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Abstract. Thick diffractive optical elements offer a promising way to achieve

focusing or imaging at a resolution approaching 1 nm for X-ray wavelengths shorter

than about 0.1 nm. Efficient focusing requires that these are fabricated with structures

that vary in period and orientation so that rays obey Bragg’s law over the entire

lens aperture and give rise to constructive interference at the focus. Here the

analysis method of ray-tracing of thick diffractive optical elements is applied to such

lenses to optimise their designs and to investigate their operating and manufacturing

tolerances. Expressions are provided of the fourth-order series expansions of the

wavefront aberrations and transmissions of both axi-symmetric lenses and pairs of

crossed lenses that each focuses in only one dimension like a cylindrical lens. We

find that aplanatic zone-plate designs, whereby aberrations are corrected over a large

field of view, can be achieved by axi-symmetric lenses but not the crossed lenses. We

investigate the performance of 1 nm-resolution lenses with focal lengths of about 1mm

and show their fields of view are mainly limited by the acceptance angle of Bragg

diffraction, and that aberrations can limit the performance of lenses with longer focal

lengths. We apply the ray-tracing formalism for a tolerancing analysis of imperfect

lenses and examine some strategies for the correction of their aberrations.

Keywords: diffractive optics, x-ray microscopy, geometrical optics

1. Introduction

Thick diffractive optical elements for X-ray wavelengths, including so-called sputter-

sliced zone plates and multilayer Laue lenses (MLLs), are fabricated by depositing

alternating layers of materials onto a substrate to achieve the required diameter or

height of the lens, and then slicing the lens from this structure [1–3]. To date, imaging
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resolutions of about 5 nm have been achieved [4,5]. Nanometer resolution requires layers

of comparable or smaller period than the diffraction-limited spot size, positioned with

high enough accuracy to avoid wavefront aberrations. At the wavelengths considered

here—of about 0.1 nm and below—reasonable diffraction efficiency demands structures

that are hundreds or thousands of times thicker (in the propagation direction) than the

layer period and tilted to fulfil the Bragg condition of diffraction [1]. Such diffractive

optical elements can be used as an objective lenses to construct various kinds of X-

ray microscopes, including a transmission microscope where the lens forms a magnified

image of an object on an area detector or a scanning transmission microscope where

the lens creates a focused probe through which the object is scanned while mapping the

transmission or emission of the sample. In all cases, an understanding of the imaging

characteristics of the lens helps to optimise the design of the microscope and to specify

its tolerances.

X-ray diffractive optical elements such as Fresnel zone plates and MLLs are usually

designed according to ray-optics principles and often additionally analysed in the

framework of wave optics calculations, dynamical diffraction, or coupled-wave theories

to model the performance at one or several field points [6–10]. Ray-tracing allows

rapid and accurate analysis of complex geometries over extensive parameter spaces, and

can be used as a computational engine for optimisation of particular parameters in a

design. Such an analysis is used in the optical industry for the design of instruments

such as telescopes, microscopes, and micro-lithography systems, where optimal optical

performance is paramount. Ray tracing has long been applied to model Fresnel zone

plates, giving insights into aplanatic designs, for example [11–14]. The modelling of

diffractive optical elements in complex optical systems has been well established, with

the development of holographic optical elements to produce arbitrary wavefronts abetted

by the rise of computational ray-tracing methods and software [15–21]. Some of these

principles have been recently rediscovered for the analysis of meta-lenses [22,23], and we

use them here for a comprehensive study of MLLs for nanometer focusing. We consider

both axi-symmetric lenses formed by depositing layers onto a cylindrical substrate, for

example, as well as lenses that focus only in one direction, created by deposition onto a

flat substrate.

Achieving a resolution of 1 nm is certainly a challenge from the points of view

of lens fabrication and instrumentation stability, but it appears that the concepts

and technologies to achieve this are in hand. Layer periods below 1 nm have been

demonstrated [24] and methods to produce lenses with tilted layers—required for rays

to satisfy the Bragg condition throughout the lens pupil—have been developed [25].

A recent theoretical and experimental analysis of crossed 1D MLLs has pointed out

the stringent requirements to align the lenses with respect to each other [9]. Here we

characterise the field-dependent aberrations of axi-symmetric and 1D MLLs formed on

flat and curved surfaces, using ray-tracing methods established for thick holographic

optical elements (HOEs) in which the phase profile (caused by additional wavelength

of path of each “fringe” or period in the structure) is combined with a “modified
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Snell’s law” [18] that redirects rays by Bragg diffraction. We find that curving the

lenses provides useful extra degrees of freedom in the optical design, but for small focal

lengths (giving diameters of lenses that can be reasonably fabricated) the fields of view

are limited by the rocking-curve width of Bragg diffraction. The ray-tracing approach

is reviewed in section 2 and further expanded in section 3 for X-ray MLLs. Fourth-

order expressions of the wavefront aberrations are derived in sections 4 and 5 and exact

computations presented for lens systems with 1 nm resolution. Finally, some tolerances

for the fabrication of MLLs are given in section 6. The symbols used in this paper are

listed in table 1 for convenience.

2. MLLs as holographic optical elements

A perfect focusing lens transforms the wavefront φ(r) of an incoming plane wave into

a converging spherical wave such that at each point a ray, defined by the normal of

φ, is deflected towards a common point on the optic axis. The deflection sin 2θ(r) =

−λ/2π∇φ(r) must therefore increase with distance r = |r| from the optic axis, for a

wavelength λ. In a refractive lens, deflection is caused by refraction and the change

in deflection is achieved with a variation of the direction of the surface normal with

position—that is, with a curved surface. In diffractive optics, deflection is caused by

diffraction. Rays no longer traverse the path of least time to arrive at the focus, but

instead accrue extra path-lengths of integral multiple wavelengths to constructively

interfere.

Conceptually, a diffractive lens that focuses an incoming plane wave (i.e. rays from

a point source located at infinity) to a point a distance f from the lens can be formed

holographically by interfering that plane wave with a spherical wave emanating back

towards the lens from the focus. For a cylindrical coordinate system (r, z), the phase

of the resultant interfering field is thus the difference of the “reference” plane wave

phase φr = −kz and the “object” spherical wave phase, φo = k[r2 + (z − f)2]1/2, with

k = 2π/λ. The phase field φ̄(r, z) = φo − φr gives surfaces at constant φ̄(r, z) on which

the incident and deflected rays sum to a constant path length. The family of surfaces at

φ̄(r, z) = kf+2πn, where n is an integer, provide the form of a diffracting structure that

can be fabricated on a surface specified by z = s(r). Rays deflected by such structures

will constructively interfere at the focus. The family of curves may be written as

z +
√

r2 + (z − f)2 = f + nλ, (1)

which can be expanded and simplified to an expression describing a set of paraboloids

r2n = 2nλ

(

f +
nλ

2
− z

)

(2)

that are illustrated in figure 1. For example, the flat diffractive lens formed at

z = s(r) = 0 reproduces the Fresnel zone plate formula with bi-layer zones separated at

radii rn.
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Table 1. List of symbols and their meanings.

x, y, z Cartesian coordinates of ray positions in the lens with the origin at the lens vertex
r, ψ, z Cylindrical coordinates of ray positions
x1, y1; x2, y2 Coordinates of rays in the first and second lenses (for a crossed pair of 1D lenses)
ρ, ρx, ρy Angular pupil coordinates, = r/f , x/f , y/f
xi, yi Image-plane coordinates
λ X-ray wavelength as assumed in the design of the lens
λm; ∆λ X-ray wavelength of a measurement; ∆λ = λm − λ
k Wavenumber, = λ/(2π)
f ; f1, f2 Designed focal length of the lens; focal lengths of the first and second lenses
fm Focal length of the lens at the measurement wavelength, = fλ/λm
a, b Distances from the lens to the object and image, both positive for a real image
αx, αy Field angles in the x and y directions
NA Numerical aperture
δ Imaging resolution, = 0.66λ/NA for a circular pupil and 0.5λ/NA for a square pupil
D Lens diameter, = 2NAf
τ Thickness of the lens (in the direction parallel to the optic axis)
R; R1, R2 Radius of curvature of the lens surface; radii of curvature of the first and second lenses. Positive

for surfaces that are convex as seen from the field at infinity.
s(r) Sag of the lens surface in the z direction
s Vector from the vertex to the ray intersection with the surface of the lens
n̂ Normal of the surface of the lens
φr, φo Reference-wave and object-wave phases used in the construction of a HOE
φ̄ Holographic phase field, = φo − φr
φ; φ1, φ2 Phase imparted by the lens onto the reference-wave beam (2π per layer period); phases for the

first and second lenses
φm Phase imparted by the as-manufactured lens onto the reference-wave beam (2π per layer period)
θ Bragg angle, with a deflection angle given by 2θ
∆θ Deviation of a ray from the Bragg angle
rn; rn(m) Radial position of the nth layer pair from the optic axis; ditto for the as-manufactured lens

d(r); dn Layer period at a position r in the lens; period of the nth layer pair
C Intersection point of planar or conical layers that approximate the holographic phase field φ̄
q Reciprocal-space vector with a magnitude 1/d and direction normal to the layers
kin, kout Wave-vectors of the incident and diffracted rays
r, r′ Normal vectors of the incident and diffracted rays
l1, l2, l12 Lengths of rays traced from the incident wavefront to the (first) lens, from the (second) lens to

the image plane, and between the lenses
OPL Optical path length
OPD Optical path difference

OPD(4); OPDSA Fourth-order series expansion of the OPD; OPD due to spherical aberration
IL Efficiency of Bragg diffraction as a function of the deviation from the Bragg condition
ΓL Pendellosung period for dynamical diffraction. Maximum diffraction efficiency is obtained for

τ = ΓL/2.
ǫ; ǫm Deviation parameter for rays (equal to zero when the Bragg condition is satisfied); deviation

parameter for the as-manufactured lens.
wǫ, wθ Width of the diffraction rocking curve in terms of ǫ; in terms of ∆θ.
η Dimensionless parameter, = ǫ/wǫ = ∆θ/wθ

δ1 − δ2 Difference of the optical constants of the two materials of the multilayer, = 6.7× 10−6 for
SiC/WC at a wavelength of 0.075 nm

χx, χy , χz Rotations of the second lens relative to the first, about the x, y, and z axis
h Scale factor of the lens
p Deposition rate of material in the fabrication of the MLL
c(t); c1 Drift of the deposition rate with time; coefficient of linear drift
β Relative change in deposition rate per unit length of material deposited, = c1/p
∆d Offset error in the bi-layer period d
γ Inclination of the surface normal of a MLL relative to the optic axis
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a

b

Figure 1. Schematic diagrams of focusing by a flat (a) and a curved (b) multilayer

Laue lens. The lens of thickness τ is depicted in blue and consists of layers whose

surfaces (seen in the inset) follow a family of paraboloids shown in brown and which

can be approximated as planes or cones that intersect at the point C, located a distance

2f from the lens. The radius of the lens is R, equal to infinity in (a) and to f in (b).

