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1Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology

2Department of Psychology, University of California, Berkeley
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Abstract

We propose a new model of human concept learning that pro-
vides a rational analysis for learning of feature-based concepts.
This model is built upon Bayesian inference for a grammat-
ically structured hypothesis space—a “concept language” of
logical rules. We compare the model predictions to human
generalization judgments in two well-known category learning
experiments, and find good agreement for both average and
individual participants’ generalizations.

Keywords: concept learning; categorization; Bayesian induc-
tion; probabilistic grammar; rules.

Introduction

Concepts are a topic of perennial interest to psychology, par-

ticularly concepts which identify kinds of things. Such con-

cepts are mental representations which enable one to discrim-

inate between objects that satisfy the concept and those which

do not. Given their discriminative use, a natural hypothesis is

that concepts are simply rules for classifying objects based

on features. Indeed, the “classical” theory of concepts (see

Smith and Medin, 1981) takes this viewpoint, suggesting that

a concept can be expressed as a simple feature-based rule: a

conjunction of features that are necessary and jointly suffi-

cient for membership. Early models based on this approach

failed to account for many aspects of human categorization

behavior, especially the graded use of concepts (Mervis and

Rosch, 1981). Attention consequently turned to models with

a more statistical nature: similarity to prototypes or to exem-

plars (Medin and Schaffer, 1978; Kruschke, 1992; Love et al.,

2004). The statistical nature of many of these models has

made them amenable to a rational analysis (Anderson, 1990),

which attempts to explain why people do what they do, com-

plementing (often apparently ad-hoc) process-level accounts.

Despite the success of similarity-based models, recently re-

newed interest has led to more sophisticated rule-based mod-

els. Among the reasons for this reconsideration are the inabil-

ity of similarity-based models to provide a method for con-

cept combination, common reports by participants that they

“feel as if” they are using a rule, and the unrealistic mem-

ory demands of most similarity-based models. The RULEX

model (Nosofsky et al., 1994), for instance, treats concepts

as conjunctive rules plus exceptions, learned by a heuristic

search process, and has some of the best fits to human ex-

perimental data—particularly for the judgments of individ-

ual participants. Parallel motivation for reexamining the role

of logical structures in human concept representation comes

from evidence that the difficulty of learning a new concept is

well predicted by its logical complexity (Feldman, 2000).

However, existing rule-based models are primarily

heuristic—no rational analysis has been provided, and they

have not been tied to statistical approaches to induction. A ra-

tional analysis for rule-based models might assume that con-

cepts are (represented as) rules, and ask what degree of be-

lief a rational agent should accord to each rule, given some

observed examples. We answer this question by formulat-

ing the hypothesis space of rules as words in a “concept lan-

guage” generated by a context-free grammar. Considering the

probability of productions in this grammar leads to a prior

probability for words in the language, and the logical form

of these words motivates an expression for the probability of

observed examples given a rule. The methods of Bayesian

analysis then lead to the Rational Rules model of concept

learning. This grammatical approach to induction has ben-

efits for Bayesian rational analysis: it compactly specifies an

infinite, and flexible, hypothesis space of structured rules and

a prior that decreases with complexity. The Rational Rules

model thus makes contributions to both rule-based concept

modeling and rational statistical learning models: to the for-

mer it provides a rational analysis, and to the latter it provides

the grammar-based approach. Across a range of experimen-

tal tasks, this new model achieves comparable fits to the best

rule-based models in the literature, but with fewer free pa-

rameters and arbitrary processing assumptions.

An Analysis of Concepts

A general approach to the rational analysis of inductive learn-

ing problems has emerged in recent years (Anderson, 1990;

Tenenbaum, 1999; Chater and Oaksford, 1999). Under this

approach a space of hypotheses is posited, and beliefs are as-

signed using Bayesian statistics—a coherent framework that

combines data and a priori knowledge to give posterior de-

grees of belief. Uses of this approach, for instance in causal

induction (Griffiths and Tenenbaum, 2005) and word learn-

ing (Xu and Tenenbaum, 2005), have successfully predicted

human generalization behavior in a range of tasks.

In our case, we wish to establish a hypothesis space of

rules, and analyze the behavior of a rational agent trying to

learn those rules from labeled examples. Thus the learn-

ing problem is to determine P(F |E, ℓ(E)), where F ranges

over rules, E is the set of observed example objects (possibly

with repeats) and ℓ(E) are the observed labels. (Through-

out this section we consider a single labeled concept, thus

ℓ(x) ∈ {0,1} indicates whether x is an example or a non-

example of the concept.) This quantity may be expressed
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(through Bayes’ formula):

P(F |E, ℓ(E)) ∝ P(F)P(E, ℓ(E)|F) (1)

To use this relationship we will need, in addition to a hy-

pothesis space, the prior probability, P(F), and a likelihood

function, P(E, ℓ(E)|F).

