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Abstract. The Murnaghan-Nakayama formula for the characters of Sn is derived from Young's
seminormal representation, by a direct combinatorial argument. The main idea is a rational function
identity which when stated in a more general form involves Mobius functions of posets whose Hasse
diagrams have a planar embedding. These ideas are also used to give an elementary exposition of
the main properties of Young's seminormal representations.
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1. Introduction

Despite their formidable appearance in most treatments of representations of
symmetric groups (e.g., [14], [11], [7]), Young's seminormal representations reveal
a rich combinatorial structure when probed beneath the surface. Some hints of
this may be found, for example, in [3], [6], and [7, chap. 7]. The purpose of
this paper is to show that the well known Murnaghan-Nakayama formula for
irreducible characters of Sn can be derived from the seminormal representations
by a direct combinatorial calculation. In the process we obtain a rational function
identity which appears to be new and which involves Mobius functions of posets in
a rather unexpected way. This offers a particularly direct approach to defining the
seminormal representations and verifying their properties. It is a routine matter
to write down the matrices representing adjacent transpositions TK = (K, K+ 1)
and to check that the Coxeter relations

are satisfied. This proves that one has constructed a family of representations of
Sn. Our results show that the characters, and hence the representations, agree
with ones given by other constructions (e.g., [8] or [9]).

As another byproduct, we show that the so-called skew representations of Sn

occur naturally as constituents when the seminormal representations are restricted
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to subgroups SJ, where J = [j, j + 1, ..., k] is an interval. Again, this follows
readily by comparison of characters since the skew characters are known to satisfy
a Murnaghan-Nakayama-type recursion. An explicit combinatorial description
of the skew representations based on Young's natural representations has been
given in [4], but the arguments needed to justify the construction are quite
intricate. The seminormal representations evidently offer a simpler and more
direct approach to this problem.

Section 2 gives a brief description of the seminormal construction and states
the main results. Section 3 contains a proof of the rational-function identity
on which the main arguments rest. Section 4 discusses the application to skew
representations. Section 5 provides, for completeness, the details to support the
claim that verifying the Coxeter relations for the representing matrices is a routine
calculation. The ideas in Section 5 must certainly have been known to Young,
Rutherford, and others, but I have not seen them written down in coherent
form. In verifying the Coxeter relations one can see clearly how the entries of
the representing matrices are essentially forced by a few natural combinatorial
assumptions.

The idea of deriving formulas for the irreducible characters directly from
the seminormal matrices is not new. Indeed, Rutherford takes this approach
[11, pp. 71-77] and obtains a result essentially equivalent to Theorem 2.8 in this
paper. The methods presented in Section 3 are more general than Rutherford's
in several respects, and I hope that some of the key ideas in Sections 2 and 5
are revealed in a way which may not be apparent to the casual reader of [11].

2. Young's Seminormal Representations

From a combinatorial point of view it could be argued that Young's seminormal
representations are more natural than the more familiar "natural" representations,
which Young developed first. For each S E Sn one defines an action
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where V = (T1, T2, ..., T f ( l )) is the vector space consisting of all R-linear
combinations of the f(A) standard tableaux of shape A. If T is a tableau, let ST
denote the tableau obtained from T by replacing each entry by its image under
a. Since ST is not always standard, one cannot define a "purely" combinatorial
action on the basis vectors of V. However, a close approximation is possible in
the following sense: We seek a system of parameters a(T, K), b(T, k), c(T, k),
where k = 1, 2, . . . ,n-1 and T ranges over all standard tableaux of shape A,
yielding an action of the form
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We note that T' fails to be standard if and only if k and k+1 appear together in a
row or column of T. It turns out to be possible to choose a(T, k), b(T, k), c(T, k)
in such a way that a representation is obtained. To explain how, we need a few
more definitions.

Definition 2.1. If A is any shape and x denotes a cell in A, the content of x
(denoted c(x)) is equal to the column index of x minus the row index of x. If
x and y are cells of A, the (signed) distance d(x, y) from x to y is defined by

In other words, d(x, y) is the number of steps in a northeast path from x to y,
or minus that value if y lies to the southwest of x.