Off-axis rays at an angle αy are shown as dotted lines.
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The phase imparted on the incident plane wave (replicating the reference wave) by

the diffracting structure fabricated on the surface s(r) is given by

φ(r) = φ̄(r, s(r))− 2πf

λ

=
2π

λ

(

s(r) +

√

r2 + (f − s(r))2 − f

)

, (3)

such that φ(0) = 0. Since each period in a diffracting structure adds an additional 2π

of phase to the wave, the number of periods from the optic axis to the point r on the

surface is n = φ(r)/(2π). The change in ray direction caused by the diffracting structure

is given by the vector phase gradient −λ/2π∇φ, which can be computed from equation

(3) as [19]

λ

2π

∂φ

∂r
=

λ

2π

(

∂φ̄

∂r
+
∂φ̄

∂s

∂s

∂r

)

=
r

√

r2 + (f − s)2
+
∂s

∂r

(

1− f − s
√

r2 + (f − s)2

)

= sin 2θ + 2
∂s

∂r
sin2θ, (4)

where 2θ is the deflection angle as shown in figure 1. For a flat lens (s(r) = 0), we find

that

λ

2π

∂φ

∂r
= sin 2θ =

λ cos θ

d(r)
. (5)

Here we have considered X-rays interacting with three-dimensional diffracting

structures, where a deflection by 2θ is attained by a structure that modulates in density

in one direction by a period d satisfying Bragg’s law, λ = 2d sin θ. This gives the equality

to the final term in (5), from which an expression for d(r) can be obtained. Efficient

diffraction requires that the direction of the modulation be parallel to the momentum

transfer, equal to the difference of the wave-vectors of the rays, kout − kin, for a wave-

vector of the incident ray given by kin and the outgoing wave-vector kout. This is

equivalent to the rays reflecting from the “layers” of constant density in the structure,

oriented at an angle θ to the z axis. Indeed, (5) indicates that the gradient of phase (in

the transverse direction r) is inversely proportional to the separation of layers in the r

direction, d(r)/ cos θ, for their minimal separation d(r) in the direction normal to the

layers. This would be equal to the deposited height of layers (ie. their thickness in the

direction normal to the substrate they are deposited onto) which should thus follow the

recipe of

d(r)

cos θ
=
λf

r

√

1 +
r2

f 2
≈ λf

r

(

1 +
r2

2f 2

)

. (6)

Here, we have assumed that the period d is well defined at any point r along the height of

the lens, which is to say that the period changes slowly compared to r, or |∂d/∂r| ≪ 1.

Taking the leading term in the approximation in (6), this is equivalent to d≪ r.
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The optical performance of diffractive optics have long been modelled in this

fashion, in which a phase function φ(r) on a surface s(r) defines a structure with periods

that vary as d(r). These functions can then be used in a computational ray-tracing

procedure to deflect rays according to ∇φ(r), as a modified Snell’s law [18]. When

the structure is fabricated not through interference of waves as a traditional HOE,

but rather as a “computer-generated hologram” or “meta-lens” such as by lithography

or multilayer deposition, we must contend with the fact that the structure might differ

from the ideal. Furthermore, we are interested in understanding off-axis aberrations and

conditions where Bragg diffraction, for example, is not strictly satisfied. An established

method to treat these cases is to use the structural properties of the lens such as

the local layer period d(r) to prescribe the path of a ray, taking into account the

accrued phase φ(r) due to the number of diffracting periods in the structure. The

wavefront aberration is calculated by tracing many such rays throughout the pupil of

the optical system, from which a wave-optical calculation can be made to determine

imaging characteristics such as the point spread function, or to express the form and

magnitude of particular aberrations. There are some approximations in this approach,

such as the assumption that locally, the diffracting structure acts as a grating of a single

period. More accurate treatments utilise dynamic diffraction of strained crystals [7], the

multislice algorithm [26], or coupled-wave numerical modelling [8].

3. Analysis of multilayer Laue lenses

3.1. Design of a multilayer Laue lens

X-ray multilayer Laue lenses (MLLs) can be considered as thick diffractive optical

elements, in which diffraction occurs as a volume effect. Efficient diffraction is obtained

by satisfying the Bragg condition as mentioned above, which requires the layers to be

tilted by θ, half the deflection angle. MLLs are fabricated by the alternating deposition

of two (or more) materials onto a substrate followed by slicing to produce a structure

similar to that illustrated in the inset of figure 1 (a). The variation of period d(r)

throughout the lens is controlled by varying the amount of material deposited in each

layer (e.g. by changing the time the substrate is exposed to each sputtering target) and

the required tilt can be obtained by placing a mask edge between the sputtering target

and the substrate [25]. MLLs provide high efficiencies for X-ray energies above about

10 keV (wavelengths less than about 0.1 nm) with periods typically in the range of 1 nm

to 100 nm. The optimum thickness τ of the lens that the X-rays transmit through is

half the so-called Pendellösung period ΛL, which can vary from several micrometers at

lower X-ray energies to many tens of micrometers at harder energies, depending on the

materials and (weakly) on the period.

X-ray MLLs are usually fabricated as flat lenses with bi-layers (periods) positioned

according to the Fresnel zone plate condition of (2) with z = 0. Given the large thickness

τ of an MLL, rays can be thought to reflect not only on the front surface of the structure
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but at points some distance z into the interior of the MLL. In order that these rays are

directed to a common focal point the layers should follow the paraboloids given by

(2). The approximation of the paraboloids to cones (or tilted wedged layers for one-

dimensional focusing) can be found from a Taylor series of rn(z), showing the gradient of

each layer is approximately rn/(2f), which is indeed equivalent to the angle θ(r) of layers

mentioned above and shown in figure 1. Also, given a bi-layer thickness dn = rn+1 − rn
it can be shown that d2n ≈ fλ/(4(n+ 1/2)), and from (2) it follows that dn ≈ fλ/rn. For

the purpose of ray tracing, the phase imparted to the ray that intersects the lens at a

position r, equal to 2πn, is given by φ(r) of (3).

3.2. Ray tracing of MLLs

We first consider the ray-trace analysis of perfect MLLs that are designed to deflect

incident parallel rays to the focal point. In section 6 we consider lenses with

imperfections (due to manufacturing processes, for example) where φ(r) must be

modified due to deviations in d(r) from the ideal. Generally, ray tracing tracks a ray from

a particular point in an object, via straight-line propagation through homogeneous space

to an interface where it is refracted (according to Snell’s law) or diffracted (according

to a grating equation or Bragg’s law) before propagating to the next interface, and

so on, until the plane of interest is reached [18]. Unlike a more complete calculation

that may utilise Huygens wavelets formed at each scattering point of the structure

(such as used in a multislice calculation [26]), a ray described by the unit vector

r̂ incident upon a diffractive optic is taken to follow a single trajectory only. As

mentioned above, the direction of the diffracted ray r̂′ is set by Bragg’s law, cast

here as (2π/λm)r̂
′ = kout = kin + q for an incident wave-vector kin = (2π/λm)r̂ (see

figure 2 (a)). That is, the ray has a “measurement” wavelength λm which may differ

from the parameter λ used in the design of the diffracting structure that modulates

with a period d = 2π/|q| in the direction of q. This presumes that the diffracting

structure will indeed be oriented in the Bragg condition. For thin structures, or to

account for diffraction of a ray in an off-Bragg condition (whether that be due to an

angular deviation or a change in wavelength), it can be assumed that the termination

of the periodic structure by the surface leads to truncation rods in reciprocal space that

extend from q along the direction of the surface normal n̂, in which case the “refraction”

of the single ray can be described as

r̂′ = r̂ +
λm
2π

q + ǫn̂, (7)

where the deviation parameter ǫ is chosen to ensure that |r̂′| = 1, and q points towards

the optical axis (rather than away from it) for a focussing optic. Although (7) was

derived in the context of the geometric theory of diffraction (see Chapter 3.3 of [27])

the expression also holds in the framework of dynamical diffraction theory (see Chapter

4.8.5 of [27]). A similar approach used in the ray-tracing of thick HOEs is referred to

as the blurred grating vector approach [28]
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As the ray is traced sequentially from interface to interface, the optical path length

(OPL) of the ray is accumulated. In a perfect imaging system based on refractive optics,

rays originating from a point in the object plane should all accumulate the same optical

path (proportional to the flight time) upon their intersection of the image plane at the

image point. A map of the differences of the optical path lengths of the rays to that

of a reference ray (optical path difference, OPD), as a function of the pupil coordinates

of the rays, gives the map of the wavefront aberration. This aberration can be related

to the point spread function of the lens through a wave optic calculation, treating the

aberration as a phase error [29]. In a diffractive optic such as an MLL, however, rays

reflecting from each subsequent bi-layer accrue an extra wavelength of path-length, for

a total path difference of nλm for n periods, or a phase of 2πn. For a wavelength

equal to the design wavelength, λm = λ, this phase is exactly −φ(r) as provided by

the diffracting structure. The formation of the image is dictated by the constructive

interference of waves at the measurement plane rather than the principle of least time.

The lag of rays by a wavelength per period of the structure is thus not apparent and it

is accounted for by forming the OPD as [18]

OPD(r) = OPL(r)−OPL(r0) +
λm
2π
φ(r), (8)

where r0 is the coordinate of the reference ray (such as the chief ray). It is not necessary

to discretise φ(r) into the effects of individual layers since the coordinates r in the

pupil need not be determined with a precision better than the period of the diffracting

structure. Chromatic aberrations can be computed when the measurement wavelength

λm is different to the design wavelength λ.

3.3. Off-Bragg reflections

Equations (7) and (8) can be used to trace rays through the optical system and analyse

its wavefront aberrations. These equations do not account for any variation in diffraction

efficiency, which drops precipitously for rays outside of the so-called Darwin width of

the reflection profile (also referred to as the rocking-curve width), which will occur for

rays originating from a source point off the optic axis, for example, as well as for rays

incident at the Bragg angle but which have the wrong wavelength. No matter whether

a deviation from the Bragg condition is caused by a change in wavelength λm or a

change in incident ray direction r̂, or a combination of both, solving |r̂′| = 1 using (7)

will generate a non-zero error term ǫ. If the normal n̂ is perpendicular to q (which is

the case for symmetric Laue diffraction) then the equivalent angular deviation from the

Bragg condition can be estimated as

∆θ ≈ 2πǫ

λm|q|
=

ǫd

λm
. (9)

The diffraction efficiency of a ray as a function of ∆θ can be calculated by dynamical

diffraction theory [27] or, equivalently, coupled waved theory [30]. Bajt et al. [31] and

Yan et al. [7] give expressions for dynamical diffraction of multilayer structures. In
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Figure 2. (a) The off-Bragg reflection from a periodic multilayer in Laue geometry

shown in real space to to left is found from the reciprocal-space Ewald sphere

construction at right, considering that the diffraction peak lies along a truncation rod

normal to the surface. (b) Rocking curve of a multilayer reflecting in a Laue geometry

with an optimum thickness and neglecting absorption, as a function of the deviation

parameter ǫ ≈ ∆θ λm|q|/(2π) and for a width wǫ.

particular, for a thick multilayer grating constructed of equal layer heights of the two

materials per period, a thickness of the lens τ , and ignoring absorption, the normalised

rocking curve of the symmetric Laue reflection is given by

IL(η) = sin2

(

π τ

ΛL

√

1 + η2
)

1

1 + η2
(10)
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for a Pendellösung period ΛL and the normalised deviation parameter η equal to

η =
∆θ

wθ
=

∆θ π sin 2θ

2|δ1 − δ2|
≈ ǫ π

2|δ1 − δ2|
=

ǫ

wǫ
(11)

for a Bragg angle θ, and where δ1 and δ2 are the real parts of the optical constants of the

layer materials at the particular photon energy used. The expression of η in terms of ǫ

was obtained from sin 2θ ≈ 2θ ≈ λm/d. In the following we assume that the MLL is cut

at a thickness τ = ΛL/2 to give the maximum diffraction efficiency such that IL(0) = 1.

The width of the Laue rocking curve is given by the Darwin width wθ, at which the

efficiency drops to 0.317. The efficiency IL(ǫ/wǫ) is plotted in figure 2 (b) and can be

included in the ray tracing procedure [20] by multiplying the ray intensity (initially

unity) by the diffraction efficiency at each interface. As seen from equations (10) and

(11), this calculation does not require any further specification of the d spacing of the

multilayer or the wavelength, which are implicitly accounted for in the prescription of

q, as demonstrated in the next section.

4. Off-axis aberrations of axi-symmetric MLLs

Diffractive optical elements provide extra degrees of freedom for optical design as

compared with refractive elements since the phase profile, as determined by the

diffracting structure, can be decoupled from the profile of the surface. For example, it

can be shown that the Seidel aberration of coma (varying linearly with the field angle)

is eliminated for particular imaging conjugates when a zone plate is constructed on a

spherical rather than a flat surface [11–13, 32]. When combined with the prescription

of zones or layer periods d(r) that result in zero spherical aberration (as given in

section 3.1), the appropriately-curved zone plate is thus aplanatic (free of aberrations

over a paraxial field of view) and obeys the Abbe sine condition. The required surface

of the zone plate is given by the circle of Apollonius, for which the radius R satisfies

1/R = 1/b − 1/a for an object distance a and image distance b, and where positive R

represents a convex surface as seen from the object plane. For all points on this circle,

the ratio of the distances from a point on the circle to either the object or image points

is a constant. When a = ∞, R = b = f , which is the case illustrated in figure 1 (b).

