
A Reactive Variable Neighborhood Search for the Vehicle Routing

Problem with Time Windows

Olli Bräysy

SINTEF Applied Mathematics, Department of Optimization, P.O. Box 124 Blindern, N-0314 Oslo, Norway

Olli.Braysy@math.sintef.no

The purpose of this paper is to present a new deterministic metaheuristic based on a modification of

Variable Neighborhood Search of Mladenovic and Hansen (1997) for solving the vehicle routing

problem with time windows. Results are reported for the standard 100, 200 and 400 customer data sets

by Solomon (1987) and Gehring and Homberger (1999) and two real-life problems by Russell (1995).

The findings indicate that the proposed procedure outperforms other recent local searches and

metaheuristics. In addition four new best-known solutions were obtained. The proposed procedure is

based on a new four-phase approach. In this approach an initial solution is first created using new route

construction heuristics followed by route elimination procedure to improve the solutions regarding the

number of vehicles. In the third phase the solutions are improved in terms of total traveled distance

using four new local search procedures proposed in this paper. Finally in phase four the best solution

obtained is improved by modifying the objective function to escape from a local minimum.

(Metaheuristics; Vehicle Routing; Time Windows)

1. Introduction

The effective management of the distribution of goods and services involves all three levels of strategic,

tactical, and operational planning. Decisions relating to the location of facilities, e.g. plants and depots

are viewed as strategic, while vehicle fleet size and mix determinations are key tactical issues. Finally,

routing and scheduling of vehicles are primarily operational issues in the management of any logistics

study. An important problem occurring in many distribution systems is the Vehicle Routing Problem

with Time Windows (VRPTW).

 The VRPTW can be defined as follows. Let G = (V, E) be a connected digraph consisting of a set of

n + 1 nodes, each of which can be reached only within a specified time interval or time window, and a

set E of arcs with non negative weights and with associated travel times. Let one of the nodes be

2

designated as the depot. Each node i, apart from the depot, imposes a service requirement qi which can

be a delivery from, or a pickup for the depot. The problem is to find the minimum number of tours, K*,

such that each node is reached within its time window and the accumulated service up to any node does

not exceed a positive number Q (vehicle capacity). A secondary objective is to minimize the total

distance traveled. All problem parameters, such as customer demand and time windows, are assumed to

be known with certainty. Moreover, each customer must be served by exactly one vehicle, thus

prohibiting split service and multiple visits. The tours correspond to feasible routes starting and ending

at the depot.

 The VRPTW is a basic distribution management problem that can be used to model many real-world

problems. Some of the most useful applications of the VRPTW include bank deliveries, postal

deliveries, industrial refuse collection, national franchise restaurant services, school bus routing, security

patrol services and vendor deliveries for just-in-time manufacturing.

 The VRPTW has been the subject of intensive research efforts for both heuristic and optimization

approaches. Because of the high complexity of the VRPTW, in practice one must often concentrate on

techniques that will produce high quality solutions in limited time. Special purpose surveys on the

VRPTW can be found in Golden and Assad (1986), Desrochers et al. (1988), Golden and Assad (1988),

Solomon and Desrosiers (1988), Desrosiers et al. (1995) and Cordeau et al. (2001).

 Here, we focus on heuristic and metaheuristic approaches. Details about optimization methods can be

found for example in the last two of the survey papers mentioned above and the excellent Ph.D. theses

by Kohl (1995) and Larsen (1999). For the most successful implementations, see for example Kohl et al.

(1999) and Cook and Rich (1999).

 A number of route construction methods have been proposed by Solomon (1987). These construction

methods build a feasible solution by inserting at every iteration one unrouted customer into the current

partial route. The insertions are performed according to some specific criteria involving minimum

additional distance, or maximum savings. A parallel variant of Solomon’s sequential insertion procedure

is proposed by Potvin and Rousseau (1993). Van Landeghem (1988) extends the savings heuristic by

Clarke and Wright (1964) for the VRPTW by also taking into account how good a link between

customers is in terms of timing. Bramel and Simchi-Levi (1996) propose an asymptotically optimal

heuristic based on the idea of solving the capacitated location problem with time windows.