If T is a tableau and a and 6 are entries in T, we define dT(a, b) = d(x, y),
where x and y are the cells containing a and 6, respectively. We also need to
introduce a linear order on SYT(A), the set of standard tableaux of shape A,
as follows: if Ti, and Tj are such that the largest disagreeing number occurs in
a lower row in Tj, then Ti precedes Tj in the ordering. This is known as the
last-letter (LL) ordering of tableaux. For example, if A = {3, 2}, the LL ordering
on SYT(A) is

THEOREM 2.2 (Young [14]). Representations of Sn are obtained if one chooses
either (A):

or (B):

Representations (A) and (B) are known as Young's orthogonal and seminormal
representations, respectively. They can be shown to be equivalent by a diagonal
transformation. In Section 5 we prove Theorem 2.2 by verifying the relations
(1) explicity.



This last result may be expressed more conveniently in the following notation:

Definition 2.6. If A is any shape, let

Computing pl(T)Ti by using (2), one gets a linear combination of tableaux T,
each obtained from Ti by applying a subsequence of transpositions in the above
expression for 0. Only one such permutation gives Ti itself (namely, the identity),
and it yields a product of a-terms having value equal to DT(Ti), as asserted.

COROLLARY 2.5. If T is a standard permutation, then

Proof. One can write

LEMMA 2.4. If T is a standard permutation, then

When T = (1, 2, . . . , n), we write AT(T) = A(T) and refer to A(T) simply as the
weight of T.

The following key lemma can be found in Rutherford [11, p. 43].

where {A1, ..., AK} denotes the cycle types of T and for notational convenience
we have written bi = a1 + . . . + ai for i = 1, 2, ..., K. We will say that such
permutations are in standard form.

Definition 2.3. If T is a standard tableau with n cells and if t € Sn is in standard
form, the t-weight of T (denoted Ag(T)) is defined as follows:

We now fix our attention on the seminormal representations and denote by
p\(9) the matrix representing a permutation t € Sn. Further, we let PA(t)|i,J
denote the ij entry of that matrix. To compute the character of p\ it suffices to
consider permutations 9 which are in the standard form
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To understand the definition of w(T) it is helpful to introduce a tableau Xl of
shape A, obtained by inserting the indeterminates xi according to the standard
labeling of A. For example, if A = {3, 3, 2}, then

Definition 3.1. If T is a tableau of shape A, then

Combining Corollary 2.7 with Theorem 2.8, one gets exactly the Murnaghan-
Nakayama formula for characters of Sn (see, for example, [7, p. 60]). It is
Theorem 2.8 which we intend to prove in Section 3.

3. A Rational-Function Identity

Let X1, X 2 , . . . , Xn be indeterminates. We wish to assign to each tableau T of
shape A a weight w(T), as follows. Fix a standard labeling of the cells of A,
for example, the one which labels cells in order from left to right in each row,
beginning with the first. (The exact labeling chosen is not important.) We can
now regard each tableau of shape A as a map T : [n] —> [n], where T(i) is the
entry in the cell labeled i.

The value of the right-hand side of (3) can be determined by

THEOREM 2.8. For any partitions n C A we have

COROLLARY 2.7.

If A/u is a skew shape, then A(X/n) is defined in a similar fashion.

Since only the positions and the linear order of symbols are relevant, this
definition makes sense if the tableaux (or skew tableaux) have values in any
linearly ordered set (for example, a segment in {1, 2, ..., n}). Note also that in
Definition 2.6 of D(A) we are taking T = (1, 2,. . . , n).

If in the sum appearing in Corollary 2.5 one collects terms according to the
positions occupied by the various segments of numbers {1, 2, . . . , a1}, {a1 + 1,
..., a1 + a2}, ..., {bk-1 + 1, ..., bK }, one obtains the following:
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where D denotes the set of pairs xi, Xj in XL with i < j which are adjacent in some
diagonal, R denotes the set of pairs adjacent in some row, and C denotes the set of
pairs adjacent in some column.

For example, if A = {3, 3, 2}, Theorem 3.3 asserts that

where for i = 1, ..., n the value of xi in w(T) has been replaced by c(i).