Using the formalism laid out in the previous section we thus analyse the case of

an axi-symmetric MLL (as made by depositing materials onto a wire) with conical or

paraboloidal layers, imaging a source at a = ∞, to determine if there is an advantage

to polishing the MLL to a radius R. This serves as an illustrative case to compare with

the analysis of imaging with pairs of one-dimensional MLLs and for the examination of

MLLs with various imperfections in section 6.

Consider the axi-symmetric MLL shown in figure 3 which is polished to a sphere of

radius R (which may differ from the focal length, f). The surface of the MLL is given

by the “sag”, equal to the distance z = s(r) from the plane at z = 0 to the surface,

which can be parameterised as

s(r, ψ) =
(

r sinψ, r cosψ,R−
√
R2 − r2

)

. (12)
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a

b

Figure 3. Geometry for ray trace calculations of a single MLL of focal length f . (a)

The lens shape is the shell of a sphere or cylinder of radius R, shown in blue, with

a surface described by s(r) for the radial coordinate r. Rays are deflected by the

diffracting structure described by λ/(2π)q(r) (in red) and the surface normal n̂(r).

This structure fulfils the Bragg condition (see inset) for the on-axis field point at

infinity. The path of an incoming ray with direction r̂ is shown in black. Paths for

rays from a field angle −αy are shown in green, and the path lengths l1 and l2 are

indicated for that case by the thick dashed green lines. (b) Deflection of rays is also a

consequence of the accumulation of 2π of phase from each layer pair, which themselves

match the interference of the on-axis plane wave with a converging spherical wave.

Here we use cylindrical polar coordinates (r, ψ, z), and a positive R corresponds to a

centre of curvature towards +z. The definition of ψ = 0 along the cartesian y axis

follows the convention of optical ray tracing. The outward-facing normal to this surface

is parallel to the cross product of the gradients of s in the x and y directions, giving a

unit normal

n̂(r, ψ) =

(

r

R
sinψ,

r

R
cosψ,−

√

1− r2

R2

)

. (13)

The MLL is constructed with layers of varying period and tilt designed to perfectly

focus incident rays of a particular wavelength λ and parallel to the optic axis (taken

to be the z axis) to a point on that axis a distance f from the MLL. Therefore, at a

distance r from the optic axis, layers of period d(r) = λ/(2 sin θ(r)) are tilted by an

angle θ(r) to reflect rays by 2θ(r) as needed to direct them to the focus. This requires

sin 2θ(r) =
r

√

r2 + (f − s)2
(14)
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so that the layer periods (not equivalent to the deposited layer thicknesses) are given by

d(r) =
λ

2 sin θ
≈ λf

r

(

1 +

(

3

8
− f

2R

)

r2

f 2

)

. (15)

More completely, the momentum transfer vector caused by diffraction from the tilted

layers is given by

λ

2π
q(r, ψ) = (− sin 2θ(r) sinψ,− sin 2θ(r) cosψ, cos 2θ(r)− 1)

=

(

−r sinψ
√

r2 + (f − s)2
,

−r cosψ
√

r2 + (f − s)2
,

f − s
√

r2 + (f − s)2
− 1

)

. (16)

This prescription of the layer period is consistent with (4) because the structures

described in equations (15) and (16) are located on the surface z = s(r). The phase

induced by the diffracting structure that achieves this common focus is given by (3)

which can be expressed as

λ

2π
φ(r) = s+

√

r2 + (f − s)2 − f (17)

≈ r2

2f
+

(

2f

R
− 1

)

r4

8f 3
.

The functions s(r, ψ), n̂(r, ψ), q(r, ψ), and φ(r) fully define the structure and optical

properties of the MLL. They can be used, with equations (7) and (8), to determine the

wavefront aberrations, with the simplifying assumption that the thickness of the MLL

in the z direction is negligible.

Now consider an off-axis source point at infinity but located at a field angle −αy
in the direction along ψ = 0. Incident rays are all parallel to r̂ = (0, sinαy, cosαy).

We must compute the OPL = l1 + l2 for rays from a plane with a normal r̂ (such

as the one passing through the origin, defined by x · r̂ = 0) and the image point

at a height yi = f tanαy in the plane a distance z = f from the MLL vertex at

the origin. An incident ray intersects the spherical surface of the MLL at the point

s(r, ψ) = (r sinψ, r cosψ, s), and the path-length l1 from the inclined plane to this point

is given by

l1 = s · r̂ = r cosψ sinαy + s cosαy. (18)

The length l2 of the ray from s to the image plane depends on its direction r̂′ which

can be found from (7), utilising equations (16) and (13) and substituting sin 2θ for the

expression in (14). The incident ray no longer satisfies the Bragg condition, so the

error length ǫ must be solved for, which can be done by constraining the magnitude

of r̂ + λm/(2π) q + ǫn̂ to be unity (for rays of the “measurement” wavelength λm).

The optical path length of the ray travelling from the MLL to the image plane can be

obtained by noting that l2 r̂
′ · ẑ = f − s.

The analysis can be carried out numerically or using a symbolic mathematics

program, which can yield an exact result for the OPD given by

OPD(r) = l1 + l2 −
f

cosαy
− λm

2π
φ(r), (19)
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using the expression for φ(r) from (17). As noted above, φ(r) accounts for the number of

bi-layers n in the structure from the reference point to r, which give rise to an effective

optical path of nλm when measured at a wavelength λm. For imaging at the wavelength

that the lens was designed, λm = λ, the series expansion of the exact expression is found

to be

OPD(4)(ρ) = −3f

2
α3
yρ cosψ+f

(

3

4
− f

2R

)

(2+cos 2ψ)α2
yρ

2+f

(

f

R
− 1

)

αyρ
3 cosψ,(20)

where ρ = r/f is the the normalised pupil coordinate equal to the tangent of the angle of

rays converging onto the focus. At the edge of the pupil, ρ ≈ NA. Only terms to fourth

order in powers of αy and ρ are retained in this series expression, corresponding to the

five Seidel (or primary) aberrations of an axi-symmetric system. In (20) there are three

summands. The first varies linearly with the pupil coordinate ρ and indicates a wavefront

tilt that grows with the third power of the field angle αy. This tilt corresponds to a

shift of the image point and hence a distortion to the image. The second term consists

of astigmatism and field curvature. The dependence on ρ2 indicates a defocus which is

different in orthogonal planes ψ = 0 and ψ = π/2. The last term is coma, an aberration

that depends on the third power of the pupil coordinate. The expression of (20) does

not contain the Seidel aberration dependent only on ρ4, which is spherical aberration.

This is the only Seidel aberration present for a source point on axis (αy = 0) and since

the MLL was designed to have zero aberrations on axis at the design wavelength, this

term is also absent in this series approximation. As anticipated above, the case where

R = f gives zero coma. It is also interesting to note that the condition R = (2/3)f

eliminates astigmatism and field curvature, at the cost of finite coma.

In this analysis we find that changing the condition for off-Bragg reflection modifies

the terms in (20), and thus the formulation of (7) does matter. For example, setting n̂

to be parallel to the optic axis rather than normal to the spherical surface modifies the

distortion and field curvature coefficients.

4.1. Transmission of an axi-symmetric MLL

Since all rays from the on-axis field point exactly match the Bragg condition in the lens,

they will be fully transmitted (under the ideal assumptions discussed in section 3.3)

and the transmission of the lens will be uniform across the pupil. Rays from off-axis

field points will deviate from the Bragg condition with an efficiency IL(ǫ) where ǫ is the

deviation parameter. An off-axis field angle leads to an angular deviation ∆θ ≈ αy, so

we expect from (9) that |ǫ| ≈ λαy/d. Since the smallest periods d occur at the edge of

the lens, the lens will be apodised—it will lose transmission at the outermost regions of

the pupil as the field angle is increased from zero. Off-axis field points therefore become

vignetted (have lower transmission) [33] with reduced NA and degraded resolution. The

expression for ǫ is obtained in the analysis that leads to (20) by solving for |r̂′| = 1.

The series expansion of this expression to first-order in αy is given by

ǫ(1)(ρ) = −αyρ cosψ +
f

2R

(

1− f

R

)

αy ρ
3 cosψ. (21)
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That is, the magnitude of the deviation parameter does indeed increase linearly with

field angle and also depends linearly on the pupil coordinate in the direction of the field

angle, ρ cosψ. In this direction, lens apodisation occurs when the deviation parameter

at the edge of the lens (ρ = NA) exceeds the rocking-curve width, or

αy <
wǫ
NA

=
2|δ1 − δ2|
πNA

= wθ. (22)

This restriction is independent of the focal length of the lens.

4.2. Chromatic aberrations of axi-symmetric MLLs

The paraxial focal length of a diffractive lens scales inversely with the wavelength, and

so such lenses exhibit strong chromatic aberrations dominated by defocus. The design

of the layers according to (16) will give zero on-axis aberrations (such as spherical

aberration) only for the wavelength at which it was designed. Off-axis aberrations will

also be modified with a change in wavelength, since the image of an off-axis source

point at infinity will be focused to a plane a distance fm = f λ/λm from the lens with

a transverse displacement of fm α from the optic axis instead of f α. The ray tracing

procedure can be carried out using the governing equations of (7) and (8) and solving

the path length l2 = (fm−s)/(r̂′ ·ẑ) to determine the wavefront aberrations encountered

when utilising the lens at a different wavelength to its design. In this case it is found

that the spherical aberration term is given by

OPDSA(ρ;λm) =
3f

8

λm∆λ

λ2

(

2− 2f

R
+

∆λ

λ

)

ρ4, (23)

where ∆λ = λm−λ. This expression indicates that in addition to the design wavelength

(∆λ = 0), spherical aberration is nulled at the wavelength λm = λ(2f/R−1). That is, by

setting the radius to R = 2f/(1+λm/λ), the spherical aberration is zero for both λ and

λm. Of course, images at each of these wavelengths will be located at different planes,

so such a design could have utility in scanning transmission or fluorescence microscopy

of thick objects at two discrete wavelengths (above and below an absorption edge, for

example) with a detector able to discriminate photon energies. Equation (23) also shows

that in the limit λm → λ, the optimum radius for minimising the spherical aberration

is R = f . In this case OPDSA varies quadratically with ∆λ instead of linearly.

As with a change in the field angle, rays will no longer obey the Bragg condition

as the wavelength is moved from the design. The series expansion of the deviation

parameter for the on-axis field point, as determined in the analysis used to derive (23)

is given by

ǫ(2)(ρ) =
λm∆λ

2λ2
ρ2. (24)

For this on-axis field point, apodisation will therefore occur radially with a tolerance

given by

∆λ

λ
<

2wǫ

NA2 =
4|δ1 − δ2|
πNA2 . (25)
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Both apodisation and spherical aberration may scale approximately linearly with

∆λ (as is the case for a flat lens, for example), but the degree of apodisation increases

with the square of the NA whereas spherical aberration grows with the fourth power

of NA and linearly with the focal length. Thus for focal lengths shorter than about

0.15λ/(NA2wǫ), the limitation to wavelength changes will be the reduction of the active

pupil diameter. (Here the spherical aberration tolerance from the Marechal condition

is OPDSA(NA)/
√
10 < λ/14.)

