
A RATIONAL DESIGN PROCESS: HOW AND WHY TO FAKE IT 

David L. Parnas 

Department of Computer Science 

University of Victoria, Victoria BC VSW2Y2 Canada 

and 

Computer Science and Systems Branch 

Naval Research Laboratory 

Washington DC 20375 USA 

and 

Paul C. Clements 

Computer Science and Systems Branch 

Naval Research Laboratory 

Washington DC 20375 USA 

AB STRACT 

Software Engineers have been searching for the ideal software 

development process: a process in which programs are derived from 

specifications in the same way that lemmas and theorems are derived 

from axioms in published proofs. After explaining why we can never 

achieve it, this paper describes such a process. The process is 

described in terms of a sequence of documents that should be produced 

on the way to producing the software. We show that such documents can 

serve several purposes. They provide a basis for preliminary design 

review, serve as reference material during the coding, and guide the 

maintenance programmer in his work. We discuss how these doctmlents 

can be constructed using the same principles that should guide the 

software design. The resulting documentation is worth much more than 

the "afterthought" documentation that is usually produced. If we take 

the care to keep all of the documents up-to-date, we can create the 
appearance of a fully rational design process. 



81 

A RATIONAL DESIGN PROCESS: HOW AND WHY TO FAKE IT 

David L. Parnas 

Computer Science Department 

University of Victoria, Victoria BC V8W 2Y2 Canada 

and 

Computer Science and Systems Branch 

Naval Research Laboratory 

Washington DC 20375 USA 

and 

Paul C. Clements 

Computer Science and Systems Branch 
Naval Research Laboratory 

Washington DC 20375 USA 

I. THE SEARCH FOR THE PHILOSOPHER' S STONE: WHY DO WE WANT A RATIONAL 

DESIGN PROCESS? 

A rational person is one who always has a good reason for what 

he does. Each step taken can be shown to be the best way to get to a 

well defined goal. Most of us like to think of ourselves as rational 

professionals. However, to many observers, the usual process of 

designing software appears quite irrational. Programmers often appear 

to make decisions without having reasons. They start without a clear 

statement of what they are going to build. They make a long sequence 

of design decisions with no clear statement of why they do things the 

way they do. Their goals are never defined; their rationale is rarely 

explained. 

Many of us are not satisfied with such a design process. That 

is why there is research in software design, programming methodology, 

structured programming and related topics. Ideally, we would like to 

derive our programs from a statement of requirements in the same sense 

that theorems are derived from axioms in a published proof. All of the 

methodologies that can be classified as "top down" are the result of 



82 

our desire to have a rational~ systematic way of designing software. 

This paper brings a message with both bad news and good news. 

The bad news is that, in our opinion~ we will never find the 

philosopherms stone. We will never find a process that allows us to 

design software in a perfectly rational way~ The good news is that we 

can fake it. We can present our system to others as if we had been 

rational designers. The further good news is that it pays to do so. 

II. WHY WILL A SOFTWARE DESIGN "PROCESS" ALWAYS BE AN IDEALISATION? 

We will never see a software project that proceeds as sug- 

gested above. Some of the reasons are listed below: 

1. In most cases the people who commission the building of a 

software system do not know exactly what they want and are unable to 

tell us what they do know. 

2. Even if we were to know the requirements~ there are many 

other facts that we need to know to design the software. Many of the 

details only become known to us as we progress in the implementation. 

Some of the things that we learn invalidate our design and we must 

backtrack. 

3. Even if we were to know all of the relevant facts before 

we start, experience shows that human beings are unable to fully 

comprehend the plethora of details that must be taken into account in 

order to design and build a correct system. The process of designing 

the software is one in which we attempt to separate concerns so that 

we are working with a manageable amount of information. However, 

until we get to that point, we are bound to make errors. 

4. Even if we could master all of the detail needed, all but 

the most trivial projects are subject to change for external reasons. 



83 

Some of those changes may invalidate previous design decisions. 

5. Human errors can only be avoided if one can avoid the use 

of humans. No matter how rational our decision process, no matter how 

well we have collected and organised the relevant facts, we will make 

errors. 