 Most of the recently published VRPTW heuristics use two-phase approaches. In the first phase, a

construction heuristic is used to generate a feasible initial solution. During the second phase, an

improvement heuristic is applied to the initial solution. These route improvement methods modify the

3

current solution iteratively by performing local searches for better neighboring solutions. Generally, a

neighborhood comprises the set of solutions that can be reached from the present one by swapping a

subset of k arcs. Early route improvement procedures for the VRPTW are proposed by Russell (1977),

Baker and Schaffer (1986) and Solomon et al. (1988), who propose a very efficient intra-route

improvement procedure based on the Or-opt procedure by Or (1976).

 Another Or-opt based method has been suggested by Thompson and Psaraftis (1993). They define the

neighborhood of the current solution in terms of feasible transfers of sets of demands belonging to

adjacent customers. The exchanges are attempted among a subset of routes that form a cyclic

permutation. Russell (1995) develops a hybrid heuristic that invokes the improvement procedure

periodically during route construction. Kontoravdis and Bard (1995) describe parallel greedy

randomized adaptive search procedure that combines a greedy heuristic and randomization to construct a

feasible solution. Local search is then used to improve upon this solution. Other local search

implementations can be found for example in Potvin and Rousseau (1995), Antes and Derigs (1995),

Shaw (1997, 1998), Caseau and Laburthe (1999) and Cordone and Wolfler-Calvo (2001).

 To escape from local optima, the improvement procedures can be embedded in a metaheuristic such

as simulated annealing, tabu search or a genetic algorithm. Genetic algorithms belong to the classical

local search framework where improvement is sought with each move in the neighborhood of the current

solution. In contrast, tabu search and simulated annealing are part of a new paradigm that allows the

selection of worse solutions once a local optimum has been reached.

 Potvin et al. (1996a) describe a standard tabu search heuristic based on specialized local searches

proposed in Potvin and Rousseau (1995). Rochat and Taillard (1995) present a probabilistic technique

that uses adaptive memory to record the best routes produced during the search. Also Taillard et al.

(1997) and Badeau et al. (1997) use adaptive memory, but they employ a different neighborhood

structure, based on exchanges of consecutive customers (or segments) between routes.

 De Backer et al. (2000) test four iterative improvement techniques (2-opt, relocate, exchange and

cross) within a constraint-programming framework. The techniques are coupled with two metaheuristics

(a simple tabu search and guided local search) to avoid the search being trapped in local minima. Guided

local search is a metaheuristic based on penalties. The method works by adding a penalty factor to the

objective function based on the experience the search has gained. For details, see Voudouris (1997) and

Voudouris and Tsang (1998). Kilby et al. (1999) report similar research, but without tabu search and

constraint programming. Schulze and Fahle (1999) use a special shift-sequence neighborhood based on

the ejection chains of Glover (1991, 1992) within the parallel tabu search framework. Brandão (1999)

4

and Cordeau et al. (2001) introduce simple tabu searches that allow infeasible solutions during the

search process. Other successful tabu search implementations can be found in Garcia et al. (1994),

Barnes and Carlton (1995), Carlton (1995), Chiang and Russell (1997) and Tan et al. (2000).

 In the genetic algorithm proposed by Blanton and Wainwright (1993) the search is driven toward

suitable orderings of customers based upon precedence relationships (temporal, spatial, mixed) as well

as a fixed a priori global precedence order defined over customer time window lower bounds. Thangiah

(1995) uses genetic algorithm to find good clusters of customers, within a “cluster first, route second”

problem-solving strategy. Thangiah et al. (1995) test the same approach to solve vehicle routing

problems with time deadlines. Thangiah et al. (1994) develop a hybrid method in which the initial

solution produced by the genetic algorithm is improved using λ–exchanges. Simulated annealing with a

non-monotonic cooling schedule is used to guide the local search and finally tabu search is used to

maintain a list of candidate solutions.

 In the algorithm proposed by Potvin and Bengio, (1996) new offspring are created by connecting two

route segments from two parent solutions or by replacing the route of the second parent-solution by the

route of the first parent-solution. Mutation is then used to reduce the number of routes and to locally

optimize the solution. Berger et al. (1998) present a hybrid genetic algorithm based on removing certain

customers from their routes and then rescheduling them with well-known route-construction heuristics.

The mutation operators are aimed at reducing the number of routes by rescheduling some customers and

at locally reordering customers. Bräysy (1999a, 1999b) continues the study by Berger et al. (1998) by

creating new crossover and mutation operators and by testing the significance of initial solutions.