4.3. Ray tracing an axi-symmetric MLL for 1 nm focusing

As an example, we consider a lens designed to achieve a resolution of about 1 nm at

a wavelength λ = 0.075 nm (17 keV photon energy) and NA = 0.0375. The Rayleigh

resolution of this lens for incoherent imaging (such as the case in a scanning transmission

microscope) is 0.61λ/NA = 1.22 nm. The focal length of the lens is chosen to be

f = 1mm, and thus the diameter of the lens is 75 µm. The ray-tracing procedure

detailed above was used to numerically compute the wavefront aberrations exactly—that

is, without approximating to a fourth-order series expansion as for (20). The procedure,

as formulated above, applies to the case of field points at infinity, displaced from the

optical axis by a field angle αy as set by the ray direction r̂. This situation represents,

for example, the formation of a focused beam for a scanning microscope. In this case

the field angle also represents the angular misalignment of the optic axis of the lens

relative to say a “beam axis” set by the direction of a far-off source. These calculations

also correspond to the aberrations expected in full-field imaging at high magnification

(where the image plane is far from the lenses and the sample is near to the focal plane).

Finite conjugates can be simulated too, with an appropriate re-definition of r̂ and l1.

At the design wavelength the calculated map of the OPD as a function of pupil

coordinates for the on-axis field point (αy = 0) is zero to numerical precision, for both

the flat MLL (R = ∞) and for R = f . Thus, the prescription of the layer periods and

tilts according to (16) avoid spherical aberration and all other aberrations as desired.

The wavefront map for an off-axis field point at αy = 1mrad for a flat axisymmetric

MLL is given in figure 4 (a). This wavefront error, with an RMS value of 0.0062 nm

(0.082 wavelengths), is dominated by coma and astigmatism in agreement with (20).

Further calculations show that as the field angle increases, coma increases linearly and

becomes the dominant term. However, by curving the lens surface such that R = f ,

this term is essentially eliminated, leaving astigmatism as the dominant aberration. For

the same field angle of 1mrad the RMS wavefront for the curved lens is only 0.0001 nm

and so the OPD map is not visible on the same scale as for figure 4 (a). Instead, the

map is shown for R = f at a field angle of 7.5mrad in figure 4 (b), after subtracting the

best-fit tilt and focus, with an RMS error of 0.0080 nm.

According to the Marechal condition [29], diffraction-limited imaging with a Strehl

ratio above 80% requires an RMS wavefront aberration less than λ/14, or 0.005 nm in

this example. The quarter-wave rule of Rayleigh corresponds to an absolute deviation
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of the OPD by 0.019 nm. Thus it is seen that the field angles chosen for the calculations

of figure 4 (a) and (b) just slightly exceed the aplanatic region that provides diffraction-

limited imaging. The RMS error of both flat and curved lenses is plotted as a function

of the field angle in figure 4 (c). It can be seen that by curving the surface of the

lens to match the focal length, the radius of the aplanatic field increases from 0.8mrad

to 6.0mrad. The quadratic dependence of the RMS on field angle for the curved lens

indicates this is dominated by the Seidel term for astigmatism in (20). Indeed, after

subtracting defocus and tilt, OPD(4)(ρx, ρy) = (f/4)α2
y(ρ

2
y − ρ2x) for R = f . The RMS

of this aberration over the circular pupil is equal to f α2
y NA

2/(4
√
6). A plot of this

curve cannot be distinguished from that shown in figure 4 (c), and the residual RMS

aberration after subtracting this term from the numeric computation of OPD is less

than 1× 10−3 nm. Indeed, the contribution of other aberrations besides astigmatism

only reach an RMS value equal to λ/14 at a field angle of 100mrad. The RMS error

is also plotted in figure 4 (c) for the zero-astigmatism condition of R = (2/3)f . As

mentioned above, coma is still present with OPD(4) = (f/2)αy ρ
3
y, giving rise to the

linear dependence of the RMS wavefront error on field angle for lenses with this surface

radius.

The aplanatic field of view was calculated here for the angular positions of objects

at infinity, but this also corresponds to forming a magnified image in the limit of high

magnification. In this case the field of view at the object plane is the field angle

multiplied by f = 1mm, or a diameter of 12 µm for the curved lens, which would be

increased to 200 µm if the astigmatism were corrected. A well-known approach to do this

in lens design is to position the stop at a different plane. For a single refractive surface

of radius R, astigmatism can be eliminated by placing the stop a distance R/2 from

that surface. Unfortunately, this remedy does not work well here since the reduction of

astigmatism requires a stop to be placed close to the focal plane. It may be possible,

instead, to use a refractive meniscus lens near to the focal plane to change the curvature

of the wave-field in the direction of the field displacement and by an amount that

increases with that displacement.

As discussed in section 4.1, the field of view of a MLL may be limited not by the field

dependence of the aberrations, but rather by the Darwin width of the Laue reflection,

proportional to the difference of the optical constants of the materials that make up the

layers of the MLL, as given by (22). For SiC and WC layers with densities of 2.47 g cm−3

and 14.6 g cm−3, respectively, |δ1 − δ2| = 6.7× 10−6 at a wavelength of 0.075 nm, giving

a half width of wθ = 2|δ1− δ2|/(πNA) = 0.11mrad for the layers at the boundary of the

lens considered here. A plot of the total lens transmission obtained from the numerical

analysis of this lens is given in figure 5 as a function of the field angle. Maps of the

transmission of the lens pupil are also shown for particular field angles, showing the

loss of transmission in the thinner layers first. As seen in the maps, this transmission

loss depends only on the projection of the layer period in the direction of the transverse

displacement of the field, giving a band of the lens that transmits. The reduction of

the aperture leads to a corresponding reduction in resolution in the direction of the
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Figure 4. Wavefront errors (excluding defocus) of axisymmetric lenses with NA =

0.0375 and a focal length f = 1mm and (a) a flat surface R = ∞ at a field angle

αy = 1mrad and (b) a spherical surface with R = f at a field angle αy = 7.5mrad.

(c) Plot of the RMS errors as a function of field angle for R = ∞ (blue), R = (2/3)f

(olive green) and R = f (red). (d) RMS error as a function of the relative wavelength

deviation from the design, where ∆λ = λm − λ, and for R = ∞ (blue), R = (2/3)f

(olive green) and R = f (red). The Marechal condition of λ/14 is shown by the dashed

line for a wavelength of 0.075 nm. The wavefront magnitude scales proportionally with

the focal length f .

object or image point (for example, vertical lines will be less resolved than horizontal

lines when located at a horizontal position in the field). The lens transmission does not

depend noticeably on the radius R.

As seen in section 4.1, the largest field angle that can be tolerated by apodisation

due to a loss of diffraction efficiency depends only on the multilayer materials and

inversely on numerical aperture, whereas the magnitude of the wavefront aberrations

are proportional to the focal length and inversely on powers of the numerical aperture

(depending on whether coma or astigmatism dominate). The competition of the effects

of the wavefront aberration and apodisation of the pupil on the imaging properties of

the lens is illustrated in figure 6 where the combined complex-valued pupil function is

shown for various field angles. The square modulus of the Fourier transform of this

yields the point spread function (PSF) [28,29,34], also shown in the figure. The radius

of the aplanatic field for the f = 1mm, NA = 0.0375 lens considered here is much larger
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Figure 5. Transmission of an axisymmetric MLL with NA = 0.0375 and a focal

length f = 1mm as a function of (a) the field angle, and (b) the relative change in

wavelength. In (a) the transmission maps of the lens pupil are shown for field angles

αx = −1, −0.6, −0.3, 0, 0.3, 0.6, and 1mrad, and in (b) for ∆λ/λ = −0.03, −0.02,

−0.01, 0, 0.01, 0.02, and 0.03.
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than the limits due to diffraction efficiency, as can be seen in the top row of figure 6.

When the field angle exceeds 0.2mrad (or a image field radius of 0.2 µm) efficiency is

lost from two edges of the lens, leading to a broadening of the PSF in the direction of the

displacement of the object point. Increasing the focal length of the lens to 10mm for the

same NA (implying a 10 times increase in the lens diameter) leads to a corresponding

10-times increase in the OPD. As seen in the second pair of rows of figure 6, coma causes

a degradation of the PSF at lower field angles, before apodisation becomes a problem.

Here, the field is limited by the Marechal condition to 0.1mrad or a field radius of 1 µm.

The aberrations can be removed in principle by adopting an aplanatic design by cutting

the lens on a spherical surface with a radius R = f , giving a performance similar to

the 1mm lens (bottom pair of rows) and an image field radius of about 2 µm (or 2000

resolution elements).

Away from atomic resonances, the optical constants of materials, and hence their

difference |δ1 − δ2|, vary with λ2. For lenses of a given resolution (i.e. made with a

minimum d spacing) the NA increases in proportion with λ so that the angular width

wθ is linearly proportional to wavelength. Thus the largest ratio of field of view to

resolution is achieved at longest wavelength.

The dominant aberrations induced by a change in wavelength are tilt and defocus

due to the change in focal length (which varies inversely with wavelength) and the

corresponding change in the paraxial image position. For an on-axis field point the OPD

due to defocus is given by (f/2)(∆λ/λ)ρ2 with a RMS value of (f/4)(∆λ/λ)NA2. Thus,

applying the Marechal condition (equivalent to a defocus of less than (2/7)λ/NA2), a

relative bandwidth of 2∆λ/λ < (8/14)λ/(f NA2) = 3.0× 10−5 can be tolerated for 1 nm

imaging for the lens considered here. A shorter focal length allows a broader bandwidth

since this gives fewer periods in the lens.

A MLL manufactured for a particular wavelength might be used at another, for

example in spectro-microscopy applications where the sample must be repositioned at

the focal distance of fm = f λ/λm. The range of wavelengths that can be used depends

both on the spherical aberration and the apodisation of the lens caused by the incorrect

tilt of the layers for the particular wavelength. The RMS wavefront error is plotted

in figure 4 (d) for the on-axis field point as a function of wavelength. Here, the ray-

tracing was performed at the paraxial image plane at fm. As expected from (23), the

best compensation is achieved for R = f , where the dependence on ∆λ is quadratic.

However, as seen from figure 5 (b), and expected from (25), the limitation on using the

lens at different wavelengths arises from apodisation, not spherical aberration.

5. Off-axis aberrations of 1D MLLs

Multilayer Laue lenses are typically fabricated by layer deposition onto a flat substrate,

to produce a structure that focuses only in one direction, similar to a cylindrical lens.

Two crossed cylindrical lenses can focus or form an image in two dimensions, as can two

crossed MLLs. The imaging characteristics and off-axis aberrations of such systems differ
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Figure 6. Complex-valued pupil functions of MLLs with NA = 0.0375 for five field

angles αx as indicated, along with their associated point spread functions. Three lens

configurations are shown as indicated by the labels to the right. Complex values in

the pupil function are visualised by hue (phase) and brightness (amplitude) according

to the color-wheel shown at top right.

from axi-symmetric lenses examined above. In particular, crossed MLLs are anamorphic

(giving a different magnification in each transverse direction due to the different object

and image distances to each lens), the concept of entrance and exit pupils is not well

defined, and there are 16 primary aberrations instead of the five Seidel aberrations of

an axi-symmetric system [35]. The surface s1, surface normal n̂1, reciprocal vector q1,

and accumulated phase φ1 for a 1D MLL focusing in the y direction (and polished to a

cylindrical shape of radius R1 in that same direction) are listed in the left-hand column

of table 2 as found by substituting r with y in the expressions for the axi-symmetric
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case in section 4, and setting to zero the x components of n̂ and q.

The case of a single 1D MLL, with layers parallel to the x axis, imaging an off-axis

source point at a field angle αy in the y-z plane is equivalent to the analysis of section 4

for ψ = 0. That is, the y-component of the rays obey the expression OPD(r) of (20)

with ψ = 0:

OPD(4)(ρy;αy) = −3fy
2
α3
yρy + 3fy

(

3

4
− fy

2Ry

)

α2
yρ

2
y + fy

(

fy
Ry

− 1

)

1

fy
αyρ

3
y. (26)

Thus, aplanatic focusing in one dimension can be achieved by cutting or polishing the

MLL to a cylindrical surface with a radius Ry = fy.

