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1. Introduction. In this paper a reaction-diffusion system is analyzed based on
a parabolic equation coupled with a nonlinear ordinary differential equation via a
boundary feedback integral operator. The system is written in the following form:

A

— vi{t,x) = Avi(t,x) -aivi{t,x),

d (U)
— v2(t,x)= - a2v2{t,x) + g(v{(t,x)),

in (0, oo) x fi, subject to the following boundary condition:

■^-vi(t.x) + Pv\{t,x) = [ K(x,x')v2(t,x')dx', (1.1b)
°n J n

on (0, oo) x T and also subject to suitable initial conditions. Here Q denotes an open
bounded domain in R" (n — 2, 3) with boundary T. As usual, A stands for the Laplace
operator and d/dn denotes the outward normal derivative on T.

The motivation for studying (1.1), (1.1b) comes from the fact that it serves as a
model for a class of man-environment epidemic systems when we adopt the following
interpretation. We consider Q as the habitat (environment) in which the human
population is exposed to an infectious agent, so that an epidemic phenomenon arises
because the infected human population acts as a multiplier of the infectious agent
itself. In this case vi (t, x) denotes the concentration of the infectious agent at a point
x € D. and time t > 0, while v2(t, x) denotes the spatial density of the human infective
population. In this context (1.1), (1.1 b) is a more realistic generalization of a previous
model proposed by V. C. and co-workers [6, 8] to describe fecal-orally transmitted
diseases (cholera, typhoid fever, infectious hepatitis, etc.) which are typical for the
European Mediterranean regions. For this kind of epidemic the infectious agent is
multiplied by the infective human population and then sent to the sea through the
sewage; because of the peculiar eating habits of the population of these regions the
agent may return via some diffusion-transport mechanism to any point of the habitat
Q, where the infection process is restarted. Thus the kernel in (1.1b) mathematically
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describes the transfer mechanism of the infectious agent generated by the human
population at x' € Q to the point x e T. Clearly, then, the boundary may be split into
two disjoint parts: Ti, denoting the seashore at which K(x, •) > 0, and its complement
r2 = F - Ti, at which K(x, ■) may be taken identically zero. The Laplace operator
takes into account a simplified random dispersal of the infectious agent in the habitat
Q. Finally, g{v\{t, x)) denotes the force of infection of the human population due
to the infectious agent at (t,x) e (0, oo) x Q. The parameters a\ and a2 are intrinsic
decay parameters of the two populations. We also observe that without coupling
on the boundary the two populations will both tend to extinction if a\ and a2 are
positive.

This model was proposed for the first time in [5], where diffusion of the infective
population was also considered in order to keep the compactness of the solution
operator of the system. Later in [7] an analogous system was studied with slow
diffusion (Av[") for the infectious agent and linear diffusion (Av2) for the human
infectives. In both cases the asymptotic behavior of classical solutions was analyzed
in order to obtain threshold theorems for the extinction of the epidemic.

In this paper we study system (1.1), (Lib) where the second equation is an ordinary
differential equation, thus losing compactness of the solution operator. Actually, the
particular structure of the system, in which the coupling of the two equations occurs
via a boundary feedback integral operator, does not allow us to refer to classical
results when considering well-posedness or qualitative properties of (1.1), (Lib).

In Sec. 2 we study existence and uniqueness of (1.1), (Lib) and give conditions
which guarantee that the solution operator associated with the system generates a
strongly continuous semigroup of nonlinear operators on the space of V (Q) x L1 (£2)
as well as C(Q) x C(Q) functions. Under natural assumptions these semigroups are
shown to be positivity preserving with respect to the natural cones in these spaces.
Section 3 is devoted to some aspects of the linearized model and contains a density
result which is essential for the proof of positivity of the solution semigroup. Finally,
in Sec. 4 we continue to investigate qualitative properties of the solutions of (1.1),
(Lib) and, in particular, we show monotonicity as well as concavity properties.

Since the completion of this manuscript several additional questions associated
with modelling aspects of system (1.1), (Lib) have been addressed. An optimal
control problem arises if one wishes to reduce the epidemic phenomenon described
by the above model by diminishing the boundary feedback along the seashore using
a sewage treatment program (see [16]). In the actual modelling problem one has
data of the epidemic and one has made a choice of using (1.1), (Lib) as a model
equation. There remains the problem of fixing the values of the coefficients in (1.1),
(Lib), most importantly the strength of the feedback operator which is determined
by K. This parameter estimation problem is addressed in [17, 18].

2. Existence, uniqueness, and regularity. In this section we show that unique solu-
tions of the special reaction-diffusion system that is studied in this paper exist and
that they generate nonlinear positivity-preserving Co-semigroups on L'(^) x ^(Q.)
and on C(Q) x C(Q). Further regularity of the solutions is studied. Let us first repeat
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d\\
dn

the system that is under consideration:
<9vi
— =-a1v1+Av1, (2.1a)

^ = - a2v2 + g(vi), for (t, x) G (0, oo) x Q, (2.1b)

+ [5v\ = [ K(x,x')v2(t,x')dx', {t, x) G (0, oo) x T, (2.1c)
Jn

(0, x) = vj (x), v2(0, x) = v°(x). (2.Id)

Here Q is a bounded domain (in R") with boundary T. As usual, d/dn denotes
the outward normal derivative. Two sets of regularity conditions will be used for
the parameters (a\„ a2, Q, /?, g, K) determining (2.1). In the notation of these
requirements we follow [15]

a\ G L°°(£2), fli(x) > a\ a.e. for some c*i > 0,
T is C° 1 - smooth (Lipschitz continuous boundary),

p G L°°{T), /? > 0,
K G L°°(r x fi),

and

fli e C'(Q), a1(x)>a1>0, x g Q,

cl2 g C(f2), ci2 > 0, (A2)
r is C2,1 - smooth (second derivatives Lipschitz continuous),
peCl(T), p>0,

g is globally Lipschitz continuous from Ll(Q) to L'(Q) with Lipschitz norm ||g||,
A:eL°°(rxfi), Kx e L°°(T xQ.).

We shall not distinguish between the mapping g and the substitution operator
g: L'(Q) —> L'(fl) given by {g<p){x) — g(<p{x)). The requirement on g is satisfied if
Ig'MI < P + "M, for some P > 0, a > 0 [12, p. 161].