 Homberger and Gehring (1999) propose two evolutionary metaheuristics based on the class of

evolutionary algorithms called Evolution Strategies and three well-known route improvement

procedures by Or (1976), Osman (1993) and Potvin and Rousseau (1995). Gehring and Homberger

(1999 and 2001) use a similar approach with parallel tabu search implementation. Bräysy et al. (2000)

describe a two-phase evolutionary algorithm based on hybridization of a genetic algorithm and an

evolutionary algorithm consisting of several local search and route construction heuristics. The genetic

algorithm used is based on the studies of Berger et al. (1998) and Bräysy (1999a). The recent genetic

algorithm by Tan et al. (2001) is based on Solomon’s insertion heuristic, λ-interchanges and the well-

known PMX-crossover operator.

 Bachem, Hochstättler and Malich (1996) use the concept of simulated trading, where the main idea is

to use mechanisms of trading in customer assignments. Potvin and Robillard (1995) study a competitive

5

neural network to select seed customers within the parallel construction heuristic of Potvin and

Rousseau (1993). Potvin et al. (1996b) examined a similar approach, but determined the parameter

values for the construction heuristic with a genetic algorithm. Chiang and Russell (1996) use simulated

annealing to guide the hybrid heuristic by Russell (1995). Liu and Shen (1999) develop a new route-

neighborhood-based metaheuristic that constructs routes in a nested parallel manner. Gambardella et al.

(1999) test a technique based on multiple colonies of artificial ants. Rousseau et al. (2000) use a variable

neighborhood descent scheme introduced by Mladenovic and Hansen (1997) and new large

neighborhood operators within a constraint-programming framework.

 The main contribution of this paper is the development of a new metaheuristic for VRPTW. The

proposed method is shown to be currently the most efficient and robust for the VRPTW. The remainder

of this paper is organized as follows. An overview of the solution strategy is given first, and then, the

different components of the procedure are described in Section 2. First, the construction heuristic used to

create initial solutions is described. Second, the new robust ejection chain method is introduced. The

basic local search techniques used in minimizing distance are then depicted. Computational experiments

assessing the value of the proposed approach is presented in Section 3. Accordingly, a comparative

performance analysis involving various metaheuristics is briefly reported. Finally, in Section 4

conclusions are drawn.

2. The Problem Solving Methodology

We propose a new four-phase approach for solving vehicle routing problems. In the first phase several

initial solutions are created using a construction heuristic with different combinations of parameter

values. In the second phase an effort is made to reduce the number of routes using a new ejection chain-

based approach. Note that the routes to be eliminated are sought only in the second phase – in later

phases the only objective is to minimize the total traveled distance. In the third and fourth phases we use

a new type of particular Variable Neighborhood Search (VNS) technique called Variable Neighborhood

Descent (VND), originally proposed by Mladenovic and Hansen (1997).

 Contrary to the other metaheuristics based on local search methods, VNS does not follow a trajectory

but explores increasingly distant neighborhoods of the current solution, and jumps from this solution to a

new one, if and only if an improvement has been made. In this way, favorable characteristics of the

current solution (e.g., many variables are already at their optimal value), will often be kept and used to

6

obtain promising neighboring solutions. Moreover, a local search routine is applied repeatedly to get

from these neighboring solutions to local optima.

 Compared to the VND scheme described in Hansen and Mladenovic (2000), there are three major

differences in our implementation. First, instead of a best-accept strategy, we use a first-accept strategy

within our improvement procedures. Other differences involve modifying parameter values and

objective functions used by the improvement procedures. The proposed scheme is deterministic and one

procedure is applied until no improvement can be found. Each time, after all local search operators have

been considered once, the values of a set of parameters limiting the search space are increased to

perform a more thorough search. Moreover, if none of the chosen local searches is able to improve the

solution, we change the objective function to escape from the local minimum. The modification of the

objective function is repeated h times and it can be done for example by replacing the current objective

with a completely new one or by considering simultaneously some alternative objectives and by

adjusting the weights of the different objectives. We use the latter approach, where we repeat the

alternate objective function for p iterations, and after each iteration we modify the weights of the

alternate objectives. The scheme exploits the information gathered during the search in a fashion similar

to the reactive tabu search heuristic (Battiti and Tecchiolli, 1994) and thus we call our metaheuristic

Reactive Variable Neighborhood Search (RVNS). To our knowledge this kind of procedure has not been

used before. The proposed metaheuristic can be presented as follows:

Step 1. Repeat steps 2 and 3 using all the parameter values within the specified limits. Store the created solutions.

