
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 43, NO. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9, SEPTEMBER 1996 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA721 

A Rational Formulation of Thermal 
Circuit Models for Electrothermal 

Simulation-Part I: Finite Element Method 
Jia Tzer Hsu and LOC Vu-Quoc zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Abstract- As the size of the semiconductor devices is getting 
smaller with advanced technology, self-heating effects in power 
semiconductor devices are becoming important. An electrother- 
mal simulation of complete power electronic systems that include 
Si chips, thermal packages, and heat sinks is essential for an 
accurate analysis of the behavior of these systems. This paper 
presents a rational approach to construct thermal circuit net- 
works equivalent to a discretization of the heat equation by the 
finite element method. Elemental thermal circuit networks are 
developed, which correspond to the linear and cubic Hermite 
elements in the 1-D case, to the triangular and rectangular 
elements in the 2-D case, and to the tetrahedral and cube 
elements in the 3-D case. These thermal circuit networks are 
to be connected to the electrical networks of power electronic 
systems to provide complete electrothermal models that can be 
conveniently used in any circuit simulator package. Verification 
examples are presented to demonstrate the accuracy of the 
proposed formulation. 

I. INTRODUCTION 

INCE THE SIZE of the semiconductor devices is be- S coming smaller with advanced technology, and since 
the electrical characteristics of power electronic circuits and 
devices are greatly influenced by the temperature distribution 
inside the semiconductor devices (self-heating effects), it is im- 
portant to simulate the coupled electrical and thermal systems 
simultaneously. Because most of the nonlinear semiconductor 
device models are implemented in the circuit simulators such 
as SPICE [ l ]  and SABER [2] ,  it is advantageous to perform 
electrothermal simulations inside circuit simulators. In order 
to put the thermal effects into the circuit simulators, thermal 
circuit networks are needed. In [3] and [4], a finite differ- 
ence method (FDM) was used to develop thermal models 
for electrothermal simulations. In this paper, we present a 
rational approach to construct thermal networks equivalent to a 
discretization of the heat equation by the finite element method 
(FEM). 

It is remarked in [5] and [6] that the main advantages 
of the FEM are that conservation laws are exactly satisfied 
even by coarse approximations; it is easy to treat irregular 
geometries; the computational mesh can be graded to be 
fine in regions of rapid change; local mesh refinement is 
easier to implement than in the FDM; and higher order 
approximations are more readily constructed. Another major 
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difference is that FDM is restricted to the so-called structured 
meshes, while FEM is suitable for unstructured meshes. It is 
well known that structured meshes require far more degrees 
of freedom for a given level of accuracy than unstructured 
meshes. One disadvantage of using FEM is the greater degree 
of programming complexity, which can be avoided by using 
these FEM-based circuit networks since analytical expressions 
of the circuit components are used. Using 1-D linear finite 
elements and lumped masses, it is found that thermal networks 
based on the FDM are simply special cases of the FEM-based 
thermal networks. FEM-based thermal networks can produce 
more accurate results based on the same number of mesh 
nodes, especially in the 2-D and 3-D problems. Moreover, 
higher-order finite element approximations can be applied for 
higher accuracy. 

FDM, FEM, FVM (Finite Volume Method), and BEM 
(Boundary Element Method) are popularly employed to solve 
partial differential equations (PDE’ s). Actually, these methods 
can be viewed as particular cases of the Galerkin projection. 
FEM is not only used to solve PDE’s, but also provides a 
natural way to solve circuit networks; in fact, circuit elements 
have been recognized as 0-D (or scalar) finite elements [7]. 
The ordinary differential equations (ODE’S) by finite element 
(FE) formulation for circuit networks are the same as the 
nodal equations formulated in traditional circuit simulators. 
FE formulation can be modified so that results similar to 
the modified nodal equations [8] or the reduced modified 
nodal equations [9] can be obtained. Circuit techniques for 
solving PDE’s have been widely discussed in the literature. 
Circuit technique for semiconductor analysis was proposed to 
solve semiconductor equations ([lo], [ l  11). Retarded partial 
element equivalent circuit was used to solve transmission 
line problems [12]. Here, we derive the thermal networks 
based on a FE formulation for electrothermal simulations. 
Recently, FEM-based circuit models have been proposed for 
solving coupled field-circuit problems ([ 131, [ 141); however, 
these models rely on the so-called mutual capacitors, mutual 
inductors, and mutual resistors. The present paper proposes a 
rational approach to construct thermal networks that do not 
use mutual capacitors/inductors/resistors. 