We start our analysis by a formal homogenization of the boundary condition (2.1c).
Consider for v2 g C(0, T; L1 (£2)), T> 0 and t > 0, the elliptic equation

A wit, ■) - a.\wit, •) = 0, on Q,
(2.2)Bw(t, •) = 0(v2(Z, ■)), for t > 0 on Q,

where By = dy/dri + fly |r and <D(^)(jt) = /n K{x, x')<//(x') dx', for if/ G £'(^)>
xgF. The solution of (2.2) is denoted by w or w(f), w(t,x), or w{t, v2). We put

V, = w + w, (2.3)

so that dvjdt = dw/dt + dw/dt and Avi(/, ■) = Aw(t, ■) + Aw(t, ■). Thus (2.1) is
formally equivalent to

d d
— wit) = Aw - ci\w - — w, for t > 0 on Q,dt w dt
Bw{t) = 0, (2-4)
w(0, ■) = V°- H-(O),
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— v2(/) = - a2v2 + g{w + w), for t > 0 on Q,

v2(0) = v2°,

and
Aw(t) - a\\v{t) = 0, for t > 0 on Q,

(2.6)Bw(t) = 0(v2(/)), for t > 0 on T.
We summarize some properties concerning the boundary value problem of the

third kind arising in (2.6). For convenience we also recall that by Green's formula:

Y [ ^-p^-dx+ f a{ui//dx = [ (-A + a\)uy/ dx + f da
j^JndXjdXi Ja 7n Jr dn

for all u € H2(Q), ^ G //' (Q), if T is C2 '-smooth.

Lemma 2.1. Let the assumption of (Al) hold for Q, a.\, and p and let h e L2(T).
Then there exists a weak solution u € //'(fl) of

Am - a\U = 0 on Q, Bu = h on F; (2.7)

this means

f y 77— dx + [ a\uy/dx+ [ fhiij/dx = [ hi//dxJa dx> dx< Jo Jr Jr

for every \f/ e L'(Q). Moreover,

lwl//'(£i) - (^' P)\h\c-(r)- (2-8)
If the assumptions of (A2) hold for Q, a\, and /?, and if h G H^2(T), then

u € //2(Q), u satisfies (2.7), and

lwl//2(£2) ^ C2(Q, a\, P)\h\H>p^)- (2-9)

Proof. Using the trace theorem (see, e.g., [15, p. 130]) and the Lax-Milgram
theorem, the proof of the first part is quite standard. The regularity result of the
second part can be verified employing [15, Theorem 21.1], for example; see also [15,
p. 338], For given v2 we call vv e L' (0, T; //' (Q)) a weak solution of (2.6) on [0, T]
if

[ y p-dx + [ a\w(t)i//dx + [ pw(t)\j/ dx = I O{v2(t))<//dx,
Jq f OXj OXj Jq J f Jf

for all t e [0, T].

Lemma 2.2. Let (Al) hold and let v2 e WXA (0, T\ V (£2)), T > 0, be given. Then a
unique weak solution w — vv(v2) of (2.6) exists, it satisfies w € W1' (0, T; //' (£2)),
and w is the weak solution of (2.6) with right-hand side 0(v2). Further, there exists
a constant C independent of t e [0, T] and v2, v2 e fV' '(0, r;L'(Q)) such that

\w (t, v2) - w(t, V2)|//,(£J) < C|v2(0 - P2(0Li(nj for a.e. t € [0, T], (2.10)
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If moreover (A2) holds, then w = m>(v2) G W1A (0, T; H2(Q)), w satisfies the bound-
ary condition in (2.6), and for some constant C independent of t e [0, T] and v2,
v2 e JT1'1(0,7;L1(n)) we have

|w(f,v2) - vv(f, v2)|//2(0) < C|v2(0 - P2(0li'(i2) for a.e. t e [0, T], (2.11)

The space ^' '(O, T;L'(Q)) can be replaced by C'(0, r;L'(Q)) in all the above
statements. Moreover, if v2 e C'(0, T;L'(Q)) and (A2) holds, then w satisfies the
boundary condition in (2.6) with ®(v2) replaced by 0(v2) for every t > 0.

Proof. Let v2 e Wl,l(0, T-,Ll(Q.)). By Lemma 2.1 a weak solution vv(v2) of (2.6)
exists and w(v2) e C(0, r;L'(Q)). Similarly, let z e L'(0, T\Hl(Q)) be the weak
solution of (2.6) with 0(v2) replaced by 0(v2). We will show that z = w. For
t e [0, T] and / + r e [0, T] we obtain, using (2.8) and (Al),

w(t + t) - w(t) + - M0
< Q\K\Loo-yfl

H'(Q) L L'(n)

where I = fr ds. We can take a.e. the limit r —► 0 in the above inequality to obtain
= z a.e. on [0, T] and thus w G WlA(0, T\H{{Q)). If v2 e C"(0, T\L[{Q)), then

z € C(0, T-Hx(Q)) and thus vi> e C1 (0, T\Hl{Q)).
Since vv(v2) - w(v2) is the weak solution of (2.6) with right-hand side 0(v2) -0(v2),

we have (2.10) with C = Civ/JIA'^^xQ). Next, we add assumption (A2). Then
vv(v2) e W1' (0, T; H2(Q)) and (2.11) holds. This follows from the second part of
Lemma 2.1, specifically (2.9) and the observation that |<J>v2(^)|//i/2(r) < (|^|L°°(rxQ) +

|z.°°(rxn))- The remaining assertions can easily be verified and the proof is com-
plete.

We now prepare some semigroup theoretic results. Let A\ be the operator defined
by

D(A\) = {v G H2{Q) | Bv = 0},
Ai v = Av - a\ v,

and denote by A, the closure of A, in L' (Q). If (A2) holds, then by the trace theorem
(e.g., [15, p. 130]) Bv e H,/2(T) for v e D{A\). Note that the closure of A\ in L'(Q)
exists; for if Uj —» 0 in L'(Q), Uj e D{A\), and A\Uj —» v in L'(Q), then for all
w e C£° (C°°-functions with compact support) we have by Green's formula [15, p.
336]

/ vw dx = lim / A\UjW dx = lim / UjA\wdx = 0,
Jn J Jq j Jo

and thus v = 0. This implies closeability of A\. Here we used C2,1-smoothness of T.
For a characterization of D{A\) in the case of Dirichlet boundary conditions see [10,
p. 251]. For our case of boundary conditions of the third type a characterization of
D{A\) seems to be difficult to obtain.

Further, let Ac be the operator given by

D(AC) = {V e C(Q) n H2(Q) I Bv = 0, Av - a, v e C(Q)},
Ac v = Av - a\v.
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Lemma 2.3. Let (A2) hold. Then Ac generates a positive, analytic, and compact
semigroup Sc(t) on C(£2). Similarly, A\ generates a positive, analytic semigroup
5,(0 on L'(Q).