Our first main result is the following:

THEOREM 3.3. Let A be any shape (or skew shape). Then

LEMMA 3.2. Let T be any tableau (or skew tableau). Then

If we set each xi equal to the content c(i) of the cell labeled i, then (xj — Xi) =
d(i, j) and we obtain the following:

then

Then the denominator of w(T) is determined by taking a "walk" through Xl

according to the route defined by T and taking products of differences. Thus if
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It is clear that Theorem 2.8 follows as an immediate consequence of Theo-
rem 3.3. If A/ji is a skew shape containing two cells in a common diagonal, the
numerator in (5) vanishes when xi's are replaced by c(i)'s. On the other hand, if
L/u is a skew hook, the denominator contributes (-1) for each pair of adjacent
vertical cells, thus contributing (-1)H-1 altogether.

There is a natural and well known extension of the theory of tableaux to
partially ordered sets, in which the role of standard tableaux is played by linear
extensions ( = natural labelings) (see, for example, Stanley [12]). By definition,
a linear extension of a poset P with p elements is a bijective map a : P —> [p]
such that x <p y implies a(x) < a(y) for all x, y € P. If A and v are partitions
with v C A, we may construct a poset P = PL/v = {(i, j)|Vi < j < Li} C R x R.
Here R x R is endowed with the usual componentwise ordering. It is clear that
every linear extension of PL/v determines a standard tableau of shape L/v and
conversely.

It turns out that an analog of Theorem 3.3 holds for linear extensions,
provided that we restrict our attention to posets which are planar in the (strong)
sense that their Hasse diagrams may be order-embedded in R x R, without edge
crossings, even when extra bottom and top elements 0 and 1 are added. Thus,
for example, all of the posets PL/v defined above are planar, but a simple example
of a nonplanar poset is shown in Figure 1.

Figure 1.

The more general version of Theorem 3.3 is as follows:

THEOREM 3.4. Let P be a planar poset, and let C(P) denote the collection of linear
extensions of P. Then

where u denotes the Mobius function of P and the product is over all pairs a <b in
P. The weight w(a) of a linear extension is defined as in Definition 3.1.

We will assume the reader is familiar with some basic facts about Mobius
functions. For more background refer to [10] or [12]. It is well known that
for intervals in N x N of the form of Figure 2 we have u(w, x) = u(w, y) =
u(x, z) = u ( y , z) = -1, and u(w, z) = 1, while u(a, b) = 0 for all other a < b in
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Figure 2.

Figure 3.

N x N. Accordingly, Theorem 3.3 follows as a special case of Theorem 3.4 since
the posets Pl/v are embedded in N x N in such a way that intervals correspond
to intervals.

A more general example is obtained by considering the poset shown in Figure 3,
which has six linear extensions (corresponding to the six possible orderings of
the middle level). We note that u(1, 5) = 2 and obtain

The hypothesis of planarity cannot be omitted from the statement of Theorem 3.4:
for example, the result fails to hold for the poset illustrated in Figure 1.

Proof of Theorem 3.4. The proof is by induction. Let |P| = n, and assume
that the theorem holds for all posets Q with |Q| < n and for all posets Q with
|Q| = n that have more order relations than does P. The result clearly holds
for chains, which have the maximum possible number of order relations among
posets with n elements. We consider two cases, according to whether P has a
unique maximal element or more than one.

Case (i): P has more than one maximal element. Let a and b be two such
elements which are chosen as follows: if P is disconnected, then a and b are
in different components; if P is connected, then a and b are "adjacent" in the
sense that they are not separated by other maximal elements as the boundary
of P is traversed. Define new posets PA and PB on the same underlying set of
points, as follows:



and similar relations hold for UB.
To verify this claim it will be convenient to use some of the elementary

formalism of Mobius algebras (see [5]). If K is a field, define a vector space
kP consisting of all formal fc-linear combinations of elements of P. Then the
elements

as claimed.
If P is connected, the situation requires more careful analysis. Let c = a A b,

the greatest lower bound of a and b, which must exist by the planarity and
connectivity of P. We claim

and that all of the other values of u remain unchanged. Hence the above
expression in braces reduces to

We will show that the term in braces is equal to 0 or 1 according to whether
P is disconnected or connected. First note that ua(P, q) = u(P, q) unless q = a
and p < b. This is obvious since all other intervals are identical in PA. Similarly,
MB(P, q) = n(p, q) unless q = b and p < a. If P is disconnected, one readily sees
that

since in every linear extension of P exactly one of s(a) < s(b) or s(b) < s(q)
holds. Let uA and uB denote the Mobius functions of PA and PB, respectively.
By the inductive hypothesis,

It is clear that both PA and PB are planar, are connected, and have more order
relations than does P; hence Theorem 3.4 applies to each. Further,
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and the result follows from multiplying both sides by (xu - xv )-1.
Assume, finally, that P has a unique maximal element u which covers at least

two distinct elements a and b, which we assume to be "adjacent" in the sense
used earlier. We may further assume that c = a A b exists since otherwise the
argument of Case (i) can be applied to the dual of P.