The present FEM-based thermal networks are written as 
element templates in the SABER circuit simulator. It is con- 
venient to represent a FE discretization in circuit simulators 
by treating one FE as one lumped circuit component. Ac- 
cordingly, different types of finite elements are modeled as 
different types of lumped thermal circuit components. Model 
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Electrical system 

Fig. 1. Coupled electrothermal system. 
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reduction techniques to increase the simulation efficiency will 
be discussed in Part zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI1 of the present paper. 

11. COUPLED ELECTROTHERMAL EQUATIONS 

As shown in Fig. 1, self-heating effects of the semicon- 
ductor devices play important roles in the electrothermal 
simulation. Moreover, thermal packages, heat sinks, and other 
electrical components are also important for an accurate elec- 
trothermal simulation of power electronic circuits and devices. 
The nonlinear electrical system can be generally expressed as 

rl m=m 

Fig 2 M a t h m " a l  d0mam of the thermal Problem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
U = f (u,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe ,  T )  

(2.1) 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU is the vector containing nodal voltages or currents, e 
the electrical input (e.g., driving voltages for switches), T the 
temperature, and P the electrical power loss. The nonlinear 
electrical system is governed by the semiconductor equations 
(PDE's) and circuit equations (ODE'S). The electrical power 
losses are originated from the heat generation inside the 
semiconductor devices. Since the semiconductor pn junction 
region, which results in most of the heat generation, is small 

P = P ( U )  
compared to the whole device region, and is close to the top 
surface of the Si chip, the electrical power loss can be assumed 
to be imported from the top boundary of the Si chip, i.e., the 
electrical power loss is treated as a boundary condition in the 
thermal problem. 

The thermal system is governed by the partial differential 
equation 

div(6 grad 7') + g = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApc in R (2.2) at 
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Electrical system Thermal system zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
M$+ Kd zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= F ( P )  

with boundary conditions’ 

dT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP 

d n  A 
dT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
dn 

~ ~ g r a d T . n = ~ ~ - = -  o n r l  (2.3) 

6 gradT. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn = 6- = h(T, - T )  on r2 (2.4) Fig. 3. Coupled electrothermal system. 

and initial condition 

T(z,O) = T, = 300 K (2.5) 

where T :  R x R+ + R is the temperature (a function of space 
and time), 9:  R x R+ --f zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR the generating heat, IC: R + R the 
thermal conductivity, p: R + R the mass density, cp: R t R 
the specific heat, P : r l  x R+ + !R the input power from 
boundary r l ,  A the input power cross section area, h the 
convection coefficient, n the outward normal vector to the 
boundary, and T, the ambient temperature. R is the set of real 
numbers, !J?+ := {t E R I t 2 0}, R c R’, where s is the 
number of space dimension, s =1, 2, 3, and dR = rl U r2 
the closure of the union rl and r 2  (see, e.g., Hughes [1987]). 
The boundary condition on rl is derived from the first law of 
thermodynamics, and the convective boundary condition on 
l?z is derived from the Newton’s law of cooling. 