Proof. The first claim is verified in [1, Theorem 8.2], for example. The second
assertion is essentially contained in [10] under stronger regularity assumptions on T.
We prefer to give an independent proof here, following a technique described in [ 13],

Recall that
|v|L,=sup{/ v<pdx\<pe C0°°(Q), \(p\L°o < 1 j, (2.12)

[13, p. 218]. Analyticity of Sc(t) implies the existence of constants R > 0, M > 0,
6 € (0, n/2) such that

\\(XI - Ac)~l\\Loo < M\X\~\ (2.13)
for all X e I,g = {ju e C: | arg> 6, 1^1 > /?}. Since Cfi° is contained in the range
of XI - Ac for X e Xg, it follows from (2.12) and (2.13) that for u e D(A\)

\u\L\ < sup \L u(XI - Ac)v dx: v e D(AC), |v|£oo < M\X\ 'j. (2.14)

Using Green's formula we obtain

/ uAcvdx = / vA\udx
J n Ja

for all v € D(AC) and u € H2 with Bu = 0; a density argument implies that this
identity holds, moreover, for all v s D(AC) and u e D(A\).

Thus, for every u e D(A\) and v e D(AC) with |v|i0o < M|A|_1 we have

/ u(XI - Ac)vdx = / (XI - A\)uvdx
Jn J n

< \v\l<*>\{XI — A\)u\h < |jj-|(A/ — A\)u\n-

Using this in (2.14), it follows that

Ml. <^\{XI -A,)u\0. (2.15)

Therefore XI - A\ is injective and, moreover, since it is closed, its range is closed
as well. Since D(AC) c D(A\) we have that range (XI - A\) D C(Q), for X e This
implies range (XI - Ai) = L'(Q) for every X e Ig and by (2.15)

i i(Ai-A,r'iiLoo<^.

Since A\ is closed and densely defined, this estimate implies that A\ generates an
analytic semigroup Si (/) on L1 (Q). Positivity of S\ (t) follows from positivity of Sc(t)
and the fact that sequences converging in the mean contain a subsequence converging
almost everywhere. This ends the proof.
Definition 2.1. A pair of functions (vj, v2) is called a solution of (2.1) if

(i) (v,, v2) € C(0, T\ L'(Q)) x C'(0, T\ O(Q)),
(ii) v2 satisfies (2.5),
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(iii) V] = w + w, where w satisfies (2.6), and
(iv) w is the mild solution of (2.4); see (2.16).

In particular, (vi(0), v2(0)) = (v{\ v?).

Theorem 2.1. Assume that (A2) holds and let T > 0 and (vj\ v%) e L'(Q) x L'(fi)
be arbitrary. Then there exists a unique solution (h>i,v2, w) € C(0,T\Ll(Q.)) x
Cl(0,T;Ll(C2)) x C'(0, T; H2{Q)) of (2.4)-(2.6). Consequently (vlf v2) = (w +
w, v2) is the unique solution of (2.1) in C(0, T;Ll(£2)) x C'(0, r;L'(Q)). Moreover,
(vf, v®) —► (vj (•; Vp v®), v2(-; vj1, v%)) is globally Lipschitz continuous from L'(fi) x
L1 (£2) to C(0, T; L1 (Q)) x C1 (0, T; L1 (fi)).

Proof. We use a fixed-point argument to verify the claim. The mild form of (2.4)
is given by

w(t) = 5i(r)w(0) + J S\(t - s)-^w(s) ds, (2.16)

which is meaningful for w(0) = vj1 - u>(0, v£) e L'(Q) and vv e Wu(0, r;L'(Q)).
Moreover, for v2 e W^1-1 (0, T;Ll(Q)) we determine w € H^1-1 (0, T;H2(Q)) from
Lemma 2.2. With w and w thus expressed as functions of v2 we solve (2.5). The
index in v2 is dropped in the subsequent steps.

For p < 0 let S" = {v € W^X(Q,T\L}{Q)) | v(0) = v^1}, where =

Jo e^(|v(j)| + |v(s)|)</s (see [4, pp. 140, 145]). Obviously S" is a closed subset of
WpA{Q), and the ^'•'(Qj-norm is equivalent to the usual W11 (Q)-norm for every
p < 0. We define : S? —► by

= exp(-a2*)v2 + [ exp(-a2(? - s))g-(vv(5, v(s)) + w(s, v(s)))ds,
Jo

where t —> w(t,v(t)) is the function described in Lemma 2.2 and t —► w(t,v(t)) is
given by (2.16). Since

v)(/) = -a2(f v)(0 + g{w{t, v(t)) + w{t, v(0)), (2.17)

it follows that in fact $5? c S?. We show that for p appropriately chosen, is a
contraction on S?. Let v, v be in 5?. First observe that with M = sup[0 7-] ||5i(OIL'
we have from (2.16), and using w(0, v) = w(0, v), vv(0, v) = vv(0, v),

LT
ep5(\w{s, v) - w(s, v)| + |vv(s, v) - w(s, v)| ds

< f eps(M + 1) f \w(a,v)-w(o,v)\dads
Jo Jo

< {M + 1) [ epa\w{o, v) - w(o, v)| [ eplyS~c^dsda
Jo J a

(2.18)

M+ 1 fT ■ ■ ... ^ C(M+ 1).< -|-p J V) - w((T, v)\da < — |v- v|w-..i(0T;L>(n)).
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Let a = esssupx(0, -a2(.x:)). Then by (A2) and (2.18)

Jo

< ept / exp(a(t - .s))||g|||M'(s, v) - w(s, v) - vv(s, v) + w(s, v)| ds dt
J 0 Jo

< ||g|| exp(aT)T [ e^(|w(j, v) - w(s, v)| + |m>(s, v) - w(s, v)|) ds (2.19)
Jo

< Cj\p\ 11v - v|^i.i(0,7-;Li(n)).
where C3 = ||g|| exp(aT)TC(M + 1). Moreover, again by (2.18),

d
/Jo

ept dt

<Ml°°C3|/?| l\v-V\1yu{0iT.Lim + \\g\\f e"'(\w(t,v) -w{t, v)|

+ |vv(/, v) - w{t, v)|) dt

< (I«2|l°»C"3 + ||g||C(Af + l))|p| ' |v - v|^|.|(0,T\V(Cl))-
Thus, for \p|, p < 0, sufficiently large, is a contraction on 5? and there exists a

unique fixed point v2 G Wll(0, T\Lx{£l)) satisfying

MO = _ ^2V2(0 + g(w{t, v2) + w{t, v2)), a.e. on (0, T),
v2(0) = v2°.

By Lemma 2.2 it follows that w — vi>(v2) G W,J (0, T; H2(D.)) and w €
C(0, T;L'(Q)) by (2.16). Consequently, using the equation for v2 and Lemma 2.2
again, we have v2 € C' (0, T; L1 (Q)) and w e C1 (0, T\ H2(Cl)). Since vi = w + w, we
have v, e C(0, T;Ll(Q)).

The final claim concerning continuous dependence can easily be verified by Gron-
wall's lemma.