Concept Representation

The hypothesis space of rules is given by well formed formu-

lae of a concept language, which is specified by a context-

free grammar over an alphabet of terminal symbols. In our

case the terminal symbols are logical connectives (¬,∧,∨),

grouping symbols, and a set of feature predicates. The fea-

ture predicates are formed from functions fi(x), which report

the value of a physical feature, and the operator =c, which

represents comparison with constant c: each feature predi-

cate is of the form fi(x)=c (read “the ith feature of object

x has value c”). For brevity we consider here only Boolean

features: fi(x)∈ {0,1} and c ∈ {0,1}. (The extension to con-

tinuous features may be made in a straightforward manner,

replacing the equality operator by inequality.)

The DNF grammar (Fig. 1) generates formulae in dis-

junctive normal form (ie. disjunctions of conjunctions of

features). Each concept in this language consists of a set

of “definitions”, the B non-terminals, and each definition

consists of necessary and sufficient features (the P non-

terminals, which become feature predicates). For instance,

from the start symbol S, we might generate two “definitions”,

(B)∨ (B); from these we perhaps reach (P∧P)∨ (P); each

P is specialized to a feature: (D2 ∧D1)∨ (D4); and, finally

( f2(x) = 1∧ f1(x) = 0)∨ ( f4(x) = 0). We will focus on the

DNF grammar, a natural interpretation of the classical theory

of concepts, for the present exercise, but it is by no means

the only (or most interesting) possibility. For instance, one

may formulate a grammar inspired by the representations of

Nosofsky et al. (1994), which generates a rule plus excep-

tions, or a grammar of implications, inspired by Feldman

(2006), which represents causal structure.

The concept language generates well formed formulae of

first-order logic, which allows us to recursively evaluate a

formula on a given object (which is the usual approach in

mathematical logic (Enderton, 1972)). Briefly, each term in-

volving a logical connective can be evaluated in terms of its

constituents, and, presuming that we know the feature values

for the object x, we can evaluate all of the feature predicates.

This assigns a truth value F(x) to formula F for each object

x.

A Syntactic Prior

By supplementing the grammar with a probability for each

production we get a prior over the formulae of the language.

The probability of a given parse (sequence of productions) is:

P(T |G ,τ) = ∏
s∈T

τ(s), (2)

S → (B)∨S
S → (B)
B → B∧P
B → P
P → D1

...
P → DN

D1 → f1(x) = 1
D1 → f1(x) = 0

...
DN → fN(x) = 1
DN → fN(x) = 0

Figure 1: The DNF Grammar. S is the start symbol, and

B,P,Di the other non-terminals. fi(x) is the value of the ith

feature.

where G is the grammar, s ∈ T are the productions of parse

T , and τ(s) their probability. (τ(s) sums to one over the

productions of each non-terminal.) The DNF grammar is a

unique production grammar—there is a single production for

each well-formed formula—so the probability of a formula is

also given by Eq. 2. (We write F below for both the formula

and its parse.) Note that this prior captures a simplicity bias:

syntactically shorter formulae have smaller parse trees, thus

higher prior probability.

We have no a priori reason to prefer one set of values for

τ to another, so we assume a uniform prior over the possible

values of τ. The probability of a parse becomes:

P(T |G) =
Z

P(τ)∏
s∈F

τ(s)dτ

=
Z

∏
s∈F

τ(s)dτ

= ∏
Y∈N

β(Count(Y,F)+1),

(3)

where β(·) is the normalizing constant of the Dirichlet distri-

bution, and Count(Y,F) is the vector of counts of the produc-

tions for non-terminal symbol Y in the unique parse of F .