Define posets PA and PB as in Case (i) by adding the relations (b, a) and
(a, 6) (respectively) and all other relations implied by transitivity. Again PA and
PB are connected and planar, and

and the proof of Case (i) is complete.
Case (ii): Now assume that P has a unique maximal element u. If u itself

covers a unique element v, then every linear extension maps u and v to p
and p - 1, respectively, and hence the factor (xu - xv)

-1 occurs in w(a) for all
a € £(P). By the inductive hypothesis we have
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also form a basis of kP, and for all p e P we have

Indeed, the latter relation can be viewed as defining u. We will refer to the
elements dP as primitive idempotents for P. When P is a A-semilattice, the
elements dP are primitive orthogonal idempotents for kP viewed as a fc-algebra
with A as multiplication; however, we will not use this fact in the proof.

It is easy to verify that the elements dP defined by

form a set of primitive idempotents for PA; that is, the relations (8) hold for all
p £ PA- Examination of coefficients in (9) yields (6) immediately.

Returning to the proof of Theorem 3.4, we now see that
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Hence to prove Theorem 3.4 we must show that

One readily verifies that if (dx)x€p is a system of primitive idempotents for P,
then (d x)xepA defined by

are primitive idempotents for PA. Accordingly, we obtain

with similar relations holding for uB. Hence the left-hand side of (10) reduces
to

as desired, and the proof of Theorem 3.4 is complete.

We note the following corollary, which follows when P is an antichain. Note
that in this case every permutation of [n] is a linear extension.

COROLLARY 3.5. For any integer n > 1 we have

Although it is reminiscent of other formulae in the theory of Lagrange
interpolation (and can be proved easily by using those methods), we have not
found it stated explicitly in the literature. Guo-Niu Han has shown us an easy
direct proof of Corollary 3.5: simply argue that the weights sum to zero over
each cyclic class of permutations, i.e., over cosets of the subgroup ((1, 2, . . . , n)).

4. Application: Skew Representations

The skew representations of Sn are defined for any skew shape l/u having n
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cells. They are most easily defined to be those representations corresponding to
the skew Schur functions

where sn denotes an ordinary Schur function and cun is a Littlewood-Richardson
coefficient (see [9], for example, for details). Equivalently, they are representa-
tions formed by taking direct sums of irreducible representations with multiplic-
ities determined by the cun. It is known [7, p. 64] that the characters of skew
representations can be computed by an analog of the Murnaghan-Nakayama
formula: if T = T1T2. . . TK is a permutation whose cycles Ti have length m;, then

where the sum is over all skew shapes A/x obtained by removing a skew hook
of length mk from the border of A/u, H denotes the number of rows of the
skew hook, and T denotes the permutation obtained by removing the last cycle
from 8. The formula can also be given in nonrecursive form:

where the sum is over all sequences such that A i /A i - 1 is a skew hook of length
mi, and Hi denotes its length.

We observe that representations with these characters occur naturally as
constituents of the seminormal representation PA. If u has m cells and A has
m + n cells, then Sn is naturally embedded in Sm+n as the set of all permutations
fixing 1, 2,. . . , m. We denote this subgroup explicitly by SN. Now consider how
the seminormal representation pL (acting on the vector space V spanned by all
tableaux of shape A) restricts to SN . Clearly, the tableaux of shape A containing
{1, 2, . . . , m} as a fixed subtableau T span a subspace VT invariant under the
action of pL|sN , for each T. Furthermore, V is the direct sum of all such VT.
Let PL/T denote this action, for each T. Then we may write

where the first sum is over all partitions u of m contained in A, and the second
sum is over all standard tableaux T of shape u. From (2) it is clear that the
action of SN on VT depends only on u and not on T, so we may define
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Finally, it is clear that a formula for the character of p A / u can be computed as in
(3), and Theorem 2.8 yields (12) immediately. This shows that pl/v has character
XA/u and hence must be the skew representation corresponding to A/u.