Theorem 2.1 implies that a Co-semigroup on L1 (Q) x L' (fi) can be associated with
(2.1). For (v° v2°) g L"(«) x L'(ft) and t > 0 let

ri(0(v?,v2°) = (v1(?;v[),v20),v2(/;vS), v20)).
Corollary 2.1. Let (A2) hold. Then the family {T\{t) : t > 0} of operators is a
nonlinear C0-semigroup, i.e., 7^(0) = /; Ti(? + 5) = Ti(t)T\(s) for t > 0, s > 0,
/ —* 7^ (^(vf1, v2) is continuous from [0,00] to L'(Q) x L'(Q) and for every t > 0
there exists k(t) such that

\Ti{t)zi - Ti{t)z2\uxV < k(t)\zi - z2\L>xo for z\,z2 G L'(Q) x L'(fi).
Proof. The semigroup property T\(t + s) = T\(t)T\(s) is due to the autonomous

character of (2.1) and can be verified by means of the following characterization of
v2:

v2(0 = exp(-a2?)v2°+ [ exp(-a2(?-s))^[5,(5)(v5)-^f1v^)
Jo

+ [ Si(s - a)Al lv2(a)da + Al 'v2(j)]rfi.
Jo
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The remaining assertions follow from Theorem 2.1.

Theorem 2.2. Let Q c R" with n < 3, let (A2) hold and assume that g\ C(Q) —>
C(Q) is globally Lipschitz continuous. Then for every T > 0 there exists a unique
solution (w,v2, vv) € C(0, 7j_C(Q)) x_ C'(0, T; C(£2)) x C^O, T\H2{Q)) of (2.4)-
(2.6) provided (v[\ v®) G C(f2) x C(Q). Consequently, the solution of (2.1) satis-
fies (v,,v2) G C(0,7;C(£2)) x C'(0, T\ C(Q)). Moreover, (v°,v2°) rc(0(v?, vf) =
(vi(-; vj\ v^), v2(-; v^1)) is globally Lipschitz continuous from C(Q) x C(£2) to
C(0, T\ C(Q)) x C(0, T; C(Q)). Thus Tc{t){v®, v£) is a Co-semigroup on C(Q) x C(Q).

Proof. Using the well-known embedding H2(Q) c C(Q) in dimension not greater
than 3 and Lemma 2.3 this result is verified analogously to Theorem 2.1.

Several regularity results can now be obtained easily. We just present the following
one, where for tp e H2(Q) we put Acp = A(p - a.\(p.

Theorem 2.3. In addition to the assumption of Theorem 2.2 let (v°, v%) e C(Q) x
C(fi). Then v = (v[,v2) is a classical solution of (2.1) on (0, oo) in the sense that
V! G C(0, T\ C)nC'(e, T-C)nC{e, T-H2), v2 g C'(0, T;C(U)), Av, e C(e, T;C(U)),
and Bv\(t) — <t>v2(f) on V for every t > e and every pair e, T with 0 < e < T. If
moreover Bvon T, vf1 G H2(D.), and Avf € C(Q), then v is a classical solution
on [0, oo), i.e., e can be taken equal to 0.

Proof. From the proof of Theorem 2.1 we have w G C'(0, T\H2{£i)) and thus
vv G C'(0, r;C(Q)). Recall that

w(t) = Sc(t)w(0) + [ Sc(t - s) 4-w(s) ds,
Jo ds

where vv(0) = vf - vv(0) G C(fi). Thus w is the mild solution of vv = Acw(t) +
dw(t)/dt. With dw(t)/dt G C(0, T;C(Q)) and Ac the infinitesimal generator of an
analytic semigroup. It is well known [13, p. 110] that w is locally Holder continuous
on (0, T].

By (2.5), Lipschitz continuity of g, and the abovementioned properties of w and vv,
local Holder continuity of v2 on (0, T] with values in C(fl) follows. Recall that w sat-
isfies (2.6) with v2 replaced by v2. Therefore (2.9) of Lemma 2.1 implies local Holder
continuity of vv on (0, T] with values in C(Q). Now a classical result on regularity
of mild solution [13, p. 113] implies that vv e C(e, T;C(Q)), Acw e C(e, T;C(Q)),
for every e > 0. In particular, Bw{t) = 0 for / > 0. Since v, = w + vv and ^vv = 0,
it follows that v, G C(e, T; C(H)), Av, e C(e, T; C(Q)), vi G C(e, T\H2(Q)), and
fiv[(?) = Ov2(/). Here we used the fact that the embedding of D(AC) endowed with
the graph norm into H2(Q.) is continuous.

Finally, if Bv® = on T, then Bw(0) = Bv® - Z?vt>(0) = 0 and therefore vv(0) =
vj1 - w(0) G D(AC). In this case vv and therefore v2 and vv are Holder continuous on
[0, T], Thus vv G C(0, T\ C(Q)), Acw g C(0, T; C(fi)), and the final claim follows.

The final results of this section are concerned with positivity of T,(t) and Tc(t).
Let Z.+(Q) = {<p G L'(fl) | q>(x) > 0 almost everywhere} and C+(fi) = {<p G C(Q) |
<p{x) > 0, for all x e Q}.
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Theorem 2.4. Let the assumptions of Theorem 2.2 hold and let T be C3+<1, a e (0, 1),
smooth, /? e C2(T), Kxx € L°°, (vj1, v%) e C(Q) x C(Q). If moreover K(x,x') > 0
and g(R+) c R+, then the semigroups T\{t) and Tc(t) are positive with respect to the
cones ) x Z,|(Q) and C+(Q) x C+(fl).

Proof. Let Jt = {(v°, v2°) e C3(Q) n C+(fl) x L\(Q) | = c&(v2°) on T}. We
first show that T\(t)Af c £+(£2) x L|(n) and then we extend this inclusion to all of
L|(Q) x ^or (vpv2) e solution vi of (2.1a)-(2.1c) has continuous
first and second derivatives with respect to x and a continuous first derivative with
respect to t, i.e., \\ is a classical solution in the sense of [11; see pp. 12, 320]. Let
(p € C2(Q) be such that j < <p(x) < sup p0>(x) =: M, <p|r = 1, -d<p/dn\r = m,
with the constant m satisfying <p~lm + ft > 0 on £2; see [11, p. 17]. We further put
y/{t,x) = v\(t,x)<p{x) for (t,x) € [0,oo) x Q. Then y is a classical solution (in the
sense of [11]) of

dw ( Am 2 VfflVoA . 2 Ve>_ = - I ai +  V- V + &V -V^,
at \ (p cp1 j (p

V(0,x) = v\\x)<p{x), (2.20)
+ \ ;>0

cp dn <p \(p J

Since (1 /<p)(m/<p + /?) > 0 there exists a function C(t) > 0, depending on <p, such
that

i//(t,x) > min jo, minO(v2), min vfj C(t)