6. We are often burdened by preconceived design ideas, ideas 

that we invented, acquired on related projects, or heard about in a 

class. Sometimes we undertake a project in order to try out or use a 

favourite idea. Such ideas may not be derived from our requirements by 

a rational process; they may arise spontaneously from other sources. 

7. Often we are encouraged, for economic reasons, to use 

software that was developed for some other project. In other situa- 

tions, we may be encouraged to share our software with another ongoing 

project. The resulting software may not be the ideal software for 

either project, i.e., not the software that we would develop based on 

its requirements alone, but it is good enough and will save effort. 

For all of these reasons, the picture of the software designer 

deriving his design in a rational, error-free, way from a statement of 

requirements is quite unrealistic. We believe that no system has ever 

been developed in that way, and probably none ever will. Even the 

small program developments shown in textbooks and papers are unreal. 

They have been revised and polished until the author has shown us what 

he wishes he had done, not what actually did happen. 

III. WHY IS A DESCRIPTION OF A RATIONAL IDEALISED PROCESS USEFUL 
NONETHELESS? 

What we have said above is quite obvious, known to every care- 

ful thinker and admitted by the honest ones. In spite of that we see 

conferences whose theme is the software design process, working groups 

on software design methodology, and a lucrative market for courses 



84 

purporting to describe logical ways to design software. 

these people trying to achieve? 

what are 

If we have identified an ideal process but cannot follow it 

precisely, we can still write the documentation that we would have 

produced if we had followed the ideal process. Someone reading the 

documentation would have the benefit of following a rational explana- 

tion of the design. This is what we mean by "faking a rational design 

process". 

Below we list some of the reasons for such a pretense: 

1. Designers need guidance. When we undertake a large pro- 

ject we can easily be overwhelmed by the enormity of the task. We 

will be unsure about what to do first. A good understanding of the 

ideal process will help us to know how to proceed. 

2. We will come closer to the ideal process, and to a 

rational design, if we try to follow the process than if we proceed on 

an ad hoc basis. For example, even if we cannot know all of the facts 

necessary to design an ideal system, the effort to find those facts 

before we start to code will help us to design better and backtrack 

less. 

3. When an organisation undertakes many software projects 

there are advantages to having a standard procedure. It makes it 

easier to have good design reviews, to transfer people, ideas, and 

software from one project to another. If we are going to specify a 

standard process, it seems reasonable that it should be a rational 

one. 

4~ If we have agreed on an ideal process, it becomes much 

easier to measure the progress that a project is making. We can com- 

pare the project's achievements with those that the ideal process 



85 

would call for. 

ahead). 

We can identify areas in which we are behind (or 

5. Regular review of the project's progress by outsiders is 

essential to good management. If the project is attempting to follow 

an ideal process, it will be easier to review. 

IV. WHAT SHOULD THE DESCRIPTION OF THE DEVELOPMENT PROCESS TELL US? 

We believe that the most useful form of a process description 

will be in terms of work products. For each stage of the process, we 

describe: 

- what we should work on next; 

- what criteria that work product must satisfy; 

- what kind of persons should do the work; 

- what information they should use in their work; 

Management of any process that is not described in terms of 

work products can only be done by mindreaders. Only if we know which 

work products are due and what criteria they must satisfy can we 

review the project and measure progress. 

V. WHAT IS THE RATIONAL DESIGN PROCESS? 

In this section, we describe the rational, idealised software 

design process that we follow. Each step is accompanied by a detailed 

description of the work product associated with that step. 

The description of the process that follows includes neither 

testing nor review. This is not to suggest that we ignore either of 

those. In this paper we are describing an ideal process; testing and 

review belong in the real process, not the ideal. When we apply the 

process described in this paper, we include extensive and systematic 



86 

reviews of each work p~oduct and testing of the executable code that 

is produced. 

A. Establish and document requirements. 

If we are to be rational designers we must begin knowing what 

we must do to succeed. We record that in a work product known as a 

requirements document. Completion of this document before we start 

allows us to design with all the requirements in front of us. 

i. Why do we need a requirements document? 

We will be less likely to make requirements decisions acciden- 

tally while designing the program. 