The semidiscrete equation of (2.2)-(2.5), derived from a 
Galerkin finite element projection [IS], is 

M d + K d = F  (2.6) 

where T(z , t )  = Cy=l d,(t)N%(z)-with d,(t) being the 
temperature at node i, and N,(z) being the associated FE basis 
function-d( t )  the vector containing all nodal temperatures 
d,’s, and d(t) the time derivative of d(t). The mass matrix 
M can be realized by capacitor elements, the stiffness matrix 
K by resistor elements, and the force vector F by current 
sources, so that thermal effects can be incorporated into circuit 
simulators. The global matrices M, K, and F are assembled 
from the elemental matrices me, k,, and f, 

ne1 ne1 ne1 

M = @me, K = e k e ,  F = @fe (2.7) 
e=l e=l e=l 

me = [(me)ijl, ke = [(ke)ij]) fe = [(fe)i]. (2.8) 

Expressions for the elements of the matrices me, ke, and fe 
are given below 

power and the heat generation terms, respectively. The thermal 
network based on FEM is an equivalent circuit network that 
yields the same semidiscrete system of (nonlinear) ODE’S 
resulting from a Galerkin projection using, e.g., FE basis 
functions. Similar to FE global matrices, the global thermal 
network is assembled from elemental networks equivalent 
to the elemental matrices me, k,, f,. Thus only elemental 
networks need to be considered. 

In the circuit simulators, the linearized circuit equations of 
(2.1) are usually expressed as nodal equations 

Y(d)V = I 

or modified nodal equations [16], where V is the vector of 
nodal voltages, I the vector of currents, and the admittance 
matrix Y is a function of temperatures d. The coupled 
electrothermal system is shown in Fig. 3, from which it can be 
seen that the coupling between these two systems is based on 
the power losses P and the nodal temperatures d. Note that 
d,’s in d are treated as system variables in the SABER circuit 
simulator, and the coupled electrical and thermal systems are 
solved simultaneously. 

111. BACKGROUND 

A. FE Formulation for Circuit Elements 

scribed by the following two equations 
Fig. 4(a) shows two separated resistors which can be de- 

These two resistors and one external current source are as- 
sembled in Fig. 4(b), and the assembled system is described 

by 
1 1 _-  

RI 

1 
R2 

(me),, = pcpA le NNjdf le 

(ice),, = KA / grad N, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe grad N,dRe + hA l, N,N,drZ 
0, from which it can be seen that the basic rule of the FE assem- 

blage for the circuit elements is the same as the Kirchhoff law, 
= p J N,drl + hAT, l2 N,dra + AS, .  gNzdRe. i.e., all currents flowing into the same node sum up to zero. 

Fig. S shows a general case (using resistors as an example), 
where the assemblage of the circuit elements is based on 

(2‘10) 

rl 
(2.11) 

Equation (2.9) and the first term of (2.10) are the conductive 
terms, The second terms of (2.10) and (2.1 1) are the convective 
terms. The first and third terms of (2.11) are the input 

i=l 

(3.4) 

. ,  
In the FE formulation, every circuit element such as a resistor, 

elemental matrix, and the connection of these circuit elements 

The convective boundary condition (2.4) can be used to approximate the 
Dirichlet boundary condition by choosing a large convective coefficient h. a capacitor, an and a current Source is treated as One 

Since is finite, we have T -+ T, as h ---f 00. 
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is described by the assemblage of these elemental matrices. 
The matrix equations derived from the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFE formulation for the 
circuit networks have the following form: ([7], [17]) 

Mw+Bw zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ K w  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= F (3.5) 

where W = V is the vector of nodal voltages, W = V = 
d V / d t ,  and w = J V d t .  The global matrices M, B, and K are 
assembled from the local elemental matrices me, be, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk,, 
and the global vector F from the local elemental vector f,. If 
one of the element nodes is grounded, then the corresponding 
row and column in the global matrices will be eliminated. 
A capacitor element with a value C contributes to a local 
elemental matrix me, 

1 -1 
me= JC 

a resistor element with a value R to a local elemental matrix 
be , 

be = [-: -:] (;) (3.7) 

an inductor element with a value L to a local elemental matrix 
ke > 

ke = [-: -:] (+) (3.8) 

and a current source element with a value 1 to a local elemental 
vector fe, 

For a linearized h-parameter BJT (bipolar junction transistor) 
shown in Fig. 6 ,  it will contribute to a local elemental matrix 

be ,  

where the nodal sequence in b, is collector, base, and emitter. 
The internal node zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 in the h-parameter BJT is eliminated 
by rudimentary manipulations. It is shown in [7] that this h- 