The situation is slightly different for field points off the y-z plane. Despite the

symmetry of a 1D MLL, we find that a source point at a field angle αx in the x-z plane

is not necessarily focused with zero aberration. This is due to the tilt of the layers

in the MLL. An incident ray at a field angle αx can be obtained by rotating an axial

ray about the y axis. However, the q vectors that define the layers in the MLL are

not parallel to the y axis, and as such these inclined rays no longer satisfy the Bragg

condition. The analysis can be carried out in the same way as in section 4, starting

with r̂ = (sinαx, sinαy, {1− sin2αx − sin2αy}1/2). The series expansion of the resulting

expression for the OPD to fourth order in products of αx and y yields

OPD(4)(ρx, ρy) = fy αxρx −
fy
6
α3
xρx + fy

(

3

4
− fy

2Ry

)

α2
xρ

2
y +OPD(4)(ρy;αy), (27)

where OPD(4)(ρy;αy) is given by (26). Equation (27) shows that in this fourth-order

approximation the only consequence of tilting the source point out of the y-z plane

is distortion and curvature of field. However, as we shall see below, this leads to an

aberrated wave-field when two such 1D lenses are crossed orthogonally to image in two

dimensions.

5.1. Off-axis aberrations of crossed 1D MLLs

To determine the performance of crossed 1D MLLs we trace rays through an optical

system of a 1D MLL focusing in the y direction with a focal length f1 followed by

another focusing in the x direction with a focal length f2. The distance between the two

lenses is set to f1 − f2 to ensure they both focus to a common point, and for generality

the lenses are polished to cylindrical surfaces with radii R1 and R2, respectively (see

figure 7). The functions describing the geometry and optical properties of the lenses

are given in table 2. The calculation of the OPD proceeds as before, but now with a

source point located at a position given by the angles αx and αy such that incident rays

on the first MLL have a direction r̂1 = (sinαx, sinαy, {1 − sin2αx − sin2αy}1/2). These

rays are traced a distance l1 from the plane perpendicular to their direction to the first

lens at the position s1 = (x1, y1, s1), and then deflected to directions r̂′

1 as described in

sections 4 and 5 (solving for the deviation parameter ǫ1). A ray intersects the second

lens at the point s2 = s1 + l12 r̂
′

1 after propagating a distance l12. The x component

of this expression yields x2 = x1 + l12 r
′

1,x, which can be substituted into the expression
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Figure 7. Schematic diagram of two 1D MLLs oriented to focus in orthogonal

directions. The first lens focuses in the y direction with a focal length f1 and the

second focuses in the x direction with a focal length f2, positioned a distance f1 − f2
from the first. The lenses are also cylindrically curved with radii of curvature R1 and

R2, respectively.

Table 2. Expressions of the sag s, surface coordinates s, surface normal n̂, reciprocal

vector for diffraction q, and phase lag due to the number of periods φ, for the two

crossed MLLs of focal lengths f1 and f2, and radii R1 and R2, respectively, separated

by a distance f1 − f2.

First lens (vertex at 0) Second lens (vertex at f1 − f2)

s1 = R1 −

√

R2
1 − y21

s1 = (x1, y1, s1)

n̂1 =

(

0,
y1

R1
,−

√

1−

y21
R2

1

)

λ

2π
q1 =






0,

−y1
√

y21 + (f1 − s1)2
,

f1 − s1
√

y21 + (f1 − s1)2
− 1







λ

2π
φ1 =

√

y21 + (f1 − s1)2 − f1 + s1

s2 = R2 −

√

R2
2 − x22

s2 = (x2, y2, f1 − f2 + s2)

n̂2 =

(

x2

R2
, 0,−

√

1−

x22
R2

2

)

λ

2π
q2 =







−x2
√

x22 + (f2 − s2)2
, 0,

f2 − s2
√

x22 + (f2 − s2)2
− 1







λ

2π
φ2 =

√

x22 + (f2 − s2)2 − f2 + s2

for s2 given in table 2 to obtain, from the z component, a quadratic equation that can

be solved for l12. The ray at s2 incident at an angle r̂2 = r̂′

1 can then be deflected

into the direction r̂′

2 that is calculated using (7) and the expressions for n̂2 and q2 in

table 2, solving for the off-Bragg deviation parameter ǫ2 by requiring that |r̂′

2| = 1. The

distance l2 from s2 in the second lens to the image plane can be then obtained from

l2 r̂
′

2 · ẑ = f2 − s2.

As stated above, two crossed cylindrical lenses do not have a well-defined pupil
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(that is, an aperture in a single plane that limits the angular extent of all rays) and

therefore this optical system does not have a well-defined chief ray. Nevertheless we can

express the OPD as a function of coordinates (x1, y1) of the first lens, as the difference

between the OPL of a ray that passes through those coordinates and the vertex of that

lens, as

OPD(x1, y1) = OPL(x1, y1)−OPL(0, 0)− λm
2π

[

φ1(y1) + φ2(x1 + l12 r
′

1,x)
]

(28)

with OPL = l1+ l12+ l2 and λm is the measurement wavelength. The phase lags φ1 and

φ2 are proportional to the number of diffracting periods between the ray of interest and

the reference ray, and is thus determined by the coordinate y1 or x2 of the ray on the

particular lens. Retaining terms to fourth order in pupil and field coordinates, when

λm = λ the OPD is evaluated to

OPD(4)(ρx, ρy) =
3

4
f2 ρ

2
x ρ

2
y

+ f2

(

f2
R2

− 1

)

αx ρ
3
x + f1

(

f1
R1

− 1

)

αy ρ
3
y

− 3

2
f2 αy ρ

2
x ρy +

3

2
(f1 − 2f2)αx ρx ρ

2
y

+
3

4

[

4f1

(

f2
R2

− 1

)

+ f2

(

7− 6f2
R2

)]

α2
x ρ

2
x +

1

4
f1

(

3− 2f1
R1

)

α2
y ρ

2
y

+
3

4
f2 α

2
y ρ

2
x +

1

4

[

11(f2 − f1) +
3f 2

1

f2

]

α2
x ρ

2
y (29)

− 3(f1 − 2f2)αx αy ρx ρy

+
3

2
(f1 − 2f2)αx α

2
y ρx −

1

2

[

11(f2 − f1)−
3f 2

1

f2

]

α2
x αy ρy

+ 3

(

f1
f2

− 2

)[

f1

(

f2
R2

− 1

)

+ f2

(

3

2
− f2
R2

)]

α3
x ρx −

3f1
2
α3
y ρy

Here, ρx = x1/f2 and ρy = y1/f1. That is, (ρx, ρy) are equal to the tangents of the

angles of rays converging onto the focus, ignoring deflections of rays in the x direction

by the first lens.

There are 14 terms in (29), out of a possible 16 allowed by the symmetry of an

anamorphic system [35]. The two absent fourth-order aberrations are the spherical

aberration terms of the individual lenses, proportional to ρ4x and ρ4y, which are zero by

design (as given by the forms of φ and q). However there is a term in (29) proportional to

ρ2x ρ
2
y which thus varies with the fourth power of the pupil coordinate along the diagonal

and is the only aberration for the on-axis field points αx = αy = 0. It is seen from (29)

that the coma terms (proportional to αy ρ
3
x and αx ρ

3
y) are zero under the same conditions

as for the individual lenses, namely that the curvatures of the lenses are set equal to

the focal lengths, R1 = f1 and R2 = f2. However, even then, there are some coma-like

cross terms (proportional to αy ρ
2
x ρy and αx ρx ρ

2
y) that are independent of R1 and R2.

Indeed, the only dependence of the OPD on the radii of curvature occur in terms that

are proportional to only x or only y coordinates, and we find through computational ray
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tracing that, in general, errors in or modifications to the wavefronts of the individual

lenses only affect the wavefront in the corresponding coordinate of the system wavefront.

Thus, a radius of curvature of the lenses equal to their focal lengths does reduce coma,

and does minimise off-axis aberrations, but it does not produce an aplanatic system as is

achievable for an axi-symmetric lens. The remaining terms of (29) are either quadratic

in the pupil coordinates, representing curvature of field and astigmatism, or linear in

pupil coordinates, describing image distortion. The field-dependent 45° astigmatism (or

more correctly, oblique astigmatism), proportional to ρx ρy, is zero for f2 = f1/2, as are

some of the other terms. When f1 = f2 = R1 = R2 the expression for OPD is invariant

in swapping the x and y coordinates (ρx ↔ ρy and αx ↔ αy) as expected.

The minimum aberration occurs for a field point on axis, and unlike the case of the

individual lenses this aberration is non-zero, with OPD = (3/4)f2 ρ
2
x ρ

2
y. This non-zero

aberration exists even though each individual lens focuses an incident collimated beam

without aberration. It can be termed “oblique spherical aberration” since it varies with

the fourth order of the pupil radial coordinate along the diagonal (ψ = 45° for a square

pupil), and is zero in the x and y directions. For on-axis cylindrical lenses where ρx and

ρy range from −NA to +NA, the RMS wavefront error is evaluated to (3/20)f2 NA
4.

This can be compensated slightly by introducing defocus proportional to ρ2x + ρ2y,

reducing the RMS wavefront error to a minimum of
√

2/7(3/20)f2 NA
4 = 0.11f2 NA

4.

This error is significant for high-NA lenses for imaging at 1 nm resolution. For example,

for NA = 0.0375, λ = 0.075 nm, and f2 = 1mm, the RMS error is equal to

0.16 nm = 2.1waves, excluding tilt, defocus, and astigmatism. The Marechal condition

at this wavelength (i.e an RMS wavefront less than λ/14 = 0.005 nm) can be satisfied

for lenses with a 1mm focal length only for NA < 0.016, or a resolution of 2.3 nm.

Alternatively, a resolution of 1 nm at this wavelength requires a focal length f < 34 µm.

Such a lens would have a very small aperture, so a more practical approach would be

to compensate the on-axis aberration with an appropriately shaped refractive phase

plate [36], akin to a Schmidt corrector plate [37].

The ρ2x ρ
2
y error is not dependent on the curvatures of the surfaces of the individual

lenses, nor the distance between them, and is independent of the field angle. The origin

of this error can be traced to the curvature of field of the second MLL (here focusing

in the x direction) due to rays incident out of the x–z plane. This is the situation

addressed by (27) (but with the x and y directions reversed). That is, consider rays

from the on-axis field point with r̂1 = (0, 0, 1) intersecting the first MLL at a particular

height y1 and a range of values x1. These will be all be deflected in the y direction by

the same angle, αy ≈ y1/f1, and will impinge on the second lens with this angle, leading

to a defocus term that according to (27) is proportional to α2
y x

2
1 and thus to x21 y

2
1. One

may expect that this could be addressed by polishing the surface of the second lens to a

cylinder of radius f2 that curves in the y direction so that the rays deflected by the first

lens always impinge normal to the surface (and hence seem to always be on axis). Failing

that, setting R2 = (2/3)f2 may eliminate the curvature of field as suggested by (27).

The ray-trace analysis shows, however, that the on-axis aberration remains unchanged
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for any choice of curvature, as given by the term in (29). The wavefront is dependent

upon the tilts of the diffracting layers in the MLL, which follow the cylindrical symmetry

dictated by their deposition onto flat substrates. The normals of the layers of the second

lens are in the x-z plane as described by q2 in table 2.

The transmission of the lens system is also affected by the violation of the Bragg

condition in the second lens. For the on-axis field point, the analysis leading to (29)

gives the solution of the deviation parameter of the first lens as ǫ1(ρx, ρy) = 0, showing

that the Bragg condition is satisfied across the entire pupil of the first lens, but in the

second lens

ǫ
(4)
2 (ρx, ρy) = ρ2xρ

2
y/4. (30)

This equation suggests that the loss of transmission of the lens starts to occur at the

corners of the pupil (ρx = ρy = NA), even for the on-axis field point, when NA4 > 4wǫ,

independent of focal length. For the SiC/WC multilayer system considered above for

a wavelength of 0.075 nm where |δ1 − δ2| = 6.7× 10−4, (30) sets a limit of the NA of

crossed 1D lenses to 0.064, corresponding in this case to a resolution of 0.59 nm.

Equation (30) confirms that the on-axis aberration stems from the fact that the

convergent beam incident on the second lens does not mirror the reference wavefront

that conceptually would produce the design of the second MLL as a computer-generated

hologram. An elimination of the on-axis aberration (and the apodisation) would thus

require that the layers of the second lens are fabricated to conform to the cylindrical

symmetry introduced by the first lens and the desired spherical convergent beam created

by the second. The use of a phase plate, as suggested above, would address the

aberration but not the lens transmission.