- We will avoid duplication and inconsistency. Without this 

document, many of the questions it answered would be asked 

repeatedly throughout the development by designers, programmers 

and reviewers. This would be expensive and would often result 

in inconsistent answers. 

- Programmers working on a system are very often not familiar 

with the application area. Having a complete reference on 

externally-visible behaviour relieves them of any need to 

decide what is best for the user. 

- It is necessary (but not sufficient) for making good estimates 

of the amount of work and money that it will take to build the 

sy stem. 

- It is valuable insurance against the costs of personnel turn- 

over. The knowledge that we gain about the requirements will 

not be lost when someone leaves the project. 

- It provides a good basis for test plan development. Without 

it, we do not know what to test for. 

- It can be used long after the system is in place to define the 

constraints for future changes. 



87 

- It can be used to settle arguments; we no longer need to be, 

or consult, application experts. 

Determining the detailed requirements may well be the most diffi- 

cult part of this process because there are usually no well-organised 

sources of information. Ideally, it would be produced by representa- 

tives of the future users. In fact, it is probably going to be pro- 

duced by software designers who must get it approved by the users' 

r epr esenta tives. 

2. What goes into the requirements document? 

The definition of the contents of the requirements document, in 

the idealised design process, is simple: it should contain everything 

you need to know to write correct software, and no more. Of course, 

we may use references £o existing information, if that information is 

accurate and well organised. The general rules for an ideal require- 

ments document include: 

- every statement should be valid for all acceptable products; 

none should depend on implementation decisions. 

- the document should be complete in the sense that if a pro- 

duct satisfies every statement, it should be acceptable. 

- where information is not available before development must 

begin, the areas of incompleteness are indicated, not simply 

omitted. 

- the product is organised as a reference document rather than 

an introductory narrative about the system, because this is 

the most useful form. Although it takes considerable effort 

to produce such a document and is more difficult to read than 

an introduction, it saves labour in the long run because the 

information that is obtained in this stage is recorded in a 

form that allows for easy reference throughout the project. 



88 

We obtain completeness in our requirements document by using 

separation of concerns to obtain the following sections: 

- a specification of the machine on which the software must 

runo The machine need not be hardware -- for some systems 

this section might simply be a pointer to a language refer- 

ence manual; 

- a specification of the interfaces that the software must use 

in order to communicate with the outside world; 

- for each output, a specification of its value at all times in 

terms of the software-detectable state of the system; 

- for each output, how often or how fast the software is 

required to recompute it; 

- for each outputt how accurate it is required to be. 

- if the system is required to be easy to change, the require- 

ments must contain a definition of the areas that are con- 

sidered likely to change. You cannot design a system so that 

everything is equally easy to change, and programmers should 

not have to decide which things are most likely to be 

altered. 

- the requirements must also contain a discussion of what the 

~ystem should do when, because of undesired events, it cannot 

fulfil its full requirements. Most requirements documents 

ignore those situations; they discuss what will happen when 

everything works perfectly but leave to the programmer the 

decision about what to do in the event of partial failures. 

We hope it is clear that correct software cannot be written 

unless each of those requirements is defined, and that once you have 

succeeded in specifying each of those things, you have completely 

specified the requirements for your system. 



89 

To assure a consistent and complete document, there must be a 

simple mathematical model behind the organisation. Our model is 

motivated by our work on real-time systems but because of that it is 

completely general. All systems are real-time systems. 

We assume that for real-time control systems the ideal product is 

not a pure digital computer, but a hybrid computer consisting of a 

digital computer that controls an analogue computer. The analogue 

computer transforms continuous values measured by the inputs into con- 

tinuous outputs. The digital computer brings about discrete changes 

in the function computed by the analogue computer when discrete events 

occur. The actual system is a digital approximation to this hybrid 

system. As in other areas of engineering, we write our specification 

by first describing this "ideal" system and then specifying the allow- 

able tolerances. In our requirements document we treat outputs as 

more important than inputs. If we get the value of the outputs 

correct, nobody will mind if we do not even read the inputs. Thus, 

the key to the first stage in the process is identifying all of the 

outputs. The heart of our requirements document is a set of mathemat- 

ical functions in tabular form. Each function specifies the value of 

a single output as a function of external state variables that are 

relevant to the application. An example of a complete document pro- 

duced in this way is given in [9] and discussed in [8]. 