5. The Coxeter Relations

The goal of this section is to prove Theorem 2.2 by writing down the Coxeter
relations (1) explicitly in matrix form and determining what is required to satisfy
them. In other words, we find exactly what properties a(T, k), b(T, k), and
c(T, k) must satisfy in order for (2) to define a representation of Sn.

THEOREM 5.1. Suppose that parameters a(T, k), b(T, k), and c(T, k) are such
that (2) defines a representation of Sn. Suppose further that b(T, k) = 0 whenever
T' = (k, k + 1)T is a standard tableau. Then there exist a constant e = ±1 and
constants ST defined for each T e SYT(A) such that for all T, k

Conversely, any choice of parameters satisfying (13)-(15) defines a representation
of Sn.

Remark 1. The choice of e = ±1 determines whether the representation obtained
corresponds to A or to A* (the conjugate of A).

Remark 2. Clearly, (14) is implied by (13) and (15).

Remark 3. It will be convenient to have an alternative version of conditions
(14)-(15), which serve to define b(T, k). First, note that it suffices to define
b(T, K) whenever k lies below K+1 in T since then b(T", k) is determined by (14).
It is known that the standard Young tableaux of shape A form an interval in the
weak order of Sn (see [1] for definitions), which we denote by SYTw(L). Here
one associates each tableau with its "column word," reading entries from top to
bottom in each column, starting with the first. In this order T1 is the smallest
tableau and Ti is covered by Tj in SYTw(L) if Tj = (k, k + 1)Ti with A; appearing
below k + 1 in Ti. We can thus interpret b(T, k) as a function on covering
pairs in SYTw(A). A function f(Ti, Tj}) on covering pairs in SYTW(A) will be
called path independent if the product of / over covering pairs in a saturated
chain depends only on the endpoints or, equivalently, if there exists a "potential
function" P defined on SYTW(A) such that f (T i , Tj) = <f>(Tj)/<j>(Ti).

PROPOSITION 5.2. If b(T, k) is any path-independent function on covering pairs
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T -< T in SYTw(A), there exist parameters fT defined for each T e SYT(A) such
that (14)-(15) hold, and conversely.

Proof. This is a simple consequence of the fact that R1 - a(T, k)2 (indeed any
function dependent only on the location of k and k + 1 in T) is path independent
on SYTw(A).

Remark 4. Choosing fT = 1 for all T gives Young's orthogonal representation.
By Proposition 5.2 and the observation made in its proof, there exists a unique
function P(T) on SYT(A) such that

where k appears below k + 1 in T and T' = (k, k + 1)T, that is, T' covers T in
SYTW(A). Taking VT = RP(T) gives Young's seminormal form. The function
P(T) defined by (16) is the tableau function constructed explicitly by Rutherford
in [11, p. 47].

Proof of Theorem 5.1. Suppose that p is a representation defined by (2) and satis-
fies the conditions of Theorem 5.1 (that is, b(T, k)= 0 whenever T' is standard).
We will show that (13)-(15) are satisfied. For notational convenience let

Each MK is composed of diagonal blocks of the form

with b and b' not equal to zero. It is easy to check that Ml = I implies that for
each block

First, let |j - k| > 2, with j < k, and let T be a tableau such that both pairs
{j> j + 1} and {k, k + 1} lie in distinct rows and columns of T. Denote by

the orbit of T under the action of S{j,j+1} x S{k,k+1}. Here Tpqrs denotes the
tableau obtained from T by arranging j, j +1, k, k +1 in an order consistent with
p, q, r, s. The blocks of Mj and Mk corresponding to T1234,T2134, T1243, T2143

have the form
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from which we compute

Setting each entry equal to zero, we find

That the remaining diagonal conditions are equivalent to (21) follows from the
relation bib'i = 1 - ai. From (20) we draw the following important conclusion:

PROPOSITION 5.3. If T* is obtained from T by permuting integers i < k or integers
j > k + 1, then a(T, k) = a(T*, k) and c(T, k) = c(T*, k).