5.2. Relative alignment of the two lenses

From the cylindrical symmetries of the two lenses, any transverse displacement of one

lens relative to the other either leaves the system invariant or simply shifts the optic axis,

defined by the y coordinate of the first lens and the x coordinate of the second lens (see

figure 7). A tilt of one lens about either the x or y axes will cause an aberration of similar

magnitude as that from a field angle αy or αx. However, in that case there no longer

exists an axis of symmetry of the system, and instead one can consider the coordinate

system to be fixed to one of the lenses, such that a tilt of that lens is equivalent to an

opposite change in the field angle. Alignment tolerances are investigated in section 5.5

for lenses with 1 nm resolution.

As known from the analysis of crossed cylindrical lenses, an error in the

orthogonality of the two lenses, caused by a rotation of one relative to the other about

the z axis, leads to oblique astigmatism with a wavefront error proportional to ρx ρy [9].

This can be seen in the simplifying approximation of the system wavefront as the sum

of the phase contributions of each lens, scaled to to the coordinates of the second

lens, given by λ/(2π)φ1 = −y2/(2f2) and λ/(2π)φ2 = −x2/(2f2). The combined

wavefront of −f2(ρ2y + ρ2x)/2, represents (in the paraxial approximation) a spherical
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wave converging onto the focus at f2. However, if the second lens is rotated about

the optic axis by an angle χz then the second lens produces a phase proportional to

−f2(ρx cosχz + ρy sinχz)
2. For small χz the wavefront error found by subtracting the

converging spherical wave is then equal to f2 χz ρx ρy. This is oblique (45°) astigmatism,

and this contribution is constant across the field. This term is orthogonal to the 0°-90°

astigmatism and to defocus, and gives an RMS error of f2 χz NA
2/3. Given a tolerable

degree of astigmatism of half a wave, the requirement on the alignment of the two lenses

is then χz < 3λ/(2f2 NA
2). For the example above of λ = 0.075 nm, f2 = 1mm, and

NA = 0.0375 we find a requirement of χz < 80 µrad. This tolerance can in some cases

be relaxed by finding the field location with an oblique astigmatism that cancels this

term due to the non-orthogonality. As seen in (29), the coefficient of the field-dependent

oblique astigmatism is −3(f1 − 2f2)αx αy. However, choosing the appropriate αx and

αy to zero the oblique astigmatism will introduce other off-axis aberrations.

5.3. Chromatic aberrations of crossed MLLs

Due to the anamorphism of crossed MLLs, and the fact that focal length scales inversely

with λm, a change in wavelength causes a different amount of defocus in each focused

direction. That is, besides defocus, crossed MLLs exhibit a chromatic astigmatism

that is proportional to the difference in focal lengths f1 − f2. The magnitude of off-

axis aberrations (including distortion) will also depend on the field direction. For the

on-axis field point, the chromatic defocus and astigmatism can be compensated by

repositioning the lenses so that their distances to the image plane are f1 λ/λm and

f2 λ/λm (respectively for the first and second lenses). As in section 4.2, the ray tracing

procedure can be carried out for the repositioned lenses for λ 6= λm, in which case the

on-axis wavefront aberration is evaluated to

OPDSA(ρ;λm) =
3

4
f2
λ3m
λ3

ρ2x ρ
2
y +

3f1
8

λm∆λ

λ2

(

2− 2f1
R1

+
∆λ

λ

)

ρ4y

+
3f2
8

λm∆λ

λ2

(

2− 2f2
R2

+
∆λ

λ

)

ρ4x. (31)

The coefficients of the ρ4y and ρ
4
x terms of (31) are equivalent to the spherical aberration

term for the axisymmetric lens of (23). These terms represent a distorted spherical

aberration, which can be zeroed independently in each direction, for a given λm, with

the appropriate radius of curvature R1 and R2. As for the axisymmetric lens, setting

R1 = f1 and R2 = f2 gives a quadratic dependence of the spherical aberration on the

wavelength deviation ∆λ and therefore the lowest chromatic aberration for positive and

negative wavelength deviations from the design wavelength. However, even though these

terms can be minimised, the oblique spherical aberration (proportional to ρ2x ρ
2
y) scales

with (λm/λ)
3 = (1 + ∆λ/λ)3 and therefore dominates.
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Figure 8. (a) Map of the wavefront aberration for the on-axis field point for a system of

crossed flat 1D MLLs of focal lengths of 1.25mm and 1mm, both with NA = 0.0375.

The best-fit defocus has been subtracted. (b) The point spread function intensity

computed from the wavefront aberration for the on-axis field and a wavelength of

0.075 nm, and (c) the point spread function at the same wavelength and NA but zero

wavefront aberration.

5.4. Ray tracing of crossed MLLs for 1 nm focusing

As an example, we consider the above-mentioned lens system with a resolution of 1 nm

at a wavelength λ = 0.075 nm (17 keV photon energy) with a square exit pupil of
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NA = 0.0375 in the x and y directions, (and NA = 0.053 along the diagonal). Here we

define the resolution for a square-pupil optic to be 0.5λ/NA in the x and y directions.

The focal lengths of the lenses are taken to be f1 = 1.25mm and f2 = 1mm, and thus

the heights of the lenses are 93 µm and 75 µm, respectively. The ray-tracing procedure

detailed above was used to numerically compute the wavefront aberrations exactly—that

is, without approximating to a fourth-order series expansion as for (29). The particular

procedure applies to the case of field points at infinity, displaced from the optical axis

by field angles αx and αy as set by the ray direction r̂1. This situation represents, for

example, the formation of a focused beam for a scanning microscope. In this case the

field angles also represent the tilt of the optic axis of the lenses relative to say a “beam

axis” set by the direction of a far-off source. The calculations also correspond to the

aberrations expected in full-field imaging at high magnification (where the image plane

is far from the lenses and the sample is near to the focal plane).

The aberrations are computed in terms of the points of intersection of rays on the

two lenses. A map of the OPD as a function of the coordinates of the second lens is

shown in figure 8 (a), for flat lenses (R1 = R2 = ∞). The extent of the plot is limited

to the same numerical aperture of 0.0375 in the two orthogonal directions. The best-fit

defocus has been subtracted and this map represents the phase error of the exit wave

converging onto the plane of best focus. This map is dominated by the fourth-order

term ρ2x ρ
2
y, and the residual after subtracting that term from the calculated OPD is

proportional to higher order terms with the same symmetry as displayed in figure 8

(a). The RMS wavefront error of the OPD shown in figure 8 (a) is 0.134 nm, compared

with the contribution of the fourth-order term 0.08f2 NA
4 = 0.158 nm. As previously,

the point spread function (PSF) can be computed from a Fourier transform of the

complex-valued pupil function of the lens system, constructed from the OPD and lens

transmission. The PSF for the on-axis field point of the lens system is shown in figure 8

(b) for a wavelength of 0.075 nm, compared with the PSF for a perfect system of the

same NA and wavelength in figure 8 (c). In addition to the increased width of the PSF

with a full-width at half maximum of 1.64 nm, compared with 0.85 nm for the perfect

system, the Strehl ratio of the PSF is 0.076.

The calculated OPD for the on-axis field point far exceeds both the Marechal

condition of the RMS error being less than λ/14 or the Rayleigh condition of an absolute

deviation of the OPD by more than λ/4. Further computations show that the OPD at

field angles less than about 1mrad appear similar to the on-axis aberration map, so we

would expect to achieve aplanatic imaging over a field of view of about this extent by

compensating the wavefront equally at all field points. Such a compensation could be

achieved by locating a phase plate close to either of the lenses.

The aberrations of such a phase-compensated system were simulated simply by

subtracting the OPD computed for αx = αy = 0 from wavefront maps at other field

angles. This should be a valid assumption when the phase plate is close enough to the

second lens that its correction is the same for all field angles. The wavefront map for the

field located at αx = 1.25mrad and αy = 1mrad is given in figure 9 (a). The RMS error
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Figure 9. Wavefront maps of systems of crossed 1D MLLs that are phase-compensated

for the on-axis field point, calculated over the square pupil (set to be at the second

lens) for the field point located at angles αx = 1.25mrad and αy = 1mrad, for (a)

flat MLLs, (b) MLLs with radii of curvature equal to the focal lengths (R1 = f1 and

R2 = f2), and (c) as for (b) but with f1 = 2f2. In all cases f2 = 1mm. In (a) and

(b) f1 = 1.25mm, while in (c) f2 = 2mm. In all cases the best-fit defocus and 0°-90°

astigmatism were subtracted.

is 0.024 nm, which is certainly an improvement over the non-compensated lens system,

but still does not meet the Marechal condition. It is apparent from this figure that the

wavefront is dominated by coma oriented along the same direction as the field point

(ψ = 45°, accounting for the anamorphism). That is, the wavefront is proportional to

ρ3x + ρ3y. These are the terms in the second line of (29), which can be eliminated by

setting the radii of curvature of the lenses equal to the focal lengths. Figure 9 (b) shows

the calculated wavefront for that case. The wavefront aberration is reduced slightly

(especially along the ρy = −ρx diagonal), and the RMS error is also slightly improved

with a value of 0.019 nm. The aberration is still dominated by coma, now given by the

terms on the third line of (29). Equation (29) suggests one more optimisation to reduce

the wavefront aberration, which is to set the focal length of the second lens to half that

of the first, f2 = f1/2, to eliminate one of the remaining two coma-like terms. With

this, and cylindrical curvatures of the two lenses equal to the focal lengths, we find the

lowest RMS error of 0.014 nm and the map of the wavefront given by figure 9 (c). Here

there is a remaining coma-like term that only depends on the position of the field in the

y direction, which is the focusing direction of the first lens.

Given a linear dependence on the field angle for coma, achieving the Marechal

condition of 0.005 nm RMS aberration error therefore requires reducing the magnitude

of the field angle to about a quarter to a third of the value simulated in figure 9 and

thus we expect the aplanatic region to have a radius of about 0.3mrad. Plots of the

RMS error as a function of the field position (αx, αy) are given in figure 10 for the same

lens configurations as for figure 9, with the additional case of flat lenses with f1 = 2f2.

The aplanatic area is indicated by a dashed line, which gives the contour for an RMS of

λ/14 ≈ 0.005 nm. Comparing Figs. 10 (a) and (b), it is seen that setting the radii of the
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Figure 10. Maps of the RMS wavefront aberration as a function of the field angles

αx and αy for crossed MLLs with NA = 0.0375, a phase plate set to conjugate the

aberration of the on-axis field point, and the focal length of the second lens f2 = 1mm.

(a) f1 = 1.25mm, R1 = R2 = ∞; (b) f1 = 1.25mm, R1 = f1, and R2 = f2; (c)

f1 = 2f2, R1 = R2 = ∞; and (d) f1 = 2f2 = 2mm, R1 = f1, and R2 = f2. The blue

dashed lines indicate the Marechal condition of λ/14 for λ = 0.075 nm. These lines

enclose the isoplanatic areas of the lens systems.

lenses to the focal lengths only provides a slight enlargement of the aplanatic area over

the case of flat lenses. The RMS error increases linearly with the magnitude of the field

angle in these cases, indicating coma in accordance with the terms of (29). The largest

aplanatic field (and hence the largest tolerance for misalignment of lenses) is achieved

by setting the focal length of the second lens to half that of the first, as in figure 10 (c)

and additionally curving each lens to a radius equal to the focal length as depicted in

Fig 10 (d).