Step 2. Use sequential insertion heuristic to create an initial solution

Step 3. Repeat route elimination procedure until no more routes can be eliminated

Step 4. Identify all the created solutions with the smallest number of routes and insert them into set RB.

Step 5. Repeat step 6 for all Si in RB and update the best solution found, Sb, if needed

Step 6. Reorder the routes in solution Si according to parameter β and improve Si using the VND procedure.

Step 7. Improve Sb using the post-optimization procedure and return Sb.

 The number of solutions generated in step 1 depends on which of the three parameter sets, specified

later in section 3.1, is used. We try 168, 392 and 35 different parameter combinations in sets RVNS(1),

RVNS(2) and RVNS(3) respectively. On the other hand, the number of solutions retained in step 4

depends heavily on the problem in question. In some cases, all solutions are retained and sometimes the

elimination procedure finds the smallest number of routes only a few times. The reordering of the routes

7

in step 5 is based on the idea of first improving routes having some bad features or weaknesses. Here we

consider long waiting time and long average distance with respect to the number of customers on the

route as bad features. Parameter β is used to control the weight of these two factors. The larger the value

of β the more distance is emphasized in the reordering. Our VND scheme oscillates between two local

search operators designed for exchanges of customers between a pair of routes and two operators that

perform intra-route improvements. These operators are considered in non-decreasing order of their

complexity. If a pair of routes has already been examined and no improvements could be found, and if

none of the other operators has modified the routes either, then we avoid double work by disregarding

these pairs of routes (or single routes in the case of intra-route improvement operators). Otherwise, if a

route is improved by any of the operators, then an attempt is made to improve this route with all pairs of

neighboring routes and all operators. We define a pair of routes to be neighbors if the distance between

any two customers originally served by separate routes is shorter than a user-defined constant, d .

Moreover, the push-forward and push-backward strategies (Solomon et al., 1988) are used to speed up

the feasibility checks of each insertion or move. To reduce the computational effort, we only apply the

modification of the objective function at the end of the search to the best solution we have found (fourth

phase). Thus, we call the corresponding VND scheme a post-optimization procedure. During this post-

optimization, we use waiting time as an alternative objective in addition to total distance.

2.1. Creation of the Initial Solution

The cheapest-insertion-based heuristics used to create the initial solutions borrows from the studies of

Solomon (1987) and Russell (1995). Routes are built one at a time in sequential fashion, and after k

customers have been inserted into the route, the route is reordered using Or-opt exchanges. The basic

idea of Or-opt exchanges is to relocate a chain of consecutive customers. This is achieved by replacing

three edges in the original tour by three new ones without modifying the orientation of the route. Here k

is a constant parameter value decided by the user.

 We tried three basic types of strategies to determine the seed customers. In all strategies, we first

select four primary customer nodes (PC). The first node is the farthest customer from the depot and the

other nodes are determined by finding a node that is geographically as far as possible from the

previously chosen customer nodes and depot. Then four secondary customer nodes (SC) are selected

using the primary nodes. More precisely, since the chosen primary customers form a quadrangle, the

8

secondary customers are the ones closest to the midpoint of each side of the quadrangle. Finally, a set T

of n customers farthest from the depot are selected.

 Once the sets PC, SC and T are identified, we select one customer either from set PC or SC as a

starting point to initialize the first route. The next seed customer initializing the next route will be

selected from the set SCPCTI ∪∪= . Three different schemes were tested: we first select an unrouted

customer in a clockwise or counter-clockwise sweep through the customers in I with respect to the

previously selected seed. The third scheme is to advance regionally, i.e., select the next seed to be the

closest unrouted customer to the first selected seed. Finally, if no unrouted customers can be found in I,

the next seed customer is the unrouted customer with the lowest index (the customers are indexed from 1

to n, where n is the total number of customers).

 Once the first customer is selected, the unrouted customers are examined one by one and the

customer that minimizes the weighted combination of additional detour and waiting time is selected and

inserted into the best feasible insertion place. Here, we do not consider all customers for insertion.

Instead, we only consider customers that are geographically close to at least one of the previously

inserted customers on the route. We consider a customer to be geographically close if the distance from

the customer to any customer previously inserted in the current route is shorter than a constant

d determined by the user. Thus, after each insertion we must update the set of close customers to the

current partial route.

