

We now define sets Bx, B2, B3 as follows:

Bx={\\Dn(t)-(Sn(t)-tSn(l))\\ <£„},

B2 = {\\(Sn(t)-tSn(l))-Dn(t)\\ < £„},

2»3= {¡4,(0-0(011   <*-}■

Then we have {\\D„(t)-D(t)\\ >3en}<^B'x u B'2\J B'3. Combining Lemmas 6, 7, 8

yields

Lemma 9. P{\\Dn(t)-D(t)\\ > l2(logn)il2n-ll5}SA5n-115.

Lemma 10. P{\^(Dn)-^(D)\ ^e'n}SA6n-115 where £; = 24(logzz)3/2z?-1'5.

Proof. Let Cn = {||Z>n(r)-F)(/)|| < 12(log zz)1'^"1'5} and note that P{C'n} S A5n~115,

by Lemma 9. We observe that

\Dn(t,w)\ S \D(t,co)\+en,       ^C„

and

\D(t,co)\ S \Dn(t,co)\+en,       coeCn,en = 12 (logn)ll2n-115.
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From these two inequalities we conclude

(35) |F(Fn(z, w))-JF(D(t, co))| ï 2en £ [D(t, <o)\ dt+3e2n,       co e Cn.

Applying the same reasoning used in Lemma 2 yields the following estimate :

P{\/F(Dn)-&(D)\ Ï e'n} Í p{£ \D(t)\ Ï An}+F{C;}

Ú P{\\D(t)\\ è Xn}+A5n-115 è 2exp(-2X*)+A5n~115,

where Xn = e'J2en-3en/2. Clearly we want An-> +oo, so we choose e„ = 2(logn)£n

=24(log w)3'2«-1'5. With this choice of e'n we obtain the estimate:

F{|<F(Fn)-F(F)| ^ 24(log«)3/2«-1/5} g Aen~115

and this completes the proof of Lemma 10.

Now it follows from results of Anderson and Darling (p. 202 of [1]) that K(A)

is a nice smooth function with the property

(36) |F(A + «)-F(A)| £L\h\

where F is a constant independent of«. And it follows from Lemma (10) that

(37) V(X-e'n)-A6n-^ ^ Vn(X) í V(X + e'n) + A6n-i!S.

We now apply (36) to (37) to conclude :

(38) V(X)-Le'n-A6n-115 ^ Vn(X) =£ V(X)+Le'n + A6n-^

where Ae and F are independent of A.

It follows from (24) and (38) that

(39) V(X)-2LE'n-A7n-115 è Vn(X) Ú V(X) + 2Le'n + A1n-115

or equivalently

(40) |Fn(A)-F(A)| S 2L£; + ^vZZ-1'5.

It is clear from our construction that the right-hand side of (40) is

OKlog«)3'2«-1'5)

and this completes the proof of our theorem.

III. Open problems(6). The rate of convergence obtained in Theorem 1 is cer-

tainly not the best possible. By suitable juggling with the Skorokhod representation

it is possible to improve the exponent slightly from 1/5 to 1/4. The real problem of

course is to improve the rate of convergence to (log «)"« "1/2. This means sharpening

(5) Added in proof. The author has recently applied these results to the study of the

asymptotic distribution of linear combinations of order statistics. In particular we can derive

results similar to those recently obtained by Chernoff, Gastwirth and Johns.
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the estimate of Lemma 8, because all the other estimates are 0((log «)s«~ 1/2) for

some ß > 0.

Another interesting problem is to extend this result to other functionals of the

An(i, of) process e.g.

.F(An(z, to)) = £ (An(r, co))2 dxb(t)

where dxu(t) is a suitable measure on [0, 1] (cf. [1]).
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