Plots of the RMS wavefront error as a function of the relative wavelength deviation

∆λ/λ = λm/λ−1 for the on-axis field point are given in figure 11, for the cases of curved

lenses (R1 = f1 and R2 = f2) and flat lenses (R1 = ∞ and R2 = ∞), as computed

by ray tracing. It is assumed in these calculations that both lenses are refocused for
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Figure 11. RMS wavefront aberration (excluding defocus and astigmatism) of crossed

MLLs of NA = 0.0375, f1 = 1.25mm and f2 = 1mm as a function of the relative

deviation of the wavelength from the design for curved lenses (R1 = f1 and R2 = f2)

(orange) and flat lenses (R1 = ∞ and R2 = ∞) (blue). The solid lines assume a

corrector with a phase profile that is independent of wavelength and the dashed lines

are for a phase corrector made of carbon. The Marechal condition of λ/14 is indicated

by the black dashed line.

each wavelength change. As compared with the aberrations for the axisymmetric lens,

plotted in figure 4 (d), the RMS wavefront error is larger for the crossed lenses. It

is found that the dominant aberration is proportional to ρ2x ρ
2
y, as expected from (31).

The calculations of the RMS errors given by the solid lines in figure 11 furthermore

assume that this error is corrected at ∆λ = 0, for example by a phase plate, but that

the correction is independent of wavelength. However, the refractive index decrement

δ of a phase plate constructed from a material of low atomic number such as carbon

(diamond) varies as λ2 at wavelengths comparable to the design wavelength of 0.075 nm.

In this case, given that the phase of the corrector is much less than unity, the correction

scales as (λm/λ)
2. This somewhat compensates for the (λm/λ)

3 dependence of the ρ2x ρ
2
y

aberration of the crossed lenses, giving lower RMS errors plotted as dashed lines in

figure 11.

As with the case for the axisymmetric lens, the Darwin width of the Bragg

reflections of these particular crossed lenses limits the field angles more stringently

than the wavefront aberrations. A map of the total transmission of the lens pair is
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given in figure 12 (a) as a function of field angle, for the same multilayer properties

as in the calculations of figure 5: |δ1 − δ2| = 6.7× 10−6. For λ = 0.075 nm the

half width wθ = 0.11mrad, as for the axisymmetric lens. The transmission is found

to be independent of the radii of the lenses, as expected from (30). Likewise, the

apodisation caused by detuning the wavelength has a similar behaviour to that found

for the axisymmetric lens. As seen in figure 12 (b), a deviation of the wavelength causes

the effective numerical aperture of the lens to decrease, and a transmission of at least

0.5 requires ∆λ/λ < 0.9%.

5.5. Relative alignment of crossed MLLs for 1 nm focusing

The two lenses must be oriented with respect to each other by angles that are comparable

to the allowable field angles. The tolerance can be explored by considering one lens to

be fixed (which sets the coordinate system) and setting the tilt of the other lens and

the field coordinates as free parameters. Ignoring the orthogonality of the lenses (which

was discussed in section 5.2) this four-dimensional space is illustrated in figure 13. Here

ray tracing calculations are presented for two flat lenses (R1 = R2 = ∞). The second

lens was held fixed and the first tilted by χx about an axis passing through its vertex

parallel to the x axis or by an angle χy about the y axis. The tilt by χx is given in the

left-hand column of the figure. This tips the lens in the direction that it focuses (refer

to figure 7) and it is seen that rays incident on the lens at that tilt angle are efficiently

transmitted through it and the second lens, as indicated by the false-colour maps of the

transmission as a function of field angle. That the region of high transmission tracks

the tilt angle of the lens shows that the transmission of the second lens (which focuses

in the x direction) is not sensitive to misalignment in the y direction. The contours

in the maps of figure 13 show the RMS wavefront aberration. For the tilts of χx (the

left column) the aplanatic area shrinks and only tracks the tilt at about a third of the

rate of the lens tilt. Thus, the region of the field with low aberrations moves out of the

region of high transmission and the tolerable magnitude of the lens tilt χx (where the

system gives high transmission and low aberrations) is about 0.2mrad.

The situation is somewhat more relaxed for tilts of the first lens by χy about the

y axis, as displayed in the right-hand column of figure 13. Just as the χx tilt had

little effect on the transmission of the second lens, the tilt of χy has little effect on the

transmission of the first lens. Therefore, the map of the transmission of the lens system

remains unchanged. However, the aplanatic region of the field tracks with about half the

rate of the lens tilt and does not diminish in area as rapidly as for χx tilts. The tolerable

magnitude of the χy tilt is about 0.4mrad. This tilt of the first lens by χy is equivalent

to a rotation by −χy of the second lens about the axis that passes through its vertex

parallel to y, combined with a rotation of the field angle. Although the dependence of

the aberrations on field angle differs for different values of R1, R2, and the ratio of focal

lengths, it is found that the tolerances of the lens misalignment remain approximately

the same for the various cases that were investigated in figure 10.
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Figure 12. Transmission of crossed MLLs with NA = 0.0375 and focal lengths

f1 = 1.25mm and f2 = 1mm as function of (a) the field position and (b) the relative

change in wavelength. Transmission maps of the square lens-pair pupil are shown in

(a) for the positions indicated by the white circles. The Marechal condition for flat

lenses and a wavelength of 0.075 nm is indicated by the dashed sky-blue line in (a).
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Figure 13. Field maps (in false colour) of the transmission of a system of misaligned

crossed flat MLLs of NA = 0.0375 and focal lengths f1 = 1.25mm and f2 = 1mm, for

various rotations χx and χy of the first lens relative to the second. Contour maps of

the RMS aberrations are superimposed, with the Marechal condition indicated by the

dashed sky-blue line.

The imaging performance depends both on the wavefront aberration and the

apodisation, as is visualised in figure 14 for a particular misalignment of two flat

lenses with χx = 0.4mrad and χy = 0.4mrad, compensated by a phase plate. The

phase plate is assumed to conjugate the wavefront of perfectly-aligned lenses. The

complex-valued pupil functions were constructed from the phase as given by the OPD

and the amplitude equal to the square root of the transmission, plotted in the figure

over a range of field angles αx and αy. As expected from figure 13 the field position

that gives maximum transmission, at (αx, αy) = (0, 0.2)mrad does not correspond to

the location of lowest aberration at (αx, αy) = (0.1, 0.1)mrad. The wavefront at the

location with maximum transmission is dominated by a 45° coma. The width of the

apodised PSF at (αx, αy) = (0.1, 0.1)mrad is similar to that of the aberrated PSF at

(αx, αy) = (0, 0.2)mrad. Further from these field points, the PSF is dominated by the

severe loss of diffraction efficiency at the edges of the pupil.
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Figure 14. Complex-valued pupil functions and PSFs for a misaligned pair of 1D

MLLs with NA = 0.0375 and focal lengths f1 = 1.25mm and f2 = 1mm, for a range

of field angles as indicated by αx and αy. The first lens is rotated by χx = 0.4mrad

and χy = 0.4mrad relative to the second. The complex values of the pupil function are

visualised by hue (phase) and brightness (amplitude) according to the colour wheel at

bottom left. The corresponding PSFs are shown on a common intensity scale, which

is truncated to a value of 0.5, compared with an intensity of 1 for a PSF of a lens with

full amplitude and zero aberration.

6. Aberrations of imperfect multilayer Laue lenses

Imperfections of MLLs may include an error of the layer period d at a particular position

of the lens, or an incorrect dependence of this period on position. The most trivial of

these is a scaling of the lens, perhaps due to incorrect deposition rates, but a more

problematic case is the variation of the deposition rate over the course of its fabrication.

Other errors may be introduced by slicing the lens with an angular mis-cut, or by not

achieving the necessary tilt of the layers in the deposition. Here we consider some of

these cases to understand the tolerances required to make diffraction-limited MLLs.

6.1. Scale error of the MLL

An overall scaling of the MLL structure by a factor h may occur due to an error in

the deposition rate used to make it. The dilation of the structure gives rise to a phase

φm(r) = φ(r/h) (of the “manufactured” lens in terms of the designed lens) which, from

a Taylor expansion based on (3), yields a lowest-order term equal to r2/(2fh2). The

scaled MLL therefore has a focal length f h2. The scale error places the nth layer at hrn,

or at the position rn(m) given by rn(m)/h = rn. Each layer provides an extra wavelength

of path, with φm(hrn) = φ(rn) = nλ. The scaling changes the spacings of the layers and
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hence also the deflection angles of rays. Since ∂φ(r/h)/∂r = φ′(r/h)/h, it follows from

(5) that the periods of the scaled MLL are given by hd(r/h) (for the case of the flat

lens). That is, the period of the relocated nth layer is scaled by h. From (6), this again

shows that the focal length becomes h2f . The scaling also has an effect on higher-order

aberrations. One way to conceptualise this case is to consider that scaling the lens and

the wavelength by h similarly scales the focal length, as well as the OPD (in normalised

pupil coordinates), by the same factor. That is, the spherical aberration of the scaled

lens will be zero for a wavelength hλ. Reverting to the original wavelength will require

scaling that by 1/h (giving a focal length h times larger again), and will be akin to the

discussion of chromatic aberrations described in section 4.2, where now ∆λ/λ = 1/h−1.

That is, for an axi-symmetric lens originally designed with focal length f and radius R,

the spherical aberration of the scaled lens at the original design wavelength will be

OPDSA(ρ;h) =
3f

8

1− h

h

(

1 +
1

h
− 2f

R

)

ρ4. (32)

As with the chromatic aberration, the highest tolerance to scaling errors is achieved

for R = f , but the allowable scaling error is limited primarily by violating the Bragg

condition in the outermost layers, assuming that the layer tilts are also scaled (that

is, that the entire lens structure is dilated uniformly in all directions). For the lens

parameters and wavelength considered in section 4.3, a scaling error of less than about

1% can be tolerated, as indicated by figure 5 (b).

6.2. Deposition rate stability

A drift in the rate of deposition of materials in the fabrication of an MLL will lead to an

error in the d spacing and the position of those layers. Consider a deposition recipe that

assumes a constant rate p of the accumulation of material which requires the material

pairs to be alternated at deposition times Tn such that rn = pTn. However, if that rate

changes in time then those layers will occur at positions

rn(m) =

∫ Tn

0

p(1 + c(t)) dt. (33)

A linear drift, c(t) = c1t, deposits layers according to rn(m) = pTn + (c1/2)pT
2
n =

rn+(β/2)r2n, where β = c1/p is the relative change in deposited thickness per thickness of

material deposited (with units of inverse length). This coordinate error can be compared

with the simpler scale error of section 6.1, showing that

λ

2π
φm(r) =

λ

2π
φ(r − βr2/2)

= s(r − βr2/2) +
√

(r − βr2/2)2 + (f − s(r − βr2/2))2 − f (34)

≈ r2

2f
− βr3

2f
+

(

2

R
− 1

f

)

r4

8f 2
.

Here the inverse of the coordinate error was determined by solving rn + βr2n/2 = rn(m)

for rn. When β is positive, the number of periods deposited over a height r is reduced,

and so φm(r) < φ(r) in agreement with (34).
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As with off-axis aberrations of ideal (non-distorted) lenses, the incident beam

impinging on the structure described by (34) no longer matches a reference beam

that would give rise to a hologram described by φm, and accordingly the Bragg

diffraction is modified due to the change in d spacing. The OPD must therefore be

calculated according to (19), with a modified form of q. In particular, since from (34)

∂φm(r)/∂r = (1 − βr)φ′(r − βr2/2), (16) must be replaced by (1 − βr) q(r − βr2/2).

Analogously to the scaling error above, the period of the layer at r is modified by a

multiplicative factor 1/(1 − βr) ≈ 1 + βr and repositioned to rn + βr2n/2. We find for

the on-axis field point of a curved axi-symmetric lens,

OPD(ρ) ≈ −βf 2ρ3, (35)

for the normalised pupil coordinate ρ = r/f . For a 1D lens, a similar scaling as for q

must be applied to q1 in table 2. In this case we obtain the same result as (35) but with

ρ replaced by the linear coordinate ρx or ρy.

Equation (35) shows that a linear drift of the deposition leads to a third-order error.

For an axi-symmetric lens this is not coma (which has a direction and is not radial) and

is a phase error that is approximately constant across the field. For a 1D lens, this

does vary in a single direction as per the the coma terms proportional to ρ3x and ρ3y in

(29). Thus, in that case, a small degree of deposition drift β can be compensated by

tilting the lens, such that (f1/R1 − 1)αy = βf1 (for f1 6= R1). This compensation is

only practical for field angles αy that are smaller than the Darwin-width acceptance wθ
of the finest layers, which considerably limits the range of β that can be compensated.