B. Design and document the module structure 

Unless the product is small enough to be produced by a single 

programmer, one must now give thought to how the work will be divided 

into work assignments, which we call modules. The document that 

should be produced at this stage is called a module guide. It defines 

the responsibilities of each of the modules by stating the design 

decisions that will be encapsulated by that module. A module may con- 



90 

sist of submodules, or it may be considered to be a single work 

assignment. 

We need a module guide to avoid duplication, to avoid gaps, to 

achieve separation of concerns, and most of all, to help an ignorant 

maintainer to find out which modules he must work on when he has a 

problem report~ Again, we see that the document that records our 

design decisions is the same one that will be used during the mainte- 

nance phase. 

If one diligently applies information hiding or separation of 

concerns to a large system, one is certain to end up with a great many 

modules. A guide that was simply a list of those modules, with no 

other structure, would help only those who are already familiar with 

the system. Our module guide has a tree structure, dividing the sys- 

tem into a small number of modules and treating each such module in 

the same way until all of the modules are quite small. For a com- 

plete example of such a document, see [3]. For a discussion of this 

approach and its benefits, see [15,6]. 

C. Design and document the module interfaces 

Efficient and rapid production of software requires that the pro- 

grammers be able to work independently. The module guide defines 

responsibilities but it does not provide enough information to permit 

independent implementation of the modules. Precise interfaces must be 

specified for each module. A Module Interface Specification is writ- 

ten for each module; it must be formal and provide a black box picture 

of each module. They are written by senior designers and reviewed by 

potential implementors together with the programmers who will use 

those interfaces. An interface specification for a module contains 

just enough information for the programmer of another module to use 

its facilities~ and no more. This is also the information needed by 



91 

the implementoro The document we produce is used by both. 

While there will be one person responsible for each such docu- 

ment, they are actually produced by a process of negotiation between 

those who are expected to implement the module, those who will be 

required to use it, and others interested in the design, e.g., 

reviewers. The main content of these specifications consists of: 

- a list of programs to be made invokable by the programs of 

other modules, (called "access programs"); 

- the parameters for those access programs; 

- the effects of these access programs on each other; 

- timing constraints and accuracy constraints, where necessary; 

- definition of Undesired Events (forbidden happenings). 

In many ways this module specification is analogous to the 

requirements document. However, the notation and organisation used is 

more appropriate for the software-to-software interfaces with which we 

are concerned at this stage in the process. 

Published examples and explanations include [Ii], [2], [i], [5]. 

D. Design and document the module internal structures 

Once a module interface has been specified, its implementation 

can be carried out as an independent task except for reviews. However, 

before we begin coding we want to record the major design decisions in 

a document that we call the module design document. This document is 

designed to allow an efficient review of the design before the coding 

begins and to explain the intent behind the code to a future mainte- 

nance programmer. 

In some cases, the module is simply divided into submodules and 

the design document is another module guide, in which case the design 

process for that module resumes at step B above. In other cases, we 



92 

begin by describing the internal data structures; in some cases these 

data structures are implemented (and hidden) by submodules. For each 

of the access programs, we include a function [i0] or LD-relation I14] 

that describes its effect on the data structure. For each value 

returned by the module to its caller, we provide another mathematical 

function, known as the abstraction function, which maps the values of 

the data structure into the values that are returned. For each of the 

undesired events, we describe how we check for it. Finally, we pro- 

vide a "verification", an argument that programs with these properties 

would satisfy the module specification. 

We continue the decomposition into, and design of, submodules 

until each work assignment is small enough that we could afford to 

discard it and begin again if the programmer assigned to do it left 

the project. 

If we are unable to code in a readable high level language, e.g. 

if no compiler is available, we include pseudo-code as part of the 

documentation. We have found it useful to have the pseudo code writ- 

ten by someone other than the final coder, and to make both program- 

mers responsible for keeping the two versions of the program con- 

sistent [7]. 