[11, Theorem 1.2.2], where S, = [0, /] x Q. This implies

Vi(f.-x) > min jo, min<l>(v2), min v°| C(t) (2.21)

for all t > 0, x € Q.
Now we restrict the fixed-point operator of Theorem 2.1 to the closed set S?* =

{v2 € JVp l(0, T;L'(Q)) | v2(0) = v%, v2{t) € L|(Q)}. Observe that for v2 € S^+
we have V] (t,x) = w(t, x) + w{t,x) > 0 for (t, x) e [0, T] x Q by (2.21). From the
definition of it follows that C S^+. This implies v2(t, x; v£) > 0 for every
/ and almost every x e Q. Employing (2.21) once again, we find V[(t, x; v°, v%) > 0
for every t and x. It will follow as a consequence of the results of Sec. 3 (see Remark
3.1) that.# is dense in L+(Q) x L|(Q). Thus for every (v{\ v?) e L|(Q) xL^(Q) there

v?, - v?exists a sequence e C3(Q) n C+(£2) with 5(v°„) = O(v^) on T such that
in Z-'(Q). We know that V| n(t, x; v^, v^n) > 0 for all / > 0 and xefl. For every
t there exists a subsequence Vi „k(t, •; v®n , v°) of v,,„(?,•; v°n, v£) converging almost
everywhere to v, (t, •; v°, v%). This implies that (v, (/; vf, Vj), v2(/; v°, v^1)) e L+(Q) x
L|(Q) for every t > 0 and thus T\(t) is a family of positive operators.

Positivity of Tc(t) follows from positivity of T\(t).
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3. Remarks concerning the linear model. In this section we consider some aspects
of the linear equation

dv\ . , .— =-aiVi+AV], (3.1a)

dv->
— = -a2v2 + gV\, for (t, x) e (0, oo) x T, (3.1b)

d\\
dn

vi (0, x) = vf(x), v2(0, x) = v2(x), (3. Id)

+ Pv\ — [ K(x, x')v2(t, x') dx1 for (t, x) e (0, oo) x T, (3.1c)
Jn

where g is a real-valued function. The following assumptions are made throughout
this section: _

a.\ e C'(Q), a\ > a > 0,
a2 € C(Q), a2 > 0,
n — (A3)
T is C3+q smooth, a € (0, 1),
P G C'+_a(r), fi>0,
geC{Sl), K, Kx e L°°(r x Q).

By Theorem 2.2 there exists a unique solution (vi, v2) e C(0, T; C) x C1 (0, T; C)
of (3.1) and a linear C°-semigroup is generated via

7l(0(v?.v2°) = (v,(/; v?, v2°), v2(/;v{), v20)).

We shall frequently write C for C(fi). The additional regularity assumptions on
T and fi in (A3) over (A2) are used in Theorem 3.2 below.

Theorem 3.1. Let (A3) hold. The solutions of (3.1) generate a linear C°-semigroup
TL(t) on C x C. The infinitesimal generator Al of TL is given by

D(Al) = {(u, v)<eC xC\ueH2,Au€C,Bu = Ov},
Al(u, v) = (Aw - ci\ v, -a2v + gu).

Proof. It only remains to characterize the generator of TL in C x C. We denote it
by A and show that A = AL. This will be accomplished by the core theorem; see [9,
Theorem 1.9]. We need to show that

(a) D(Al) is invariant under TL{t) for t > 0,
(b) D{Al) is dense in C x C,
(c) D(Al)cD(A),
(d) Al is closed.
Observe that (a) and (c) follow from Theorem 2.2. As for density let (it, v) 6 C x C.

Since O(v) e Wx 00(T), there exists an extension w of O(v) from T to Q satisfying
w g C and Bw \ F = O(v) (see, e.g., [15, p. 133]). Since u - w e C and since D(AC)
is dense in C there exists a sequence un e H2{Q) satisfying un —<• it - w in C and
Bun = 0. Thus (u„ + w, v) -+ (it, v) in C and (u„ + w, v) e D(AL).

To verify closedness of Al , let (u„, v„) e D{Ai) with (un, v„) —* (u, v) and (Au„ -
d\un, —a2un + gv„) (x,y) in C x C. Since \u„\Hi < const(|Aw„|t2 + \un\Li) [13,
p. 213], it follows that {«„} is bounded in H2(Q.) and thus there exists a weakly
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convergent subsequence of un, again denoted by {un}, converging strongly in Hl(Cl)
to u, with u e H2(Q).

Since -(Vw„, V(p)~ (a\u„, <p) —► (x, q>) for cp e Cq°, we find {-Vu, Vcp) - (ai m, 9)) =
(x, 9)) for all (p e C0°°. Thus Am-a* u = x. Next observe that |A(m„-m)|L2 + |m„-m|L2 —►
0 and thus u„ —> m in //2. This implies that 2?m„ —> 5m. Since V?m„ = <J>v„ —♦ Ov we
also have Bu = Ov. Therefore (u, v) e D(Ai), Al{u, v) = (x, y), and (d) is verified.
This ends the proof.

The next objective is to show positivity of TL in C x C. This requires a preliminary
result on the positivity of the resolvent of AL and is of independent interest.

Theorem 3.2. Let (A3) hold and let (v1( v2) e C+ x C+, vf ^ 0, g > 0, K > 0, K ^ 0.
Then for all real a> sufficiently large, there exists a unique solution (u\, u2) of

-Am, + {a 1 + ty)«i = vj,
5mi=Ov2, (3.2)

(a2 + u)u2 - gu 1 = v2.

Moreover, (mj, u2) e int C+ x int C+.

Some preliminaries are required before we can prove this theorem. We first recall
a general result on the monotonicity of the spectral radius stated in [2], Let E be a
Banach space with an ordering induced by a cone P. We denote P — P - {0} and
put intP for the interior of P, provided, of course, that it is nonempty. An operator
V : E ^ E is called almost strongly positive if V(P - ker V) c int P. The spectral
radius of a bounded operator V: E —► E is denoted by r(V).

Lemma 3.1. Let £ be a Banach space with an order induced by a cone P with
nonempty interior and let V be an almost strongly positive, compact endomorphism
of E. Suppose in addition that int P n ker V = 0 and that S is an almost strongly pos-
itive compact endomorphism of E such that Vu - Su e P - ker V for every u e int P.
Then r(S) < r(V).

Lemma 3.2 [2], Let E and V be as in Lemma 3.1. Then the equation Am - Vu — v,
v e P, has for every X > r(V) exactly one solution u e P.

Proof of Theorem 3.2. The proof makes use of the technicalities in [2], Let A =
-A + ai. Then (3.2) becomes

(A + co)u\ = vi in Q,

Bu\ = [ K(x, x')u2{x') dx' = 0(m2) in T, (3.3)
Jq

(a2 + oj)u2 = v2 + gU\.