parameter BJT is handled by adding a one-ohm resistor into 
the model, so that FE formulation can be applied directly. 
Although it introduces a negligible error by adding this re- 
sistor, it is seen that be becomes a 5-by-5 matrix since the 
internal node is not eliminated and one more dimension is 
introduced by the added resistor. Since nodal equations are 
obtained through the FE formulation, a voltage source is not 
a natural element to be formulated into (3.5). Norton theorem 
is used in [7] to handle the voltage source with one grounded 
node. If the voltage source is connected to a circuit component 
other than the FZC lumped components, then a very small 
resistor need to be added to the network in order to apply 
the Norton theorem. This is similar to using a large penalty 
number in the FEM [181, [15]. The corresponding terms of the 
voltage source in (3.5) can be moved to the right-hand side 
and incorporated into the F vector. Accordingly, the nodes of 

RI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARa v, *-T--***f 

- - 
(b) 

Fig. 4. 
two resistors and one extemal current source. 

(a) Two resistors before assemblage. (b) The assembled system of 

/ 
Fig. 5. 
example. 

A general example of circuit connection, using resistors as an 

Fig. 6. h- parameter model of bipolar junction transistor. 

the voltage sources are eliminated and extra current sources 
are added. 

B. Resemblance of Thermal and Circuit Systems 

Fig. 7 shows a parallel RC circuit, which can be described 
by 

c[-: -:I($)+;[-; -:I(;)=(;). 
(3.11) 
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Fig. 7. A parallel zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARC circuit. 

Comparing with the semidiscrete heat equation 

M d + K d = F  (3.12) 

it is easily seen that the mass matrix M can be realized by 
capacitor elements, the stiffness matrix K by resistor elements, 
and the force vector F by current sources. Some simple rules of 
obtaining the circuit networks from both the symmetric mass 
matrix and the symmetric stiffness matrix are discussed next. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
C. Circuit Networks from Symmetric Matrices 

Based on the above observation, a symmetric global matrix 
can be decomposed into several elemental matrices, and each 
elemental matrix can be represented by a circuit component. 
Some simple rules to obtain an equivalent circuit network from 
a symmetric matrix are summarized as follows. A symmetric 
mass matrix, M zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= [m,j] ,  can be realized by a capacitor 
network shown in Fig. 8, where 

1) between node i and ground, 

Fig. 8. A capacitor network from the symmetric mass matrix and a resistor 
network from the symmetric stiffness matrix. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

X.-l x. = 2; P Xi+l  = 2; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 * 2  

Fig. 9. Length coordinate. 

node x = 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Q p  

node 1 node 2 

n 

(3.13) Fig. 10. 
(d) Heat generation thermal networks. 

1-D linear element. (a) Conductive. (b) Convective. (c) Input power. c; = m;j. 

j=1  

2) between node i and node j ,  

c.. - - m . .  
23 - 2 3 '  

(L1,Lz) = ( 1 , O )  at z = z4,(Ll,La) = (0 , l )  at z = E ; ,  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
6, = ~5 - $7. Equations (2.9)-(2.11) in the 1-D problems can (3.14) 
be calculated from the following formula [18] 

A symmetric stiffness matrix, K = [ k i j ] ,  can be realized by a 
resistor network shown in Fig. 8, where 

(4.2) 
1) between node i and ground, L e L y L i d O  - a!b! 

e - ( a  + b + l)! 
(3.15) R; = 1/ ( eh,). i=1 A. Thermal Network of 1 -D Linear Element 

\- I 

2) between node i and node j ,  

R,, = -l/k,,. (3.16) 

Thermal circuit networks by the Galerkin projection and model 
reduction techniques are derived from the above simple rules. 