E. Design and document the uses hierarchy 

The uses hierarchy [13] can be designed once we know all of the 

modules and their access programs. It is conveniently documented as a 

binary matrix where the entry in position (A,B) is true if, and only 

if, the correctness of program A depends on the presence in the system 

of a correct program Bo The uses hierarchy defines the set of subsets 

that can be obtained by deleting whole programs and without rewriting 

any programs. It is important for staged deliveries, fail-soft sys- 

tems, and the development of program families [12]. 



93 

F. Write Programs 

After all of this design and documentation has been carried out, 

we are ready to write actual executable code. We find that this goes 

quickly and smoothly. We believe that the code should not include 

comments that are redundant with the documentation that has already 

been written. It is unnecessary and makes maintenance of the system 

more expensive while increasing the likelihood that the code will not 

be consistent with the documentation. 

VI. WHAT IS THE ROLE OF DOCUmeNTATION IN THIS PROCESS? 

A. What is wrong with the current documentation? Why is it hard to 

use? Why isn't it read? 

It should be clear that documentation plays a major role in the 

design process that we are describing. Most programmers regard docu- 

mentation as a necessary evil that is done as an afterthought, and 

done only because some bureaucrat requires it. We believe that docu- 

mentation that has not been used before it is published will always be 

poor documentation. 

Most of that documentation is incomplete and inaccurate but those 

are not the main problems. If they were they could be corrected sim- 

ply by adding or correcting information. In fact, there are underly- 

ing organisational problems that lead to incompleteness and incorrect- 

ness and are not easily repaired: 

- poor organisation. Most documentation today can be charac- 

terised as "stream of consciousness", and "stream of execu- 

tion". Stream of consciousness writing puts information at 

the point in the text that the author was writing when the 

thought occurred to him. Stream of execution writing 

describes the system in the order that things will happen 



94 

when it runs. The problem with both of these documentation 

styles is that people other than the authors cannot find the 

information that they seek. It will therefore not be easy to 

determine that facts are missing, or to correct them when 

they are wrong. It will not be easy to find all the parts of 

the document that should be changed when the software is 

changed. The documentation will be expensive to maintain 

and, in most cases, will not be maintained. 

- boring prose. We find lots of words to say what could be 

said by a single programming language statement, a formula or 

a diagram. We find certain facts repeated in many different 

sections. This increases the cost of the documentation and 

its maintenance and leads to inattentive reading and 

undiscovered errors. 

- confusing and inconsistent terminology. Any complex system 

requires the invention and definition of new terminology. 

Without it the documentation would be far too long. However, 

the writers of software documentation often fail to provide 

precise definitions for the terms that they use. As a 

result, the terms are not used consistently. Careful read- 

ings reveal that there are many terms used for the same con- 

cept and many similar but distinct concepts described by the 

same term. 

- incompleteness. Documentation that is written when the pro- 

ject is nearing completion is written by people who have 

lived with the system for so long that they take the major 

decisions for granted. They document the small details that 

they think they will forget. Unfortunately, the result is a 

document useful to people who know the system well but 

impenetrable to newcomers. There are always newcomers on 

large software projects. 



95 

B. How to avoid these problems? 

Documentation in the ideal design process meets the needs of the 

developers and the needs of the maintenance programmers who come 

later. Each of the documents mentioned above records design decisions 

and is used as a reference document for the rest of the design. How- 

ever, they also provide the information that the maintainers will 

need. Because the documents are used as reference manuals throughout 

the building of the software, they will be mature and ready for use in 

the later work. They will always be up to date. The documentation in 

our design process is not an afterthought; it is viewed as one of the 

major products of the project. There are checks that can be applied 

to increase completeness and consistency. 

One of the major advantages of this approach to documentation 

is the amelioration of the Mythical Man Month effect [4]. When new 

programmers join the project they do not have to rely on the old staff 

for their information. They will have an up-to-date and rational set 

of documents available. 

We avoid "stream of consciousness" and "stream of execution" 

documentation by spending a great deal of effort designing the struc- 

ture of each document. We define the document by stating the ques- 

tfons that it must answer; we carry that discipline down to individual 

sections. We try to have a place for every fact that must be con- 

tained, and make sure that there is only one such place. Only after 

we have determined the structure of a document do we begin to write 

it. If we write many documents of a certain kind, we write and pub- 

lish a standard organisation for those documents [5]. All of our 

documents are designed in accordance with the same principle that 

guides our software design, separation of concerns. Each aspect of 

the system is described in one section and nothing else is described 

in that section. When our documents are reviewed, we review them for 



96 

adherence to the documentation rules as well as accuracy. 