Proof. For a(T, k) this follows from (20) since such permutations can always be
achieved by a sequence of transpositions of adjacent elements (see, for example,
[1]). The proof for c(T, k) is similar.

Next, suppose that T is a tableau containing k, k + 1, k + 2 in distinct rows
and columns, with fe below k + 1 below k+ 2. The orbit of T under the action
of S{k,k+1,k+2} contains six tableaux, represented (in the notation of (18)) by

T123 T213 T132 T231 T312 T321

when written in LL order. If A and B denote the corresponding blocks of Mk

and Mk+1 (respectively), then A and B have the form
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A computation now gives ABA - BAB

GREENE

where we have temporarily suppressed some of the entries. Setting the remaining
entries equal to zero, we obtain Ai = ai for i = 1, 2, 3, and it follows that

Now, computing ABA - BAB again, we obtain

where we have written

Setting D = C = 0, we obtain

Combining (21) and (28), we obtain the following:

PROPOSITION 5.4. The function b(T, k) is path independent on SYTW(A). Hence,
the conditions of Proposition 5.2 are satisfied and b(T, k) is determined by (15).

Proof. It is well known [13] that given any two saturated chains in the weak order
of Sn (and hence in SYTw(A)), one can deform one into another by a sequence of
transformations corresponding to applications of the elementary Coxeter relations
(1). Path independence for these transformations follows immediately from (21)
and (28).

Only a few details now need to be resolved to complete the proof. The first
step will be to compute
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explicitly. Let T be a tableau containing

as a subtableau, and let T' = (2, 3)T. Consider the 2 x 2 subblocks of

determined by T and T'. These have the form

respectively, with x2 = y2 = 1 and bb' = 1 - a2, as noted earlier. A computation
gives

Setting (30) equal to zero, we deduce that x = -y and hence xy = -1. Further,
b=0 implies x - y = -2y and a = 1 /2y. We let e = y. Since the value of c(T, 1)
depends only on the location of 1 and 2, it follows that

Thus if e = 1, for example, we have

Next we show that for all k

that is, the pattern determined by M1 holds for all k. The proof is by induction
on k. Let T be a tabelau in which k and k + 1 are in the same row. (A
similar argument applies if they are in the same column.) If k is not in the
first column, we can find a tableau T' containing k - 1, k, k + 1 in the same
row. By Proposition 5.3, we have c(T, k) = c(T', k). By the inductive hypothesis
c(T', k - 1) = s, and by (1)
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which implies c(T', k) = E, as claimed. On the other hand, if k is in the first
column (and assuming k > 1), we can find a tableau T' containing

GREENE

as a subtableau, and again c(T, K) = c(T', k). We let T" = (k- 1, k)T' and note
that T" precedes T" in LL order. Consider the 2 x 2 submatrices of Mk-2, M k - 1 ,
and Mk determined by T' and T", which have the form

respectively. From the Coxeter relations we deduce (AB)3 = (CB)3 = I, then
A = ±C, and, finally, A = C. However, y = c(T', k - 2) = e by the inductive
hypothesis. Hence y' = c(T', K) = e, as asserted.

It now remains to determine a(T, k) and b(T, k) when k and k + 1 appear
in different rows and columns of T. We proceed by induction on |d T (k , k + 1)|,
supposing first that d T ( k , k + 1) = 2. We can find a tableau T' containing

as a subtableau and such that a(T, k) = a(T', k), b(T, k) = b(T', k). Letting
T" = (k, k + 1)T' and considering the 2 x 2 submatrices of Mk-1 and Mk

determined by T' and T", we obtain

and equations (30) imply (as before) that a = e/2, which proves that a(T, k) =
e/2 = e/d(fc, fc + 1) when d(k, k + 1) = 2. A similar argument holds when
d(k, k + 1) = -2.
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Next, suppose that d(k, k + 1) = d > 2. We can find a tableau T' containing

as a subtableau and such that a(T, k) = a(T', k), b(T, k) = b(T', k). The
orbit of T' under the action of S{k-1,k,k+1} contains three tableaux T', T", T'",
illustrated by

The submatrices of Mk-1 and Mk determined by T', T", T'" have (respectively)
the form

where a1 = e/dT"(fc - 1, k) by the inductive hypothesis and a2 = a(T', k) is what
we seek to determine. Now

where D = a1a2 - ea1 + ea2. Setting ABA - BAB = 0, we see that D =
a1a2 - ea1 + ea2 = 0 or, equivalently,
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which implies a(T', k) = a2 = e /dT '(k , k + 1), as claimed. A similar argument
works when dr(k, k + 1) = d < -2. By induction this establishes (13) for all T
and k and completes the proof of necessity.