 The customers farthest away from the depot are usually the most difficult ones to route, since there

are often only a few feasible insertion places available for them. If these customers are not considered in

the early phase of the solution construction, then in the end we are often forced to create separate routes

for them. To avoid this, we favor these remote customers by subtracting from the insertion cost the

distance of the corresponding customer to the depot multiplied by a user defined parameter, α3. More

formally, the cost function for customer cu is given by

.0 ,1

 ,

here w

(1) ,

321

0321

>=+
−=

−+=

×−×+×=

ααα

ααα

, WWW

dddD

dWDC

b
u

a
uu

ijujiuu

uuuu

9

 Notations diu, duj and dij refer to the distance between the corresponding pair of customers (ci, cu), (cu,

cj) and (ci, cj) and b
uW and a

uW correspond to the total waiting time before and after the insertion,

respectively. Finally d0u is the distance from the customer cu to the depot and α1, α2 and α3 are

parameter values determined by the user. After every k successful insertions, the customers within the

route are reordered using a modified Or-opt improvement procedure that uses cost function (1) with

α3=0 to evaluate moves.

2.2. Route Elimination Procedure

We describe here the procedure used in the second phase of our approach. This procedure is used solely

to reduce the number of routes. The basic idea is to use a new type of neighborhood structure based on

Ejection Chains (EC) proposed by Glover (1991, 1992). The idea of ejection chains is not new in the

VRPTW context. They have already been used before, see for example Rousseau et al. (2000) and

Caseau and Laburthe (1999). In the context of VRPTW the basic idea is to first remove some customer

ci from route rk and then to insert some other customer cj currently served by route rl into the partial

route rk. If the insertion of cj is possible, an attempt is made to insert customer ci in another route

km rr ≠ . If a feasible insertion place can be found, the chain is completed and another customer cj+1 is

selected to initialize another chain. In each phase within the ejection chain, one customer remains

unrouted. The removal and insertion procedures are repeated until we can insert a customer into a

neighboring route without the need to remove (eject) any customer. The ejection chain is illustrated in

Figure 1.

 It is reasonable to assume that the order of the customers on the routes affects the number of feasible

insertion places. Therefore, we suggest that a reordering procedure should be attached to the ejection

chain procedure. All routes are considered for elimination. However, since it is computationally easier to

eliminate shorter routes, we first consider routes having least time-constrained customers for

elimination. More precisely, we can calculate the width of the time window by subtracting the value of

the earliest time window from the value of the latest time window. We compare the width of each time

window to the width of the depot’s time window, and if the difference in the widths is over 50%, we

consider the particular customer time-constrained. Moreover, since it is computationally prohibitive to

try to eliminate a long route having for example 30 customers, only the shortest route is considered for

elimination in case of problems with many (over 15) customers per route.

10

Figure 1: Ejection chain. Let us assume that route 3 is considered for elimination and we try to insert

customer h denoted by a white circle into route 2. Because of the capacity and/or time constraints, direct

insertion is not possible. Thus, we consider reinsertion of the customers on route 2 into other routes than

route 3 under elimination. Let us again assume that customer e denoted by a white circle can be feasibly

inserted into route 1 before customer a and that if e is first removed from route 2, then we can insert h at

the beginning of route 2. These insertions are performed in the right picture, thus completing the ejection

chain.

 We first try to insert each customer on route re, currently considered for elimination, directly into

some other neighboring route)(en rNr ∈ . A route is considered to be neighboring if it contains

customers that are geographically close to a customer of the current route. The limit for closeness d is

the same as the one used in the creation of the initial solution. Formally

 The notation rI refers to the set of all routes. The set of neighboring routes is determined before the

ejection chain procedure starts, separately for each route of the solution. In addition, we create

beforehand n different non-decreasing orders for the routes corresponding to the insertion cost of each

customer in all routes. The insertion cost is calculated using function (1) with α1=1 and α3=0. Thus, in

each phase, we first try to insert the customers into routes that are geographically the closest.

 If simple insertion fails, a special type of insertion called IR-insert, intelligent reordering, is tried.

First, the customer ci originally served by route re is inserted at a location that least increases the value of

I a

I b

I c

I d

I e
I f

I g

I h
Ii

Ij

1
2

3
1 2

3

I a

I b

I c

I d

I e I f

I g

I h

Ij

Ii

}.)},({min|{)(
,

dccdIrrN pk
rcrc

r
je

epjk

≤∈=
∈∈

11

cost function (1) with α1=0.5 and α3=0, and without considering time window constraints. However, the

insertion place for customer ci must be such that we arrive at customer ci in time. In case the vehicle

capacity is exceeded, the insertion cost is set to infinite.