From the third equation in (3.3) we have (for a> sufficiently large so that co + a2 e
intC+(Q))

u2 = —^— + —^—ui, (3.4)
a2 + co a2 + co
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and consequently
(A + <x>)u\ = vlt

V2 )+4>f 8 uX (3'5^\a2 + coJ \a2 + co J
Let SM: C(£2) x C(T) —> C(Q) be the solution operator associated with

(A + coi)u\ = f Bu\ = g,
with (f g) e C(Q) x C(r). In [2] it is shown that Sw is a compact linear operator
with

Sw: C+(S2) x C+(r) - (0,0) — intC+(Q). (3.6)
Next we rewrite (3.5) as

(0* (fs)) - ̂  ("•• (^h)) ■ ("»
It will be convenient to introduce the linear mapping

Tw: C(Q) -+ C(Q) by Twu = Sw ̂ 0,0 •

Observe that Tw is well defined if co + a2 G int C+(Q) and that

rw(C+(Q) - ker Tw) c int C+(H).
In particular, Tw is almost strongly positive and compact in C(Q). We consider (3.7)
in the form

v/gh<i - Twu\ = fw, (3.8)
where

= eintC+(fl).

Below we shall prove that

co' > co => r(Tw>) < r(Tw), (3.9)

for all co sufficiently large. Lemma 3.2 then implies that there exists a unique solution
Mi 6 C+(fi) - {0} of (3.8) for all sufficiently large co. But fw e int C+(£2) and by (3.8)
we find u\ e intC+(Q). Since g>0we conclude with (3.4) that u2 € intC+(Q) as
well.

Finally, we verify (3.9) by Lemma 3.1. Let co' > co and u € C+(Q) -ker Tw>. Then

(A + co)(Tmu - Tcj'U) -- (co' - co)TW'U in C(Q)

and

(3.10)\a2 + coa2 + co'l

But (co' - co)Tw>u e intC+(Q) and the argument of O in (3.10) is nonnegative for
all sufficiently large co. Therefore Twu - TW'U e intC+(Q). Next we show that
Twu - Taj'U e C+(Q) - ker Tw< for u e C+(Q) - kerrW' (and co sufficiently large). If
this is not the case then T^u = TwT0yU. We find that

(A + co)(T^ - TwTOJ,u) = 0
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and
B{Tl - TwTw>u) = <&(Twu - Tw>u).

Since by assumption K > 0 and K ^ 0 we find T^u - TwTw<u G int C(fl), which is
a contradiction. Consequently T(0u - Tw>u G C+(Q) - ker Tw for u G C+(fi) - ker Tw
and, in particular, since K ^ 0, for every u G int C+(Q). Since moreover int C+(fi) n
ker Tw = 0, Lemma 3.1 with V = Tw and S — Tw implies (3.9), for all co sufficiently
large. This ends the proof.

Theorem 3.3. Let (A3) hold and let g > 0, K > 0, K ^ 0. Then TL(t) is a positivity-
preserving semigroup with respect to the cone C+ x C+.

Proof. From Theorem 3.2 it follows that for (vj, v2) G C+ x C+ the solution (u\, u2)
of (3.2) satisfies (u\, w2) g C+ x C+. Alternatively, (co - Al)~1 is a positive operator
for all co sufficiently large. This implies positivity of TL{t) (see, e.g., [10, p. 162]).

Proposition 3.1. Let T(t) be a linear Q-semigroup in a Banach space E leaving a
closed convex set F c E invariant. Then for every x G F and every m G N, there
exists a sequence {xsatisfying xk G F n D(Am) and x^ —» x in E. Here A is the
infinitesimal generator of T(t).

Proof. Let tk —► 0, tk G R+, and define

xk = tkk I I T{s])-- T{sk)xdsk-- dsl.
r't r'k

Jo Jo
Since the quotient of the value of an integral and the length of the integration path
is contained in the convex closure of the values of the integrand [12, p. 25] we find
Xk G F. Using repeatedly the fact that for every x e E, J0' T(s)ds is contained in
D(A), it is straightforward to argue that Xk G D(A'n). Finally xk —► x from well-
known properties of the Bochner integral. These observations imply the claim.

As a corollary to the results of this section we have
Remark 3.1. The set .£ = {(vf\ v?) g C3 n C+ x L\ \ Bv° = on T} is dense

in L\ x L\. We shall argue density of.# in C+ x C+(Q), which implies the claim.
Thus let (u,v) G C+ x C+. Then by Theorem 3.1, 3.3, and Proposition 3.1 there
exists a sequence (Uk, Vk) e D(A\) n C+ x C+ with (uk, vk) —» (u, v) in C x C. Since
uk G D(A\) we know that uk G H6(Q) and thus uk G C3(Q) [13, pp. 208, 212], and
the assertion is verified.

We also point out that Theorem 3.3 is not a consequence of Theorem 2.4, since
the proof of Theorem 2.4 requires density of.# in L| x L\. This was shown now
with the help of Theorem 3.3.

4. Monotonicity and concavity of the solution semigroup. In order to study further
the positivity of the solution semigroup we introduce some additional notation. In
R2 consider the partial ordering induced by the positive cone K = R+ x R+; i.e., if
£ = (£i> £»2)t and rj — (rj\, rj2)J belong to R2, then £ > rj means > rj,, for i = 1, 2;
£ > rj stands for £ > q with d; ̂  t)-, £ » r) stands for > rj,, i — 1,2 and R+ = [0, oo).
Further, X = C(Q;R2) is considered as a partially ordered Banach space endowed
with the pointwise ordering of R2; i.e., we set u < v if u(x) < v(x), u < v if



REACTION-DIFFUSION SYSTEM IN MODELLING DISEASES 445

u(x) < v(x), and u <c v if u(x) < v(x) for all x e Q, for a pair of elements u, v
in X. Moreover, we put X+ — {u e X \ u > 0}. The components of u are denoted
by U\ and u2. A nonlinear operator F: domF —► X with domi7 = {(u\,u2) € X \
Aui - a.\U\ e C(fi), Bu\ = 0(«2) on T} is defined by

F(ux,u2) = {Fl{ui,u2),F2{uuU2)) = {Aiii - axux, -a2u2 + g{ui)).

With this notation specified, the system (2.1) can be written formally as

ju{t) = F{ii{t)), t> 0,

w(0) = u°.