For a 1-D linear element, basis functions and their deriva- 
tives in the length coordinate are 

(4.3) 

Iv. THERMAL NETWORKS OF 1-D FINITE ELEMENTS 

The length coordinate shown in Fig. 9 is used for the 
derivation of 1-D equivalent thermal networks. The length 
coordinates are written as 

The conductive terms for the 1-D linear element are calculated 
to be 

K A  1 -1 
length(pz;) - - x; - z 
length(z4z;) 6, ' 

where the superscript d represents the conductive terms. From length(pz7) - z - zp 

length(z7z;) 6, ' the simple rules discussed in Section 111-C, the elemental 

rn: = pcpA6, 3 f , kt = - 6, [-1 
1] 

(4-4) [f :I L1= 

L2 = - 
(4.1) 
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-----be - a- 

x = o  x = L  

(a) 

(b) 

Fig. 11. (a) 1-D thermal problem and FE discretization. (b) Equivalent thermal network. 

matrix mf is realized by three capacitors The uniform heat generation is modeled by two current sources zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 9  = gA6,/2. The circuit networks for the input power and 
the uniform heat generation are shown in Fig. 1O(c) and (d), 
respectively. Fig. 1 1 illustrates the assemblage of elemental 
thermal networks into a global one for a 1-D thermal problem. 
Capacitors C,d can be avoided if lumped mass is used instead 
of consistent mass [15]. 

P p  A6x 
2 '  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

P p  AS, 

c;l = (d)ll + (d)12 = ____ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
c; = - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(m t )  12 = 

c3" = (mz)21 + (mz)22 = ~ 

(4.5) 
- W p  AS, 

6 '  

2 

and the elemental matrix k: by a resistor 

Since I / [ ( k : ) l i  + (k,d)12] = 1/[(k321 + ( k 3 2 2 ]  = infinite, 
there is no resistor between the two element nodes and 
ground. The equivalent conductive circuit network is shown 
in Fig. 10(a). For the element (last element for the 1-D case) 
with the convective boundary, we can write 

m, = mt @ m:, k, = kt @ kz, f, = f," @ f,", 

m: = 0 ,  k: = hA, f," = hAT,, (4.7) 
C" = 0 ,  R" = l / h A ,  I" = hAT, 

where the superscript 'U represents the convective terms, and 
the superscript g represents the heat generation terms. The 
convective terms only exist at the end node zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(x = L). The 
second term in (2.10) is modeled by a resistor R" = l / (hA) ,  
and the second term in (2.11) by a current source I" = 
hAT,. The equivalent convective thermal network is shown in 
Fig. lO(b), where the Thevenin theorem is applied to obtain an 
equivalent circuit. For the element (first element for the 1-D 
case) with the power input boundary, we can write 

(4.8) 

where the superscript p represents the power input terms. The 
input power only exists at the starting node (x = 0), and is 
modeled by a current source IP = P. Internal heat generation 
exists at every element, and 

(4.9) 

B. Thermal Network of 1-D Cubic Hermite Element 

length coordinate are 
The basis functions for a 1-D cubic Hermite element in the 

N l ( 2 )  = G(1+ 2L2)' N2(x) = LILZSX' 
(4.10) 

N3(x)  = (1 + 2L1)L;, N ~ ( x )  = -LlL;G,. 

The basis functions satisfy the following conditions: 
1) at node 1 (x = x:) 

2) at node 2 (x = xz) 

jv3 = - dN4 = 1, 

NI + N3 = 1, (4.13) 

The conductive terms are calculated to be 

(4.15) 

(4.16) 
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Fig. 12. Conductive thermal network for a 1-D cubic Hermite element. 

The elemental conductive thermal network for the cubic Her- 
mite element is shown in Fig. 12, where 

10 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-5  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Rt zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= - 5 

10 - 10 

Rd 
&AS, , R3" = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa> - __ 

- KA' 

- 10 10 30 

10 

(4.17) 

140 
-11 

C2dq = p q A (  1406, ') ' 

Nodes 1, 3 give temperatures and nodes 2, 4 give temperature 
gradients. The convective terms and the input power term are 
modeled the same as those for the 1-D linear element. The 
uniform heat generation is modeled by three current sources. 
Two current sources with value zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIf = gA6,/2 are flowing 
from ground to node 1 and node 3, and one current source 
with value I! = gAS2/12 is flowing from node 4 to node 2. 