The RMS OPD error for a 1D lens with coma given by (35) is equal to βf 2NA3/(6
√
7),

minimised here by a defocus. The Marechal condition is satisfied when the RMS OPD

is less than λ/14, and so without any compensation, we require

β < 1.13λ/(f 2NA3) ≈ 9δ/D2 (36)

where δ = λ/(2NA) is the lens resolution and D = 2NAf is the lens diameter. For

f = 1mm, NA = 0.037, and λ = 0.075 nm, β < 1.6× 10−6 µm−1 or a relative error

of 1.5× 10−4 over the course of the entire deposition. This corresponds to an absolute

error of 7.1 nm in the height of the lens.

Another example of a deposition error is a constant offset of the period, dm(r) =

d(r)+∆d. This can occur if the materials used to form the layers interdiffuse and create

a thin interface with a different density to either of the unmixed materials [38]. It can

be seen that this is in fact equivalent to the example just considered, since we have

from (6) that d(r) +∆d ≈ λf/r (1+∆d r/(λf)), so that β = ∆d/(λf). The magnitude

of the coma generated by a given contraction error ∆d increases as the wavelength is

reduced, but from (36) a reduction in the focal length and the size of the lens relaxes

the tolerance of ∆d.

6.3. MLLs cut at an inclination

Multilayer Laue lenses are usually sliced to the desired thickness τ from an extended

structure formed by material deposition. The angle at which a flat lens is cut might
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Figure 15. Geometry of a flat MLL of focal length f , cut at an incline with an angle

γ. If the layers of the parent structure follow paraboloids (shown in brown) then rays

(black lines) from an on-axis field angle will be focused without aberration. Flat tilted

layers (shown in grey) will cause aberrations for the on-axis field angle.

not be exactly normal to the optic axis, or the center of curvature of a spherical surface

might not exactly lie on that optic axis. We consider here the case of a flat lens cut at

an angle that differs from the intended normal face by an angle γ. If the structure from

which the lens is cut replicates the family of paraboloids that are described by (2), then

the resulting optical element would be a tilted holographic lens, exhibiting zero OPD for

the field point on the optical axis. Indeed, this will be the case for any arbitrary surface

shape z = s(r). Thus, in this case, cutting a lens at an incline will only change the

off-axis aberrations. However, if the deposited layers only match the paraboloid forms

on a particular surface (for example, z = 0) and differ in form away from that surface,

then a mis-cut will cause an aberrated image of the on-axis field point. The aberration

depends on the form of the layers at the positions cut by the surface, and we consider

here the case of a flat 1D lens constructed from layers that are tilted planes.

We consider a lens that focuses in the y direction with a focal length f . The

tilted planes of the structure from which the lens is sliced all intersect the optic axis a

distance 2f from the lens vertex, as shown schematically in figure 15. The lens is cut

on a plane that is tilted about the x axis by an angle γ, with the optic axis along z.

A ray from the on-axis field angle intersects the lens at a height y and a longitudinal

distance z = y tan γ from the vertex. The layer of the MLL intersected by this ray,

which we presume to be the nth period, passes through the z = 0 plane at a height

yn = 2fy/(2f − y tan γ). Since the lens was intended to be cut normal to the optic axis,

the position yn follows the prescription of (2) for z = 0. We see from figure 15 that for



X-ray lenses for nanometer focusing 40

positive γ the layers the ray intersects are thinner and placed closer to the optic axis

than intended, but have almost the correct tilt to satisfy the Bragg condition. With

analogy to the analysis in section 6.1 the lens can be considered to be locally scaled by

the factor y/yn = 1− y/(2f) tan γ so that

λ

2π
φm(y) =

λ

2π
φ

(

y

1− y/2f tan γ

)

=

√

f 2 +
y2

(1− y/2f tan γ)2
)− f. (37)

Even though the surface of the MLL follows a tilted plane, we take s(y) = 0 in the

derivation of φm(y) from (3) since the scaling accounts for this. Following the analyses

of the previous sections,

∂φm(y)

∂y
=

1

(1− y/2f tan γ)2
φ′

(

y

1− y/2f tan γ

)

, (38)

and the expression for q(y) must be scaled in a similar way. The normal vector is

n̂(y) = (0, sin γ,− cos γ) . (39)

For the on-axis field angle, we follow the ray-tracing procedure established in section 4

with l1 = y tan γ and l2 r̂
′ · ẑ = f − y tan γ. Using a symbolic mathematics program the

Taylor expansion of the wavefront aberration is evaluated to

OPD(4)(ρy) =
f

2
tan γ ρ3y +

f

4
tan2γ ρ4y. (40)

The dominating term is coma, proportional to ρ3y. This term depends linearly on the

tangent of the mis-cut angle γ. To maintain the Marechal condition of an RMS wavefront

error below λ/14 requires a mis-cut angle

γ < 2.3
λ

f NA3 , (41)

or less than 3.3mrad for the 0.0375 NA lens considered in section 5.4.

Perhaps more importantly, the linear dependence of coma on the mis-cut angle

gives a way to easily compensate for the main component of drift in the deposition rate

as explored in section 6.2. The coma error of (35) can be removed by cutting the lens at

an angle given by tan γ = 2βf . Setting a limit of tan γ < 1 to ensure that the additional

spherical aberration term of (40) is kept manageable, the largest drift in the deposition

rate that can be tolerated is raised to β = 1/(2f). For a lens with f = 1mm, this

corresponds to 5× 10−4 µm−1 or a relative error of 3.75% over the height of a 75 µm

diameter lens. The range of angles at which the lens can be cut may be limited by

satisfying the Bragg condition. The series expansion of the expression of the deviation

parameter determined by solving |r′| = 1 in the ray-trace procedure is given by

ǫ =
tan γ

2 cos γ
ρ3 +

7tan2γ

8 cos γ
ρ4. (42)

Maintaining Bragg efficiency at the edge of the lens (ρ = NA) therefore requires

γ <
4|δ1 − δ2|

π

1

NA3 . (43)
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For the materials and parameters of the lens considered in section 5, the largest tolerable

cut angle is thus about 160mrad, which then limits the correctable deposition drift to

no more than 0.8× 10−4 µm−1.

7. Discussion

The ray-tracing analyses of MLLs presented here, following procedures established for

the design and characterisation of holographic optical elements, can be used as a guide

for the design and manufacture of X-ray lenses by providing expressions for wavefront

aberration maps of flat and curved MLLs formed from axi-symmetric or linear multilayer

structures. These expressions further allow an understanding of the tolerances required

to fabricate such lenses and the sizes of aplanatic areas of their image fields, as needed

to design full-field or scanning microscopes. They also give insights into the potential

capabilities of MLLs. As an example, we examined lenses of 1mm focal length that

give 1 nm resolution at a wavelength of 0.075 nm. The necessary tolerances to achieve

diffraction-limited imaging (defined here as reaching a Strehl ratio of 0.8) are quite

stringent, as would be expected in attempting to reach an RMS wavefront aberration

of less than 0.005 nm. Any drift of the deposition rate when fabricating the layered

structure must remain below a relative error of 1.5× 10−4, for example, although errors

about 50 times this amount can potentially be compensated by an appropriate slicing of

the lens from the structure at an angle (depending on details of the shape of the layers

in the parent structure).

The question of alignment of MLLs in their use in high-magnification full-field or

scanning microscopes comes down to the size of the aplanatic area of the image field

of the lens. For our example cases for 1 nm imaging, the maximum field angle for

diffraction-limited performance is about 1mrad for a flat axi-symmetric lens, which can

be increased by a factor of six by using the aplanatic zone-plate design on a sphere of

radius equal to the focal length. In this lens, the range of field angles is limited by the

±0.3mrad acceptance of the Bragg reflection of the finest layers, so cutting the lens

to a spherical shape might not be that beneficial. However, for lenses of longer focal

length, the analytical expressions of the aberrations indicate that the aplanatic radius

decreases with field angle, whereas the Bragg acceptance does not. Thus, for centimeter

focal lengths there would be an advantage to a curved MLL. We note that curved lenses

require that the layers are deposited to produce paraboloid surfaces, at least in the

volume of the structure intersected by the spherical shape of the final lens.

Unlike thin zone plates which can be used over a large range of wavelengths

limited by spherical aberration (but with a narrow bandwidth for any given choice of

wavelength), thick MLLs of reasonably high NA can only be used over a narrow range of

wavelengths that are limited by the acceptance of Bragg diffraction. This range depends

inversely on the square of the NA and for 1 nm focusing at a wavelength of 0.075 nm

with SiC/WC multilayers, this range is ±0.6%. The range does not depend on focal

length, and so any MLL design that achieves this resolution is limited to this wavelength
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range. Other wavelengths require require different tilts of the layers.

Most MLLs made to date are linear structures that focus only in one dimension, as

a cylindrical lens, and which are combined as a crossed pair to provide two-dimensional

imaging. While they are easier to fabricate than axi-symmetric lenses, a crossed pair

does suffer from a lower overall transmission than a single lens and cannot realise a

completely null wavefront aberration. Even when perfectly aligned, the rays from an

on-axis field point that are deflected by the first lens will not exactly match the Bragg

condition in the second lens as required to create a perfect spherical converging wave.

Overcoming this requires a second lens with layers that have a component of their

tilt in the non-focusing direction. A pair of perfect crossed 1D MLLs gives rise to an

aberration on axis proportional to the product of the squares of the pupil coordinate in

each direction, which we refer to as an oblique spherical aberration, with a minimum

RMS wavefront aberration equal to 0.08f NA4 for a focal length f . Diffraction-limited

imaging, in which this RMS aberration is smaller than λ/14 is therefore only possible

for crossed 1D MLLs of NA < 0.016 for focal lengths of 1mm or more. However, this

aberration could be overcome in higher NA lens pairs by conjugating the wavefront

using a refractive phase plate, giving an aplanatic area similar to achievable in an axi-

symmetric MLL. We also find that apodisation caused by this effect limits the highest

NA of a lens system to a value that only depends on the rocking-curve width of the

multilayer system. For the SiC/WC system considered here, this limit is NA = 0.064.

Crossed lenses pose more difficulty for alignment than axi-symmetric lenses where

the aplanatic field simply tracks the region of the field that gives high diffraction

efficiency. With crossed 1D MLLs, it is possible to tilt the lenses in such a way that the

maximum diffraction efficiency does not match the region of diffraction-limited imaging.

In practice, the alignment of such lenses may require wavefront sensing (such as speckle

tracking [39]) to optimise the aberration and transmission as the relative tilts of the

lenses are varied.

The analysis presented here generally assumed on-axis lenses where the optic axis

passes through the center of the lens, but most 1D MLLs are constructed as off-axis

portions of such a lens with the optic axis outside of the lens pupil. This does not change

the conclusions of the dependence of aberrations on parameters such as NA and focal

length since such lenses can be thought of as on-axis lenses with an additional phase tilt.

Where there is a difference is in the acceptance widths of Bragg layers. For a given NA,

the layer periods are obviously thinner for an off-axis lens than for the on-axis version,

and these will have a narrower acceptance which will further restrict the field of view

due to vignetting. This acceptance angle decreases linearly with pupil coordinate, so

the field size of a lens for which the aperture ranges from 0 to D will be half of that

which ranges from −D/2 to D/2, for the same numerical aperture.

The analysis presented here shows that producing MLLs at a resolution of 1 nm

is not necessarily a challenge of making bigger lenses with more layers than currently

demonstrated or in achieving higher accuracy in the deposition of those layers, but

which could be addressed by a judicious choice of lens parameters such as focal
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length and assessing and compensating for errors that might be introduced in lens

manufacture. The old adage of optical fabrication is that you cannot make what you

cannot measure. With accurate metrology of lens aberrations, the analytical methods

presented, combined with an expanded design space that includes curving the lenses and

ways to make corrections of lenses, it is hoped that X-ray imaging at 1 nm resolution

will soon be realised.
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