We shall employ the set of functions Z0 = {(p: [0, oo) x Q —► R2 | <p{, <pu, <pl Xi, <Pi.Xi.xj,
i, j =1,2 continuous on (0, oo) x Q and <p2,(p2,t continuous on [0, oo) x Q}. We
call v a strictly classical solution of (2.1) if v is a classical solution on [0, oo) in the
sense of Theorem 2.3 and v e Zq. Henceforth we put ^ = {(vf.vj) is the initial
datum of a strictly classical solution}. In Theorem 4.2 we shall require that ve?
and a € (0, 1) implies av e W. Concerning strictly classical solutions we have the
following result, which is a direct consequence of [11, Theorem 4.5.3], Below Hk(Q.),
Hk(r), and //u([0, T] x Q) stand for the usual Holder spaces in the variables x and
(t, x), respectively; see [11, p. 7].

Proposition 4.1. Let (A2) hold, assume that g: C(Q) —► C(Q) is globally Lip-
schitz continuous, and let /? € Hl+I(T) and K e C2(r x Q). Then for (vj\ v°) G
H,+2{Q) x C(Q) with 0 < / < 1 and 5(v{)) = O(v^) on T it follows that v =
(vi (•> •; vp v^), v2(-, •; v®, v^1)) e //(/+2)/2./+2([0, T] x Q) x C10([0, T];Q)). Since T is
arbitrary, v is a strictly classical solution of (2.1).

We shall make use below of the following technical lemma, which is a modification
of [14; 4.24.1, 4.32.2], The gradient of q>, grad <p, is taken with respect to the x-
variables.

Lemma 4.1. For two functions (p, y/ £ Zo suppose that <p(t) < y/(t) for t > 0, and
suppose further that cp\(t,x) = y/\(t,x), grad^i(f,x) = grad y/\(t,x), the matrix of
the second x-derivatives of y/\-(p\ at (t,x) being nonnegative for a (t, x) e (0, oo)xQ,
imply <pu(t, x) < y/\it{t, x), and q>2(i,x) = y/2(t,x) implies (p2j{t,x) < y/2j{t,x). Then
we have the following alternative:

(a) either <p{t,x) < y(t,x) for (t,x) € (0, oo) x Q,
(fi) or there exists a maximal t € [0, oo) such that (p[x, t) < i//(t, x) for all (t, x) e

(0, i.e., for i = 1 or 2 there exists a sequence (t^, x^) e (0, oo) x £2, tk > t with
{h.Xk) {t.x), x € T, and <Pi(tk,xk) > y/i(tk,xk).

Theorem 4.1. Let (A2) hold, let K > 0, and assume that
(HI) u and v are strictly classical solutions of (4.1),
(H2) g: R —> R satisfies

(i) S(0) = 0,
(ii) if z, < z2 then g{zx) < g{z2),
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(iii) g is twice continuously differentiable on (-00,00) with 0 < g'(0), g"(z) < 0
on (0,00), and g"(z) > 0 on (-00, 0),

(H3) either fi(x) > p > 0 or K(x, x') > K_ > 0 or there exists a function h: (0,00) x
Q —► R which is continuous with continuous first- and second-order derivatives and
dh/dn > 0 on (0, 00) x Y.
If moreover

J J

^ ~dtv^ ~ ^v^ ^or 1 >

^j-(t'X) + fi(x)ut(t,x) -0(u2)(t,x)

<g( + in (0. co) x d ft, (4.3)

and

then
w(0) < v(0) on Q, (4.4)

u(t) < v(t) for all t > 0.
If in addition u(0,x*) 7^ v(0,x*) for some x* 6 Q, du(t)/dt < Fu(t), dv(t)/dt >
F(v(t)), and K(x, x') > K_ > 0, then

u(t) < v{t) for all t > 0 on Q.
Remark 4.1. The last hypothesis in (H3) is satisfied if Q is convex for example

(see [14, p. 249]).
Remark 4.2. We have the following immediate consequences of (H2):
(i) g' is strictly decreasing on (0,00), strictly increasing on (-00,0) with

maxxeR g'(x) = g'(0);
(ii) g is globally Lipschitz continuous on (—00,00) with Lipschitz constant g'(0);
(iii) for all a e (0, 1) and for all z > 0 we have crg(z) < g(crz);
(iv) for all R there exists kR such that -R < z\ < z2 < R implies g{z2) - g(z 1) >

kR{z2 - z\).
Proof of Theorem 4.1. The proof will be given in three steps and closely follows

techniques described in [14],
Step 1. If in (4.2)-(4.4), the "<" estimate is replaced by then this is denoted

by (4.2')-(4.4') and implies u(t) < v(t) for t > 0. We argue similarly to the proof
of [14, 4.32.4, p. 258], First note that Lemma 4.1 is applicable. For assume that at
some t, x e (0,00) x Q we have U\ = V|, m2 < v2, U\ xx < vixx, and U\ vv < V\ vy. By
(4.2') we have

ui,( + au 1 - Aw, < V\j + fl| vi - Av,

at (t,x) and therefore ( < v,, +AW| - Av( < vx ,. The case u\ < v, and u2 = v2 at
t, x is handled analogously. Next we show that (/?) in Lemma 4.1 cannot occur.

Let (t, x) with xeTbe defined as in {P)\ in particular, ut(t,x) = v,(f, x) for i = 1
or 2. Since w(0) <C v(0) on Q by (4.4') it follows that / > 0. First we consider the
case i = 1 and observe that by (4.3')

du^nX) +P(x)Mlx)-tyu2{t))< ^(l,x) + P(x)vl(t,x)-<t>(v2(t)),
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and thus
duijt.x) < dvijt.x)

dndn
This contradicts the fact that due to v\{t,x) = U\(t,x) and v\{t,x) - u\{t,x) > 0,
for x e Q, we have du\(t,x)/dn > dv\ (t,x)/dn; compare [14, pp. 247, 258]. Next
assume that u2{t,x) = v2(t, x) with (t,x) chosen as in (/?) of Lemma 4.1. Then
Ui{t, x) < v2(t, x) for all t e [0, t) and

d _ d _

Since g is monotonically increasing this implies

^u2{i,x) + a2{x)u2{t,x) - g(u,((,x)) > ^v2(t,x) + a2(x)v2(t,x) - g(v,(t,x)).

This contradicts (4.2') and thus (a) must hold. We have already seen that u < v on
T and thus u « v on [0, oo) x Q.

Step 2. We now prove the first part of the theorem. Let us consider the case where
one of the first two "or" conditions in (H3) holds. We define for X > 0 and with
M = max(g'(0), 2\a2\c)

( zA _ ( v, + XeM' \
\z2J {v2+Ae2M'J-

By using the result of Step 1 we will show that z(t) > u{t) for every t > 0. We
demonstrate (4.2') and (4.3') with v replaced by z:

z\ t + a\Z\ - Azi = vi_, + XMem + a\ v, + a\XeM' - Av, > u\A + a\u\ - Au\.