The resulting documentation is not easy or relaxing reading, 

but it is not boring. We make use of tables, formulae and formal 

notation to increase the density of information. Our organisational 

rules prevent the duplication of information. The result is documen- 

tation that must be read very attentively but rewards its reader with 

detailed and precise information. 

To avoid the confusing and inconsistent terminology that per- 

vades conventional documentation we use a system of special brackets 

and typed dictionaries. Each of the many terms that we must define, 

is enclosed in a pair of bracketing symbols that reveals its type. 

For each such type we have a dictionary that contains only definitions 

of that type. Although beginning readers find the presence of 

!+terms+l, %terms%, #terms#, etc., disturbing, regular users of our 

documentation find that the type information implicit in the brackets 

makes the documents easier to read. The use of dictionaries that are 

structured by types makes it less likely that we will define two terms 

for the same concept or give two meanings to the same term. The spe- 

cial bracketing symbols make it easy to institute mechanical checks 

for terms that have been introduced but not defined or defined but 

never used. 

VII. NOW, HOW DO WE FAKE THE IDEAL PROCESS? 

The preceding describes the ideal process that we would like 

to follow and the documentation that would be produced during that 

process. We fake the process by producing the documents that we would 

have produced if we had done things the ideal way. We attempt to pro- 

duce the documents in the order that we have described. If we cannot 

get a piece of information, we note that in the part of the document 

where the information should go and proceed to design as if that 



97 

information were expected to change. If we find errors we change them 

and make the consequential changes in subsequent documents. We make 

the documentation our medium of design and no design decisions are 

considered to be made until their incorporation into the documents has 

been approved at all levels. No matter how often we stumble on our 

way, the final documentation will be easier to understand and accu- 

rate. We do not show the way things actually happened, we show the 

way we wish they had happened and the way things are. 

Even mathematics, the discipline that many of us regard as the 

most rational of all, follows this procedure. Mathematicians dili- 

gently polish their proofs, usually presenting a proof very different 

from the first one that they discovered. A first proof is often the 

result of a tortured discovery process. As mathematicians work on 

proofs, understanding grows and simplifications are found. Eventu- 

ally, some mathematician finds a simpler proof that makes the truth of 

the theorem more apparent. The simpler proofs are published because 

the readers are interested in the truth of the theorem, not the pro- 

cess of discovering it. 

We believe that analogous reasoning applies to software. 

Those who read the software documentation want to understand the pro- 

grams, not to relive their discovery. By presenting rationalised 

documentation we provide what they need. 

Our documentation differs from the idealised documentation in 

one important way. We make a policy of recording all of the alterna- 

tives that we considered and rejected, including decisions that were 

recorded in the earlier versions of a document. For each, we explain 

why it was considered and why it was finally rejected. Months, weeks, 

or even hours later when we wonder why we did what we did, we can go 

back and find out why. Twenty years from now the maintainer will have 

many of the same questions and will find his answers in our documents. 



98 

An ill~stration that this process pays off is provided by a 

software requirements document that we wrote some years ago as part of 

a demonstration of the ideal process [9]. Normally, one assumes that 

a requirements document is produced before coding starts and is never 

used again. However, that has not proven to be the case. The original 

version of the softwarer which satisfies our requirements document, is 

still undergoing revision. The organisation that has to test the 

software after each change uses our document extensively to choose the 

tests that they do. When new changes are needed, the requirements 

document is used in describing what must be changed and what cannot be 

changed. The first document produced in the process is being used 

many years after the software went into service. The clear message 

is that if the documentation is produced with care, it will be useful 

for a long time. Conversely, if it is going to be extensively used, 

it is worth doing right. 

It is very hard to be a rational designer and we will prob- 

ably never achieve it. In our attempts to follow this process, we 

have often found places where we inherit a design decision that was 

made for unknown reasons. An example is the value of a constant in an 

equation that we would like to use. When we ask for a derivation of 

the constant, we find that there is none or that the derivation is not 

valid. When we press further, we are told that the decision was made 

"because it works". In such situations the designer can either open a 

research project to find out why it works or simply "Get On With It". 