Much less work is required to show sufficiency, and most of it is already
complete. Suppose that the parameters a(T, K), b(T, K), c(T, K) have been chosen
to satisfy (13)-(15), and let Mk = p((k, k + 1)) denote the matrix obtained from
(2), as before. We must show that the matrices Mk satisfy (1).

It is clear from (13)-(14) and the argument at the beginning of this proof that
Ml = I for all k. To verify that MkMj = MjMk when |j - k| > 2, we examine
the block submatrices determined by the action of S{j,j+1} x S{k,k+1} on SYT(A).
The only nontrivial case occurs for tableaux in which the pairs {j, j + 1} and
{k, k + 1} occur in distinct rows and columns, and MjMk - MkMj = 0 follows
immediately from (19).

To verify that M k + 1 M k M k + 1 = M k M k + 1 M k for all k, we need to look at the
blocks of Mk and Mk+1 determined by the orbits of S{k,k+1,k+2} on tableaux.
There are several cases, depending on which of k, k + 1, k + 2 lie in the same
row or column. All but one of these cases have been considered already in
this proof, and ABA - BAB = 0 follows immediately from (30), (31), (24) in
each of those cases. The only unexamined case is an easy one, namely, when
k, k + 1, k + 2 occur T in a subtableau of the form

If T' = (k, k + 1)T, the corresponding submatrices of Mk and Mk+1 are

with bb' = 3/4, and the relation ABA -BAB follows immediately. This completes
the proof of Theorem 5.1.

COROLLARY 5.5. Any two representations of Sn defined by (2) and satisfying the
conditions of Theorem 5.1 are equivalent by a diagonal transformation.

Proof. This is an immediate consequence of property (15).

Acknowledgment

This paper was written while the author was a guest at the University of



IDENTITY FOR THE CHARACTERS OF Sn 255

Strasbourg. The author thanks D. Foata and R. Seroul for their hospitality and
technical support during that visit. This work was supported in part by National
Science Foundation grant DMS-9005666.

References

1. A. Bjorner and M. Wachs, "Generalized quotients in Coxeter groups," Trans. Amer. Math. Soc.
308 (1988), 1-37.

2. N. Bourbaki, Croupes et algebres de Lie, Vol. 34 of Elements de Mathematiques, Hermann, Paris,
1968, Chaps. 4, 5, 6.

3. P. Diaconis and C. Greene, "Applications of Murphy's elements," unpublished manuscript, 1989.
4. A.M. Garsia, M.L. Wachs, "Combinatorial aspects of skew representations of the symmetric

group," J. Combin. Theory A 50 (1989), 47-81.
5. C. Greene, On the Mobius algebra of a partially ordered set, Adv. Math. 10 (1973), 177-187.
6. C. Greene, "Proof of a conjecture of Goulden and Jackson on immanants of the Jacobi-Trudi

matrix," Linear Algebra Appl., to appear.
7. G. James and A. Kerber, The Representation Theory of the Symmetric Group, Addison-Wesley,

Reading, MA, 1981.
8. D.E. Littlewood, The Theory of Croup Characters, Oxford University Press, Oxford, 1950.
9. I.G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford University Press, Oxford,

1979.
10. G.-C. Rota, "On the foundations of combinatorial theory I: Theory of Mobius functions,"

Z. Wahrsch. 2 (1964), 340-368.
11. D.E. Rutherford, Substitutional Analysis, University Press, Edinburgh, 1948.
12. R.P. Stanley, Enumerative Combinatorics, Vol. I. Brooks-Cole, Belmont, MA, 1986.
13. J. Tits, "Le probleme des mots dans les groupes de Coxeter," in Proc. Symposia Mathematica,

Rome, 1967, Academic Press, London, 1969, pp. 175-185.
14. A. Young, The Collected Papers of Alfred Young, University of Toronto Press, Toronto, 1977.