Likelihood: Evaluation and Outliers

To derive a likelihood function, we begin by making the weak

sampling assumption, that the set of observed examples is

independent of the concept:

P(E, ℓ(E)|F) = P(ℓ(E)|F,E)P(E). (4)

The term P(E) will cancel from our calculations when all fea-

ture values are observed for all objects. Next we assume that

the label is true exactly when an object satisfies the hypoth-

esized formula. Thus, if we knew that the observed labels

were correct, and we required an explanation for each ob-

servation, this likelihood would reduce to evaluation of the

formula for each example (logical true is interpreted as prob-

ability 1, etc.):

P(ℓ(E)|F,E) =
^

x∈E

ℓ(x)↔F(x). (5)
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However, to allow concepts that explain only some of the ob-

servations, we assume that there is a probability e−b that any

given observation is an outlier (ie. an unexplainable obser-

vation which should be excluded from induction). Writing S

for the set of examples which are not outliers, the likelihood

becomes:

P(ℓ(E)|F,E) = ∑
S⊆E

(1− e−b)|S|(e−b)|E|−|S|
^

x∈S

ℓ(x)↔F(x)

= ∑
S⊆{x∈E|ℓ(x)↔F(x)}

(1− e−b)|S|(e−b)|E|−|S|

= e−b|{x∈E|¬(ℓ(x)↔F(x))}|,

(6)

where the second step follows from the Binomial Theorem.

The Rational Rules Model

The above likelihood and prior, combined using Bayes’ rule,

constitute a model of concept learning, which we call the Ra-

tional Rules model (RRDNF, to indicate the grammar). The

posterior probability for this model is:

P(F |E, ℓ(E)) ∝

(

∏
Y∈N

β(|{y ∈ F}|+1)

)

e−b|{x∈E|¬(ℓ(x)↔F(x))}|

(7)

There is a trade-off in this posterior between explanatory

completeness and conceptual parsimony. Though some ex-

amples may be ignored as outliers, concepts that explain more

data are preferred by the likelihood function. On the other

hand, simpler (i.e. syntactically shorter) formulae are pre-

ferred by the prior.

Using this posterior belief function, the generalization

probability that a test object “t is an L” is:

P(ℓ(t)|E, ℓ(E)) = ∑
F

F(t)P(F |E, ℓ(E)). (8)

This generalization probability represents inference by the

“ideal learner”. Initially we assume, consistent with standard

practices of Bayesian modeling, that the average of the hu-

man population matches this ideal. At the end of the next

section we consider the relationship between the ideal learner

and individual human learners.

Comparison with Human Category Learning

In the preceding sections we have presented a rational anal-

ysis of concept learning when concepts are represented in a

conceptual language of propositional rules. In this section we

explore the extent to which this rational analysis can explain

human learning. We will consider two experiments from the

concept learning literature that have often been used as initial

tests for modeling efforts.

In the experiments considered below participants were re-

quired to distinguish between two categories, A and B, which

were mutually exclusive. For simplicity in fitting the model

we assume that the population is an even mixture of people

who take A to be the main category, and B the contrast cat-

egory, with vice versa. Since these experiments have similar

numbers of A and B examples, this is probably a reasonable

initial assumption.
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Figure 2: The category structure of Medin and Schaffer

(1978), plotted on model vs. human results. Each example

has four binary features; A1-A5 are examples of category

A, B1-B4 of B, and T1-T7 are transfer objects. The human

mean generalization rates of Nosofsky et al. (1994) are plot-

ted against the predictions of the RRDNF model (b=1). The

model accounts for R2=0.98 of the variance in human data.

Participants were trained on the category structures in a

blocked-learning paradigm: each example in the training set

was presented once per block, and blocks were presented un-

til the training set could be classified accurately (relative to

a predetermined threshold). It is often the case that different

effects occur as training proceeds, and these effects can be

tricky to capture in a rational model. However, it is apparent

from Eq. 6 that the Rational Rules model with outlier param-

eter b and N identical blocks of examples is equivalent to the

model with one block and parameter N · b. This makes intu-

itive sense: the more often an example is seen, the less likely

it is to be an outlier. Thus we may roughly model the course

of human learning by varying the b parameter – effectively

assuming a constant outlier probability while increasing the

number of trials.

The model was approximated by Monte Carlo simulation

(30,000 samples for each run). Except where otherwise noted

we have coarsely optimized over b by taking the best fitting

result from among b={1,2, ...,8}.

Prototype Enhancement and Typicality Effects

The second experiment of Medin and Schaffer (1978), among

the first studies of ill-defined categories, used the category

structure shown on Fig. 2 (we consider the human data from

the Nosofsky et al. (1994) replication of this experiment,

which counter-balanced physical feature assignments). This

experiment is a common first test of the ability of a model
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Figure 3: Posterior complexity and feature weight distri-

butions for RRDNF on the category of Medin and Schaffer

(1978) (see Fig. 2). The model focuses on simple rules along

dimensions 1 and 3.

to predict the pattern of generalizations on novel stimuli, and

demonstrates two important effects: prototype enhancement

(Posner and Keele, 1968), and (a certain flavor of) typicality.