Those who are paying for our work have made "GOWI" a standard response 

to many such problemsw and we do not expect that real work will ever 

be different~ However, wherever we have made decisions "because they 

work n, we will record the honest reason for our decision rather than 

mislead the future maintainers into thinking that we had a deep and 

philosophic reason for what we did. 



99 

VIII. ACKNOWLEDGEMENTS 

Stuart Faulk and John Shore of NRL provided thoughtful reviews 

of this paper. 

Funding for this research was supplied by the U.S. Navy and by 

the National Science and Engineering Research Council (NSERC) of 

Canada. 



100 

~J!FERENC~ 

i. Britton, KoH.~ Clementst P., Parnas, D.L.~ Weiss, D. IDterfac_~ 

~pecifi~a_~ ~_o~ th~ ~-I~ (~_C~) E__Ete~de~_C_Q~ Module; NRL 

Memorandum Report 4843, Jan. 1983. 

2. BrittonF K.H., Parker, R.A. and Parnas, D.L. "A Procedure for 
Designing Abstract Interfaces for Device-Interface Modules", 
~rocee~ings 9~/]i~ Fifth Internatio_o~ Conference 9/~ S0ftwar~ 
~ngineeriILg, 1981. 

3. Brittont K.H. and Parnas, D.L. A-7E Software Module Gui~, NRL 
Memorandum Report 4702, December 1981. 

4. Brooks, F.P. Jr. The Mythical Ma~n-Month: Essays on Software 
Engi~. Addison-Wesiey Publishing Company, 1975. 

5. Clements, P.~ Parker, A.r Parnas, D.L., Shore, J. and Britton, K. 
Standard 9/ganization for SDecifvina Abstract I_Dterfaces, NRL 

Report 8815, 14 June 1984. 

6. Clements, P., Parnas, D. and Weiss, D. "Enhancing Reusability 
with Information Hiding", Proceedinqs of ~ Workshop on Reusabil, 
~ in Programmir~q, pp. 240-247, Sept. 1983 

7. Elovitz, Honey S. "An Experiment in Software Engineering: The 
Architecture Research Facility as a Case Study", Proceedings of 
t__~Fourt~ ~~tional Conference 9/i Software EDg~neering, 

Sept. 1979. 

8. Heninger, K.L. "Specifying Software Requirements for Complex Sys- 
tems: New Techniques and their Application", IEEE Transactions on 
~oftware E~inee~, vol. SE-6, pp. 2-13, Jan. 1980. 

9. Heninger, K., Kallander, J., Parnas, D.L. and Shore, J. Software 
e_~~n~s ~ ~h~ ~-~-~ Aircraft, NRL Memorandum Report 3876, 

27 November, 1978. 

10. Linger, R.C., Mills, H.D., Witt, B.I. Structure Programminq: 
Theory and ~tice, Addison-Wesley Publishing Company, 1979. 

ii. Parker, A., Heninger, K., Parnas, D. and Shore, J. Abstract 
Interface ~ec~fications for the A-7E Device Interfac~ Module, 
NRL Memorandum Report 4385, 20 November, 1980. 

12. Parnas, D.L~ "On the Design and Development of Program Families", 
~EEE Trarus~c_tions on ~pftware E~gineerinq, Vol. SE-2, No. I, 

March, 1976. 

13. Parnas, D.L. "Designing Software for Extension and Contraction", 
Proceedings of ~ Third International Conference o_o/l~oftware 

Engineeri~Lq~ pp. 264-277, 10-12 May, 1978. 

14. Parnas, D.L. ~ Alternative Control Structure A~ i~S Formal 
Definition, Technical Report FSD-81-0012, Federal Systems Divi- 
sion, IBM Corporation, Bethesda, MD, 1981. 

15. Parnas, D.L., Clements, P. and Weiss, D. "The Modular Structure 
of Complex Systems", proceedings of the Seventh International 
Conferenc~ 9/I ~oftware Enaineerina pp. 408-417, March 1984. 