 Next, we identify the first customer cv whose time window constraints are violated. Roughly

speaking, there are two alternative ways to reorder the route and thus try to get the route feasible without

removing any customer. The simplest way is to consider customers {c1,…,cv-1}, i.e., the customers

served before customer cv on the route and try to serve them after cv on the route, i.e., consider insertion

places between any pairs of consecutive customers {cv, cv+1}, {cv+1, cv+2},…,{cn, c0}, where n is the

number of customers on the target route. In this way we arrive earlier at customer cv, assuming that the

triangle inequality holds.

 The other possibility is to reorder the customers served before customer cv so that the duration of the

partial route {c1,…,cv-1} is minimized. In other words, the objective is to minimize the time of arrival at

customer cv. These two reordering strategies are considered in turn until either the route is feasible or no

feasible insertion places can be found or a user-defined number (m) of reinsertions has been performed.

The procedure is repeated for all the customers for whom the vehicle arrives too late and we accept each

move that reduces the lateness, i.e., we use the first-accept strategy within the IR-insert.

 If none of the routes can be eliminated directly using simple insertions and IR-insert, we start again

from the beginning, restore previous successful direct insertions and apply the ejection chain procedure.

Here we use the breadth-first search-strategy. Thus, we first examine all possible chains that require just

one ejection and two successful insertions. Then, all possible chains requiring two ejections and three

insertions are examined and so on, until the predefined stopping criteria are met.

 Let us assume that route re is considered for elimination and that IR-insert failed to find a feasible

insertion place for customer ei rc ∈ . We consider all the neighboring routes N(re) one at a time and

remove one customer cd from route rn)(nd rc ∈ , where).(en rNr ∈ All customers are considered for

removal in their original service order. In the next step, an attempt is made to insert ci into the route rn

using simple insertion followed by IR-insert. If the insertion is successful, then we try to insert cd into

some neighboring route '
nr to route rn. If this insertion is also successful then the chain is complete and

we select another customer ci+1 from route re. Otherwise, if customer cd cannot be inserted in any route

then we store route rn in a matrix, reverse the changes related to the last successful insertion and ejection

(removal) and select another customer cd+1 from route rn. Or, in case cd was the last customer on route rn,

we select the first customer on route rn+1,).(1 en rNr ∈+

12

 If we are not able to eliminate a route, special post-processing is applied. In this case, we insert as

many customers as possible from the close routes)(en rNr ∈ into the route re just examined to facilitate

eliminating some other route. Since we must keep route re, it is reasonable to utilize its resources as well

as possible. To restrict the number of chains to explore, we set a limit l to the allowed increase in

distance. Thus if a certain insertion increases the distance of the target route more than this pre-defined

limit, the corresponding insertion and/or chain is ignored. Moreover, the maximum length of ejection

chains is restricted to c .

2.3. Route Improvement Procedures

Our VND implementation oscillates between four new local search operators described in detail below.

Two of these operators, ICROSS and IRP, are designed for exchanges of customers between a pair of

routes and two of the designed operators, IOPT and O-opt, perform intra-route improvements. We

accept the first improvement we find and use a new twin variable neighborhood structure: in addition to

varying neighborhood structures, the parameter values used by the improvement heuristics are also

modified after each successful cycle over all operators. These parameter values are modified so that the

neighborhood size (maximum segment length, s) considered by the procedures increases after every

cycle until a user-defined upper-limit is reached. Moreover, within the fourth phase all four

improvement operators are considered p times and each time the value of parameter α2 in cost function

(1) is increased by w units.

 ICROSS operator is an extension of the CROSS-exchanges of Taillard et al. (1997). The basic idea of

CROSS-exchanges is to first remove two edges (1X , '
1X), and (1Y , '

1Y) from the first route while the

edges (2X , '
2X) and (2Y , '

2Y) are removed from the second route. Then the segments '
1X − 1Y and '

2X − 2Y

are swapped by introducing the new edges (1X , '
2X), (2Y , '

1Y), (2X , '
1X) and (1Y , '

2Y). The basic

property of CROSS-exchanges is that they preserve the direction of the customers in the selected routes.

However, in the case of loose time windows the direction of a segment of consecutive customers may be

reversed without causing violations to the time window constraints. In ICROSS we consider both the

original and the reversed order for the customers within the segments and select the best one. The

reversal could also be optional and controlled by the VND scheme. The maximum segment lengths are

managed by the VND scheme, as described above. Figure 2 illustrates this operator.