The overall fit of the Rational Rules model (Fig. 2) is good:

R2=0.98. Other models of concept learning are also able to

fit this data quite well: for instance R2=0.98 for RULEX, and

R2=0.96 for the context model (Medin and Schaffer, 1978).

However, RRDNF has only a single parameter (the outlier pa-

rameter), while each of these models has four or more free

parameters; indeed, the full RULEX model has nine free pa-

rameters (whose interpretation is not entirely clear).

In Fig. 3 we have plotted the posterior probability mass that

the RRDNF model places on all formulae of a given complex-

ity and the posterior feature weights—the expected impor-

tance of each feature. (Complexity is measured by Boolean

complexity: the number of feature symbols in the formula).

We see that the RRDNF model solves this concept learning

problem, as human learners do, by placing most of its weight

on simple formulae along features 1 and 3. It has been noted

before (Navarro, 2006) that selective attention effects, like

this one, emerge naturally from the Bayesian framework.

The object T3=0000 is the prototype of category A, in the

sense that most of the examples of category A are similar to

this object (differ in only one feature) while most of the exam-

ples of category B are dissimilar. Though it never occurs in

the training set, the importance of this prototype is reflected in

the human transfer judgments: T3 is, by far, the most likely

transfer object to be classified as category A. The Rational

Rules model predicts this prototype enhancement. The sim-

ple formulae f1(x)=0 and f3(x)=0 each have high posterior

probability, these agree on the categorization of T3 and so

combine (together with many lower probability formulae) to

enhance the probability that T3 is in category A.

The degree of typicality, or recognition rate for training ex-

amples, is often taken as a useful proxy for category centrality

(Mervis and Rosch, 1981) because it correlates with many of

the same experimental measures (such as reaction time). In-

deed we see greater typicality for the prototype of category B,

the object B4=1111, than for other training examples: though

presented equally often it is classed into category B far more

Table 1: The category structure of Medin et al. (1982), with

initial and final block mean human responses of McKinley

and Nosofsky (1993), and the predictions of RRDNF at b=1

and b=8.

Object Human: Initial Final RRDNF: b=1 b=8
A1 1111 0.64 0.96 0.84 1
A2 0111 0.64 0.93 0.54 1
A3 1100 0.66 1 0.84 1
A4 1000 0.55 0.96 0.54 0.99
B1 1010 0.57 0.02 0.46 0
B2 0010 0.43 0 0.16 0
B3 0101 0.46 0.05 0.46 0.01
B4 0001 0.34 0 0.16 0
T1 0000 0.46 0.66 0.2 0.56
T2 0011 0.41 0.64 0.2 0.55
T3 0100 0.52 0.64 0.5 0.57
T4 1011 0.5 0.66 0.5 0.56
T5 1110 0.73 0.36 0.8 0.45
T6 1101 0.59 0.36 0.8 0.44
T7 0110 0.39 0.27 0.5 0.44
T8 1001 0.46 0.3 0.5 0.43

often. The Rational Rules model also predicts this typicality

effect, in a manner similar to prototype enhancement.

Correlated Dimensions

Medin et al. (1982) studied the category structure shown in

Table 1. This structure affords two strategies: the first two

features are individually diagnostic of category membership,

but not perfectly so, while the correlation between the third

and fourth features is perfectly diagnostic. It was found that

human learners relied on the perfectly diagnostic, but more

complicated, correlated features. McKinley and Nosofsky

(1993) replicated this result, studying both early and late

learning by eliciting transfer judgments after initial and fi-

nal training blocks. They found that human participants re-

lied primarily on the individually diagnostic dimensions in

the initial stage of learning, and transitioned to the correlated

features later in learning. The RRDNF model explains most of

the variance in human judgments in the final stage of learn-

ing, R2=0.95 when b=8; see Fig. 4. Correlation with hu-

man judgments after one training block is also respectable:

R2=0.69 when b=1. Thus, the course of human learning in

this experiment can be modeled quite well, as predicted, by

varying the outlier parameter b. By comparison RULEX best

fits are R2=0.99 for final, and R2=0.67 for initial learning

block, but with several extra free parameters.

Individual Generalization Patterns

Nosofsky et al. (1994) investigated the pattern of general-

izations (i.e. the sequence of responses to transfer questions)

made by individual participants, in addition to the group av-

erages. One may wonder whether it is necessary to con-

sider these individual differences. As noted in Nosofsky and

Palmeri (1998), even the best binomial model (a model that

predicts the averaged data perfectly, but assumes that all in-

dividuals behave identically) does very poorly at predicting

individual generalization patterns (in this case R2=0.24).
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Figure 4: Comparison of human judgments with RRDNF

model predictions. Fit of RRDNF model to the initial and final

block mean human generalization pattern for several values

of the outlier parameter, see Table 1. The model fits the early

learning data well at small values of b, and the late learning

data well for larger values.