V. THERMAL NETWORKS OF 2-D FINITE ELEMENTS 

The area coordinate shown in Fig. 13 is used for the 
derivation of 2-D equivalent thermal networks of Lagrange- 
type triangular elements. The area coordinates are written 
as 

Y node 3 

A 

node 1 

node 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(C, Y 3  

(GP zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY;) 

Fig. 13. Area coordinate. 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi , j ,  k are the cyclic permutation of 1, 2, 3, and A, is 
the area of the local triangular element. Equations (2.9)-(2.11) 
in the 2-D problems can be calculated from the following 
formula [18] 

a!b!c! Le XyXb,XgdR - ( 2 4 ) .  (5.3) 
e - ( a + b + c + 2 ) !  

The coordinate transformation shown in Fig. 14 is used for the 
derivation of 2-D equivalent thermal networks of quadrilateral 
elements (with the rectangular element and the square element 
as special cases). Basis functions in the E-q coordinate are 

1 
N i =  z ( l + $ ) ( l + q ; q ) ,  i = l t o 4  (5.4) 

where 
relations hold, 

and vi are either $1 or -1, and the following 

4 4 

i=l i=l 

A. Thermal Network of 2-0 Triangular Element 

coordinate are 
For a linear triangular element, basis functions in the area zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

ai = (x;y; - .;y;), pz = (y; - y;), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy; = (x; - x;) 
(5.2) 
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node 3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
" zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
'4 :de,? 

node 1 node 2 

(-1, -1) (1, -1) 

Fig. 14. Linear mapping from z-y coordinate to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE-7 coordinate. 

The conductive terms are calculated to be 

TI boundary 

node 1 node 2 

r2 boundary 

node 1 node 2 

- - - - 

(c) (4 
Fig 15. 
power (d) Heat generabon thermal networks zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
B. Thermal Network of 2-0 Rectangular (or Square) Element 

2-D tnangular elemenc (a) Conductive. (b) Convective. (c) Input zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd p c A A  

(5.7) 
&A 

k% = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~ [ k , , ] ,  ~ , j  = 1 to 3 

where k,, = P J ~ ,  + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 % ~ ~ .  From the simple rules discussed 
in Section 111-C, the elemental matrix m: is modeled by 
three equal-valued capacitors Cf = pcPAA,/3, and by the 
other three equal-valued capacitors Cf = -pc,AA,/12. The 
elemental matrix k: is modeled by three resistors connected 
among the element nodes 

No resistor is needed to connect the element nodes to ground, 
because the sum of those terms in the same row or column in 
k: is zero. The signs of these three resistors depend on the 
corresponding triangular angles. An obtuse angle corresponds 
to a negative resistor, and a right angle to an infinite resistor 
which represents an open circuit. Otherwise, the corresponding 
resistor is positive. The elemental conductive thermal network 
is shown in Fig. 15(a). The convective terms are calculated 
to be 

where Lrz  is the length of the I72 boundary line in a local 
triangular element. Similar to the 1-D conduction case, the 
elemental matrix k: is modeled by two resistors RY = 
2/(hALr,), and one resistor RZ = -6/(hALr2). The vector 
f," is modeled by two equal-valued current sources I" = 
hAT,Lr, 12. The equivalent convective thermal network is 
shown in Fig. 15(b). The input power is modeled by two 
equal-valued current sources I P  = PLr,/2, where Lr, is the 
length of the boundary line in a local triangular element. 
The uniform heat generation is modeled by three equal-valued 
current sources 1 9  = gAAJ3. The circuit networks for the 
input power and the heat generation are shown in Figs. 15(c) 
and (d), respectively. 

Basis functions for the 2-D rectangular (or square) element 
are shown in (5.4). The conductive terms are calculated to be 

r4 2 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA21 

(5.10) 

12 1 2 41 

and (5.11) shown at the bottom of the next page where 6, and 
6, are the length and the width of the rectangular element, 
respectively. The conductive thermal network is shown in 
Fig. 16, where 

1 -1 

18 Cf = ;pcPAS,S,, C; = -pcpASZSy, 

-1 
36 

Ct  = -pcPAS,S,, 

(5.12) 

For a square element, set 6, = 6, = S. The condition for Rf 
and R$ to be positive is 

(5.13) 

Circuit models for the convective terms and the input power 
are the same as those for the 2-D linear triangular element. 
The uniform heat generation is modeled by four equal-valued 
current sources, IS = gAS,Sy/4. 