Similarly, since by (4.2) v2/ + a2v2 > u2,t + a2u2 + g'(vi) - g{u\) we have

z2,t + CL2z2 - g(zi) > 2MXelm + V2J + a2v2 + a2Xe2Mt - g{z\)

> \MXelm + u21 +a2u2 + g(v,) - g(z,) - g{u{)

> u2,i + a2u2 — g(u\) + jMke1M' — MkeM'

> u2j + a2u2 - g(u\).

Next, observe that (4.3) implies

du\ n 0v\ n , ,
~~dn + ~dn+ ~

Let z\(t, x) = u\(t,x) with t, x as in (/?). Then

+ A(vi - U\) + 0(w2 - v2)

= —■ + P{z{ -XeA" - w,) + <D(w2 - v2)

= §i-/^>< + 0(W2-v2)<|i

at (t,x) for all X sufficiently small, if /? > 0 on dQ. or K > 0 on dQ. x Q. Thus (4.5)
holds with V] replaced by z\. Case (/?) of Lemma 4.1 can now be excluded with the
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same arguments as in Step 1 and we have u(t,x) < z(t,x) for (t, x) G [0, oo) x fi.
Finally, under the third alternative (H3) we define

z i = vi + Xe^' + Xh, z2 = v2 + Xe^u,

where we pick n > 3, M > max(M + 1, |A/?|/,oo(£1)), and assume without loss of
generality that < 1- With (zt,z2) thus defined, estimates analogous to those
above yield u{t,x) < z(t,x) for (t,x) G [0, oo) x Q.

Step 3. If Mi(0,x*) > V](0,x*) then U\{t,x) < \\(t,x) for all (t,x) G (0,oo) x Q;
see [3]. Using this inequality together with (2.1b) and Remark 4.2(iv), we obtain
u2(t,x) < v2(t,x) for (t, x) G (0, oo) x Q. Next, employing the boundary condition
and the fact that K(x, x') > K_ we find that U\(t, x) < vj (/, x) for all (t, x) G (0, oo) xT.
(We observe that a weaker assumption on the nonnegativity of K would be sufficient
here: K > 0 and for every x'gT there exists x — x(x') G Q such that K(x,x') > 0.)
Using (2.1b) once again, we argue that u2(t,x) < v2{t,x) for (t,x) G (0, oo) x T.
Summarizing the argument up to now, we have that u i(0, x*) < vi(0, x*) implies
u < v on (0, oo) x Q.

Next let u2(0,x*) < V2(0, x*). By (2.1b) therefore v2(t, x*) > u2(t,x*) for all
t > 0. Moreover, for every T > 0 there exists a neighborhood U(x*) of x* such that
v2(t,x) > u2(t,x) for all (t,x) G [0, T] x U(x*). Since v2 > u2 on [0, T] x Q, this
implies <X>(v2 - u2){t,x') > 0 for every {t,x') G (0, T] x T. We know that U\ < vi on
[0,oo) x Q. Now assume that u\(t,x) — v\{t,x) for some t G (0, T] and all x G Q.
Then by (4.3) we have <f>(u2)(i, x) = 0(v2)(/, x) for all xgT. This cannot occur, and
thus for every t e (0, T] there exists at least one x* such that u\(t,x*) < vi(/,x*).
(Observe that for this argument it would suffice that there exists some x' G T and
K{x') > 0 such that K(x,x') > K(x').) Using the result in [3] once again, we have
U\(t,x) < v\(t,x) for (t,x) G (0, T] x Q, and subsequently, arguing as in the first part
of the proof, u « v on (0, T] x Q. Since T was arbitrary this implies the result.

Remark 4.3. As indicated in the proof, Theorem 4.1 remains correct with the
positivity assumption on K replaced by (a) K > 0, (b) for all x' G T there exists
x(x') G Q such that K(x,x') > 0, and (c) there exists x' G T and K(x') > 0 such that
K(x,x') > K(x') for all x G Q.

Theorem 4.1 implies in particular monotonicity results for the solution semigroup
associated with (2.1). We shall henceforth drop the indices c and 1 in the notation
of T{t).

Under the assumptions of Proposition 4.1 and Theorem 4.1, a density argument
similar to that in the proof of Theorem 2.4 (see also Remark 3.1) implies:

for all u°, v° G jL'(Q) x L'(Q) with u° < v° it follows that
T{t)u° < T(t)v° for all t > 0.

For a classical solution Theorem 4.1 implies moreover
if «°, v° G f x ? with u° < v°, u° / v°, then
T(t)u° < T(t)v° for all t > 0;

(4.6)

in particular,

(4.7)

if 0 ± G r fl X+, then 0 < T(t)u° for all t > 0. (4.8)
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Another important result is related to the concavity of the solution operator T(t) on
%.
Theorem 4.2. Let (A2), (H2) hold and let K{x, x') > K_ > 0. Then for every v° e ^fi
X+ with v° 7^ 0 for every a € (0, 1) and t > 0 there exists a constant a = a(v°, t,a)>0
such that T(t)av° > (1 + a)oT(?)v°.

Proof. We set /(/) = T(t)av° - oT(t)v°. Note that /eZ0 and Bxi{t) = 'DfeW)-
Moreover, for every t > 0

jtX(t) = F(T(t)av0)-aF(T(t)v0).

By Remark 4.2(iii) and since T(t)v° » 0 for t > 0 by Theorem 4.1 we obtain
dx(t)/dt > F(T(t)crv0) - F(aT(t)v°) for t > 0 and xeQ, with equality in the first
coordinate. This further implies by the mean value theorem that

|-/(/.x)> ° W,x)+^ 0
dt \ 0 -a2) ' \g({T(t)ov°)\{x)) - g((crr(/)v°)1(x))

o + / o \ (49)
V 0 -a2J \g''{£{t,x))xi{t,x)J

for (t, x) e (0, oo) x Q, again with equality in the first component. Note that {t, x) —>
g'(£(t, x)) is continuous and that g'(£(t, x)) > 0. With minor changes in the proof of
Theorem 4.1 due to the term g'{£{t, x))x(t, x) in (4.9), one can show that xil) > 0
for every t > 0.

Using the second component of (4.9) once again, we have

—X2(0 > -aiX2{t), Xi(0) = 0,

for all t > 0. This implies Xi(0 > 0 for t > 0. Now assume that X\{t,x) - 0 for
all x e Q and some t > 0. Then Bx\{t,x) = dx\ {t,x)/dn + P{x)x\{t,x) < 0 for all
x e T; on the other hand, Bx\{t,x) = <J>(/2(0)(X) on T, which is impossible. Thus
for every t > 0 there exists some x e £2 such that Xi(t, x) > 0. As before, this implies
Xi(t,x) > 0 for all (?,x) € (0, oo) x Q [3]. Using the boundary condition once more,
we finally obtain xi > 0 on (0, oo) x Q. This ends the proof.
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