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A RATE OF CONVERGENCE RESULT FOR THE
SUPER-CRITICAL GALTON-WATSON PROCESS

C. C. HEYDE, Australian National University

Let Z, = 1,Z,,Z,,--- denote a super-critical Galton-Watson process whose
non-degenerate offspring distribution has probability generating function
F(s) = EJ‘-"’:os"P(Z1 =j),0=s =1, where 1l <m = EZ, < . The Galton-
Watson process evolves in such a way that the generating function F,(s) of Z,
is the nth functional iterate of F(s). The convergence problem for Z,, when
appropriately normed, has been studied by quite a number of authors; for an
ultimate form see Heyde [2]. However, no information has previously been
obtained on the rate of such convergence. We shall here suppose that EZ2 < o
in which case W, = m™"Z, converges almost surely to a non-degenerate random
variable Was n — oo (Harris [1], p. 13). It is our object to establish the following

result on the rate of convergence of W, to W.
Theorem. Let varZ; = 0> < 0. As n —» oo, m"*(W — W,) converges in dis-

tribution. The limit law is given by the characteristic function relation

lim E[exp{itm"*(W — W,)}] = E[exp{— 4126%(m* — m)-'W}].

n—>ow
Proof. Firstly, we take » > n and consider

Elexp{itm"*(W, — W))}]

o - 3 E[exp{it m"*(m™"Z, — m™"Z)}| Z, = j1P(Z, = j)
j=0

s exp{—itm™ "2} [E[exp{itm"*~"Z,_}JVP(Z, = j)
j=0

= E[exp{—it m_"/z} E[exp{itm"/z_’Z,_,,}]]Z”.

Next, we let r— o0 in (1) keeping n fixed. Given ¢ > 0 we can choose N so large
that X Ly, P(Z, = j) <e. Also, since W,_, converges in distribution to
W, E[exp{itm">~"Z,_,T] converges to E[exp{itm™™*W}], uniformly in any
finite ¢ interval, so we can find R so large that

Received 2 January 1970.

451

R. Maller et al. (eds.), Selected Works of C.C. Heyde, Selected Works in Probability and Statistics, 125
DOI 10.1007/978-1-4419-5823-5_21, © Springer Science+Business Media, LLC 2010



452 C. C. HEYDE
| E[exp{itm"*~'Z,_,}] — E[exp{itm™"*W}]| < ¢

for r > R. Consequently,

E exp{ —itm "?j}[E[exp{itm"*~"Z,_ Y]V P(Z, = j)
j=0

— 3 exp{—itm ") [E[exp{itm WHPZ, = ))

+.§ exp{—itm "*j}{[E[exp{itm"*7'Z,_ 1} —[E[exp{it m "*W}]V}P(Z,=))

+__§ exp{~itm="2j}{[E[exp{itm"*~"Z,_}1J-[E[exp{itm~"? W}])}P(Z,=)),
and

3 exp{—itm™"?j}{[E[exp{itm"*~"Z,_,}T)’ — [E[exp{itm "> W}IP}P(Z, =j)

=R+1

2 X P(Z,=]) = 2,

J=R+1

IIA

while for r > R,

R

2 explitm " H{[E[exp{itm"* 7' Z, _ }]V — [E[exp{itm™"* W]V} P(Z, = ])

j=0

=
j

| [E[exp{itm"*™'Z,_,}]}’ — [E[exp{itm"*W}])| P(Z, = )

M= M7

e XjP(Z,=j) s em”

Il

j=0

since EZ, = m". However, ¢ is arbitrary and n fixed so that

E[exp{itm"*(W — W,)}] = lim E[exp{irm"*(W, — W,)}]

F— w0

@ = X exp{—itm™"%} [Eexplitm™> W)} P(Z, = )

= E[E[exp{itm™"*(W — D}]]1*~.
Now,

E[E[exp{itm™"*(W — 1)}]]*"
- foo[E[exp{itm_"/Z(W - D™ dP(m™"Z, £ x)
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3) = P(Z, = 0 + m"log E[exp{itm™"?(W—1)}] f P(m™"Z,> x)
0

x [E[exp{itm™"* (W — 1)}]]"™dx,

using integration by parts. Furthermore, under the hypotheses of the theorem,
W has mean 1 and variance ¢*/(m*— m) ([1], p. 13) so we may expand
E[exp {itm™™*(W—1)}] in the form

(4)  E[exp{itm™™*(W—1)}] = 1 =4%¢*m™ "(m* —m)™' + o(t*m™").

Thus,

) m"log E[exp{itm™"2(W — 1)}] » — }%6*(m* — m)™*
and

©) [E[exp{itm™"(W — D}I™ — exp{~ 126> (m* — m)™*}

as n - . Also, using (4), we have for fixed ¢t and suitably large n,

| E[exp{itm™2(W = D}]| ™" < exp{—3t’c*(m* — m)™" + o(t*)}
< exp{—24t’c*(m* — m)~1},

so that the integrand in the rightmost term of (3) is bounded in absolute value by
exp{ —Lt?62x(m* — m)~1}. It then follows from Fatou’s lemma together with
(5), (6) and since P(m™"Z,> x) - P(W > x) as n — oo, that

lim E[exp{itm"*(W — W,)}]

n— o

= P(W =0)— it?0*(m? — m)_lf P(W > x)exp{—1t?c*x(m*—m)~'}dx
0]

= f exp{ —1t*6*x(m? — m)~1}dP(W £ x)
0

= E[exp{—%t’c*(m*> — m)~'W}],

again using integration by parts. This completes the proof of the theorem.
Unfortunately, the distribution function corresponding to the characteristic

function E[exp{—1t*¢*(m?* — m)~'W}] does not seem to have a useful general

representation. However, in certain particular cases it may be recognised simply.
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For example, in the case of a fractional linear generating function for the offspring
distribution ([ 1], pp. 9, 17) it is easily found to have an atom at zero and a Laplace
density elsewhere.
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