VI. THERMAL NETWORKS OF 3-D RNITE ELEMENTS 

The volume coordinate shown in Fig. 17 is used for the 
derivation of 3-D equivalent thermal networks of Lagrange- 
type tetrahedral elements. The volume coordinates are written 
as 

volume(pjkZ) - a, + P,ic + ~ , y  + 5,z 
(6.1) V -  - 

' - volume(1234) 6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv e  
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Fig. 16. Conductive thermal network for a 2-D rectangular element. 

Fig. 17. Volume coordinate. 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi ,  j, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5,1 are the cyclic permutation of 1, 2, 3,4, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV, is the 
volume of the local tetrahedral element, and ai, pi, ~ i ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&, i = 
1 to 4 ,  can be found in [ 181. Note that the ordering of the nodal 
numbers must follow a right-hand rule. Equations (2.9)-(2.11) 
in the 3-D problems can be calculated from the following 
formula [18] 

A. Thermal Network zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof 3 - 0  Tetrahedral Element 

volume coordinate are 
For a linear tetrahedral element, basis functions in the 

The conductive terms are calculated to be 

2 1 1 1  
d - PCpAVe 1 2 1 1 

1 1 1 2  
1 2 1] 

129 

(6.4) 

&A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ki = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-[kij], 36V, 

i , j  = 1 to 4 

where k;j = pipj + ~ i ~ j  + CiCj. The conductive thermal 
network is shown in Fig. 18(a), where 

The convective terms are calculated to be 

where Ae,rz is the area of the r2 boundary surface in a 
tetrahedral element. The convective thermal network is shown 
in Fig. 18(b), where 

The input power is modeled by three equal-valued current 
sources I p  = Ae,r ,P/3,  where A,,rl is the area of the 
rl boundary surface in a local tetrahedral element, and the 
uniform heat generation is modeled by four equal-valued 
current sources 19 = gAVe/4. The circuit networks for the 
input power and the heat generation are shown in Fig. 18(c) 
and (d), respectively. 

B. Thermal Network of 3 - 0  Cube Element 

Since the 3-D conductive thermal network is too com- 
plicated to draw here, node 1 in Fig. 19(a) is used as a 
reference node to illustrate the connections. The conductive 
terms for the cube element are modeled by 16 resistors and 
36 capacitors. Only eight capacitors are needed if lumped 
mass is used instead of consistent mass. Resistors among 
the neighboring nodes, such as nodes 2, 4, 5 to node 1, are 
infinite and therefore are open. Sixteen resistors among the 
nonneighboring nodes, such as nodes 3, 6, 7, 8 to node 1, 

KA kz= - 
6 

(5.11) 
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r2 boundary 

node 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG node 2 

node 

I'l boundary zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 node 2 

node 1 

1 

I g  

node 4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 

Ig node 3 

Fig. 18. 3-D tetrahedral element: (a) Conductive. (b) Convective. (c) Input power. (d) Heat generation thermal networks. 

have the value zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARd = d S / 1 2 ,  whcre S is the length of the 
cube element. Eight equal-valued capacitors Cf = pcpAS3/8 

connect the eight element nodes to ground. Twelve equal- 
valued negative capacitors zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC;" = -pcpAS3/54 are connected 
among the neighboring nodes, such as nodes 2 ,4 ,5  to node 1, 
twelve equal-valued negative capacitors Ci = -pc,AS3 1108 
are connected among the 2-D-diagonal nodes, such as nodes 
3, 6, 8 to node 1, and four equal-valued capacitors C; = 
-pcpAS3/216 are connected among the 3-D-diagonal nodes, 
such as node 7 to node 1. The convective terms are calculated 
to be 

12 1 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA41 

The equivalent convective thermal network is shown in 
Fig. 19(b), where 

The input power is modeled by four equal-valued current 
sources I P  = PS2/4, and the uniform heat generation by 
eight equal-valued current sources 19 = gAS3/8.  Capacitors 
C;", Ci and Ci can be avoided if lumped mass is used instead 
of consistent mass. 