To model individual generalizations using the Rational

Rules model we make an additional assumption about how

individuals approximate the full posterior distribution over

formulae. The simplest assumption (similar in spirit to

RULEX) is that each participant uses a single formula, sam-

pled randomly from the posterior. Note that this predicts the

same group averages, for large enough populations, but pro-

vides a psychological model more similar to existing process-

oreinted models of rule use. This interpretation of the RRDNF

model explains R2 = 0.83 of the variance in human general-

ization for the 36 individual generalization patterns reported

in Nosofsky et al. (1994). However, it is troubling to re-

introduce deterministic rule use in this way, considering evi-

dence of graded category centrality effects even within indi-

viduals. A similar, but more flexible, possibility is that each

individual considers a small number of rules, and weights

them appropriately. This is similar to the idealized cogni-

tive models suggested by Lakoff (1987), and explains how

individuals could exhibit graded behavior, if weight is spread

among several rules, or almost deterministic behavior, if a

single rule predominates. A model in which individuals take

two or three samples from the RRDNF posterior still fits the

data of Nosofsky et al. (1994) well: R2 = 0.87. RULEX does

similarly well, R2 = 0.86, but again uses several additional

parameters. As with RULEX, the qualitative match of the

Rational Rules model to human judgments is quite good, as

show in Fig. 5.

Discussion and Conclusion

We have suggested an approach for analyzing human concept

learning: assume that concepts are represented in a concept

language, propose a specific grammar and inductive seman-

tics for this language, then describe rational inference from

examples to words of the language. Carrying out this scheme

using a grammar for DNF formulae, we derived the Rational

Rules (RRDNF) model of concept learning. This model was

shown to predict human judgments in several key category

learning experiments, and to do so with only one, readily in-

terpretable, parameter. The model was also used to predict

the generalization judgments of individual learners, extend-

ing the usual reach of rational analysis.

To model individual judgments we assumed that each

learner arrives at a small set of rules, chosen and weighted in

accord with the complete rational model. This raises a ques-

tion: how are individuals able to find such samples? One

answer, which has been given by the RULEX model, is that

learners apply a variety of hypothesis testing and generation

heuristics. To understand how such heuristics are related to

rational modeling, particularly to the RRDNF model, investi-

gation is needed into on-line algorithms which can approxi-

mate the Bayesian posterior while maintaining only a small

number of hypotheses—that is, “rational process models”.

A useful initial exploration has been made by Sanborn et al.

(2006), who focused on similarity-based models. (We have,

in fact, verified some of the simulation results presented in

this paper using a similar on-line sequential Monte Carlo al-

gorithm, based upon Chopin (2002), but have not evaluated

this algorithm for psychological relevance.)

As noted in Love et al. (2004), many of the ideas under-

lying SUSTAIN, and other modern descendants of exemplar

models, are similar to those underlying RULEX. In particu-

lar, each attempts to provide a rich set of possible concepts,

while controlling their complexity in any given instance. The

grammar-based approach introduced here has a similar goal,

but at a different descriptive level, and thus complements

much of the earlier modeling work.

Unlike many approaches, the basic idea of grammar-based

induction can be easily extended to new situations, such as

role-governed or adjective-like concepts. Indeed, an impor-

tant direction for future work concerns the representations of

other types of concepts by extending the concept language to

a larger fragment of first-order, or higher-order, logic.

The proposal that concepts are represented by words in a

concept language is not new in cognitive science—indeed this

is a principal component of the language of thought hypoth-

esis (Fodor, 1975). Nor is the idea that cognition can be an-

alyzed by considering an optimally rational agent new: ideal

observers have been prominent in vision research (Geisler,

2003) and cognitive psychology (Anderson, 1990; Chater and

Oaksford, 1999). However, the combination of these ideas

leads to an exciting, and neglected, project: rational analysis

of the language of thought. We have shown in this paper that
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generalization pat-

terns: the portion

of participants re-

sponding with the

indicated categoriza-

tions for the seven

transfer stimuli of

Fig. 2. Human data

from Nosofsky et al.

(1994), Experiment

1. The model values

assume 2 samples for

each simulated partic-

ipant, b=4.

rigorous results are possible in this program, and that they can

provide accurate models of basic cognitive processes.
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