13

Figure 2: ICROSS-operator. Segments (i, k) on the upper route and (j, l) on the lower route are

simultaneously reinserted into lower and upper routes respectively. In addition, the order of the

customers within both segments is reversed.

 Another modification deals with the insertion places considered for each segment. Only insertion

positions that are compatible with respect to the time windows of the first and last customer in the

current segment, are considered. More precisely, let us assume that we consider insertion between two

consecutive customers i and j, and the first and last customers in the current segment are k and l. The

cost and feasibility of the insertion are computed only if the earliest allowed start of service at i is

smaller than the deadline at l, and the deadline at j is greater than the earliest allowed start of service at

k. In addition, we set a fixed limit for the examined insertion places. We consider only the positions

within an l-customer neighborhood from the start of the segment in the first route as insertion positions

in the second route. The feasibility of the moves is considered only if the corresponding routes are better

than the initial routes regarding distance. Finally, if some unfeasibility is found, further feasibility

checks are disregarded.

 The basic idea in IRP, insert related parallel, is to first remove a set of related customers in a similar

manner as in the LNS procedure of Shaw (1997 and 1998). Here, we restrict ourselves to two routes and

related customers are selected in a deterministic way. More precisely, we consider customers to be

related if the distance between a pair of customers originally served by different routes is within a

specified limit, d . Once a set of related customers is identified and removed, the partial routes are

rebuilt using a parallel cheapest insertion heuristic. In each phase we consider all customers and all

possible insertion places within the two routes and insert the unrouted customer with the smallest value

of cost function (1). Before evaluating the cost value of the constructed routes, the customers on both

new routes are reordered using the IOPT operator.

A j

Il+1

A i

ii-1

j-1

A j

A i

ii-1

j-1

I k

I l

Il+1

I k

14

 The IOPT operator is a generalization of the Or-opt heuristic. Two major modifications are

introduced. First, we consider segments of any length. The maximum segment lengths are managed by

the VND scheme, as described above. The other modification deals with trying to reverse the order of

the customers within the selected segment. IOPT considers both the original and reversed order for the

customers in the current segment and selects the move that yields a better output. This inversion could

also be optional and controlled by the VND scheme.

 It is reasonable to assume that in sequential insertion heuristics the previously inserted customers

impact the selection and order of the subsequently inserted customers and thus solution quality. The O-

opt operator tries to deal with this problem by first selecting i customers so that they are geographically

as dispersed as possible. More precisely, we first find the customer on the current route that is the most

distant from the depot. Then we select 1−i customers sequentially so that they are as far as possible

from the previously selected customers. Next the i customers are put in all feasible orders and each of

the partial routes initialized by these i customers is rebuilt with the cheapest insertion heuristics. Thus,

the basic idea is to use more than one customer to initialize the routes. To further reduce the

computational efforts, we disregard partial routes with e % higher distance compared to the initial

route. The cheapest insertion heuristic inserts the customers in increasing order of their time window

width. Finally, after k customers have been inserted, the route is reordered using the Or-opt operator.

3. Computational Comparison of the Procedures

3.1. Problem Data and Parameter Values

Our metaheuristic was tested on four different data sets taken from Solomon (1987), Gehring and

Homberger (1999) and Russell (1995). The first consists of six sets (R1, C1, RC1, R2, C2, RC2), each of

which contains between eight and twelve 100-node problems over a service area defined on a 100 × 100

grid. For R1 and R2, the customer locations are distributed uniformly over the service area. Sets C1 and

C2 have clustered customers, and sets RC1 and RC2 have a combination of clustered and randomly

located customers. In addition, R1, C1 and RC1 have tight time windows and a vehicle capacity of 200

units; R2, C2, and RC2 have a long scheduling horizon and vehicle capacity of 1000, 700, and 1000

units, respectively. In all, there are 56 problem instances. The time window and the vehicle capacity

constraints in problem sets R1, C1, and RC1 allow only a small number of customers to be served by

each vehicle. The opposite is true for R2, C2, and RC2.