VII. VERIFICATION 

FEM-based thermal networks are written as element tem- 
plates in the SABER circuit simulator, and thermal package 
models are built by these element templates. A nonlinear 
resistor template is used to account for the nonlinear thermal 
conductivity of silicon [4], i.e., 

K ( T )  = 1.5486( y )  +. (7.1) 

A 2-D mesh generator is used to produce a mesh of 
triangular elements, and programs are written to automati- 
cally generate SABER input files. The coupled electrical and 
thermal systems are solved simultaneously by the built-in 
numerical solvers in SABER. The thermal circuit networks 
for the I-D FE'S are verified by analytical solutions for linear 
problems; the results are shown in Figs. 20 and 21. Using the 
method of separation of variables [19], the analytical solution 
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Fig. 19. (a) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA cube 

node zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 node 7 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I" 

3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I" 

node zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 node 2 

(a) 

element. (b) Convective thermal network for a 

rl boundary 

node 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 node 4 

rl boundary 

node 1 5 node 4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- 

cube element. 

TIME (SEC) 

Fig. 20. 
Wlcm' -K. 

Verification of 1-D thermal circuit networks: h = 1.55 X 

for the 1-D thermal problem is derived as2 

P P 

KA hA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT(x,~) = -(1 - X) + - +Ta zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
00 

+ D,  exp( ?hit )  cos(A,z) (7.2) 
n=l PCP 

where A, satisfies 

h 
A, tan(An) = - (7.3) 

K 

and 

(7.4) 
4P{h[cos(A,) - 11 - KA, sin(A,)} 

K~A,A[~A, + sin(2A,)] 

The tested 1-D problem is shown in Fig. 1 l(a); the parameters 
used are: K = 3.846 W/K-cm,p = 8.857 g/cm3, cp = 
0.386 J/g-K, P = 100 W, A = 0.645 16 cm2, L = 2.54 cm, 
and element number = 8. The tested 2-D problem which only 
consists of the Si chip and the TO247 package, taken from a 
reference paper [4], is shown in Fig. 22. The thermal networks 

D, = 

'Only six terms, which can be obtained from [19], of the infinite series in 
(7.2) are used to produce the analytical solutions shown in Figs. 20 and 21. 

420 

:x = Ocm I 

TIME (SEC) 

Fig. 21. Verification of I-D thermal circuit networks: h = infinite 

input power 

1 n Si chip 

TO-247 package - line boundary i-1 (input power) 

- line boundary ra (convection) 

Fig. 22. One example of 2-D thermal problems. 

for the 2-D FE'S are verified by results from the ANSYS3 

simulator; the results are shown in Fig. 23. Simulation results 
from SABER and from ANSYS are similar. 

3ANSYS is a FE program to solve PDE's, not a circuit simulator. We use 
ANSYS results to verify our FEM-based thermal circuit models developed 
for SABER, which is a circuit simulator. 
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boundary nodes are fixed at the ambient temperature 
3701 I 
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***** Simulation results from the SABER circuit simulator 
----- 3-0 6EM data by ANSYS simulatbr, from Hefnei19931 
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TIME (SEC) 

Fig. 23. Verification of 2-D thermal circuit networks. 

-& - 3- - + - - 
................... i ................... i ................... 

- - - +- - - - + 

........ .................. i ................... i ................... i 

VIII. CLOSURE 

A rational formulation of the thermal circuit networks by 
the finite element method has been presented. These FEM- 
based thermal circuit networks are implemented in the SABER 
circuit simulator, and simulation results are verified with the 
analytical solutions for the 1-D case, and by the results from a 
FEM code for the 2-D case. Different types of finite elements 
are modeled as different types of lumped thermal circuit 
components, so that finite element solutions of the thermal 
system are ready to be coupled with the electrical system in 
the electrothermal simulation. 
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