15

 To test scaling issues, we solved larger problem sets of 200 and 400 customers as reported by

Gehring and Homberger (1999). These problem sets are created in a similar manner to Solomon’s

corresponding problem set and there are 6 sets and 10 problems in each set. Gehring and Homberger

(1999) created 300 extended problems using the principles of Solomon. The number of customers varies

between 200 and 1000 in the problems. Finally, we also solved real-life problems D417 and E417 as

reported by Russell (1995). The problems are extracted from a fast food routing application in the South

Eastern United States. There are 417 customers in both problems and the problems differ only in that the

problem E417 has a higher percentage of tight time windows. The method was coded in JAVA, and run

on a Pentium 200 MHz personal computer.

 In some cases, the parameter values used depend on the characteristics of the problem. It is indicated

to use a different parameter set in case of larger and more complex problems to reduce computational

effort, but in addition to that, we also consider the average number of customers on the routes. We have

two reasons for doing this. In the case of routes with many customers, the route often covers a larger

geographical area and customers have wider time windows. This makes possible to consider

geographically more distant customers for insertion (larger value for d). On the other hand, in the case

of longer routes, the number of routes is generally smaller and there are often much more insertion

places available for customers, thereby increasing the complexity of the search. Therefore, shorter

ejection chains are used in the problems with many customers per route. The identification of the

problem type is performed by summing up the demands of all customers and by dividing it by the

vehicle capacity. In this way, we get an estimate for the number of routes required and for the average

number of customers per route. We divide the problems into two groups. To identify the groups, we set a

limit at 25 for the average number of customers.

 We found it computationally intractable to optimize the value of each parameter separately.

Therefore, we tuned the parameter values only once by trying to find a “local minimum” in the

following way. First, we selected a parameter setting based on intuition. Then, several values were tried

for each parameter, while keeping the other parameter values fixed. Here, the order in which the

parameters are considered is important. We first analyzed the effect of each parameter separately and

hence determined the value of the least sensitive parameters. To reduce the workload, only a set of four

test problems and a few (3-10) intuitively selected values were tried. Each time, we selected a parameter

value that gave the best average output for the selected four test problems. Because of limited

computational resources we tried to select the parameter values and number of parameter combinations

16

so that the average run time would be less than one hour on a 200 MHz PC. The parameters and their

values are: d =20 and c =9 in group I, d =30 and c =4 in group II, and d =10 within IRP, h =1,

s =3−5, p =3, m =5, n =30, w =0.2, β=0.5, k =10, k=3, i =4, l=15, l =15%, e =30%.

 Most of the parameters described above are used to limit the search space, and thus larger values

often (not necessarily) yield better output. The only exceptions are w and β. One can separate several

groups of interdependent parameters. First, d , m , l and c are used to control the complexity of the

route elimination procedure and their values should therefore be determined simultaneously, based on

the computational resources available. Also h , p and w controlling the post-optimization scheme,

s and l used by ICROSS and k , i and e within O-opt are interdependent.

 The reader must note that even if there are a lot of different parameters, we used a fixed value for all

the parameters above during the computational experiments. This is due to the fact that in most cases the

results are not sensitive to changes in parameter values. The effect of the above parameter values on

total distance was less than 1%. The only exceptions were s and k, where the difference in total distance

between the best and worst values varied between 3−7%. However, in most cases the best values were

the same and we were able to find a single robust value. Parameters α1, α3 and the seed selection

schemes clearly had a bigger impact on the results. For example, the difference between various seed

selection schemes in terms of total distance was in some cases greater than 50%. We found it impossible

to determine a robust value for them, which would give good results for all test problems. Therefore, we

decided to try several values for these parameters within specified ranges, as depicted below. Since these

three parameters are interdependent, we determined the bounds for them simultaneously by trying 16

different seed selection schemes, described in detail in Bräysy (2001), and all values for α1 and α3

within ranges 0.1−1.0 and 0−3, respectively (in increments of 0.1 units). More precisely, we considered

one parameter at a time, while varying the other two parameters within the given ranges. In this manner

we could identify the values that give the best output and determine the bounds accordingly by

considering also the total number of combinations tried. The parameter sensitivity is discussed in more

detail in Bräysy (2001).

 We set the following bounds for the most crucial parameters: α1: 0.7−1.0 (in increments of 0.1 units),

α3: 0.5−1.7 (in increments of 0.2 units). Within the VND scheme α1 is always 1, except in the O-opt

operator, where it is 0.9. The number of selection schemes tried was set to 6. Within the post-

optimization, the distance of the routes is allowed to increase by 10% if the value of the cost function is

17

improved. Finally we set a maximum limit of 300 to the ejection chains stored in memory in order to

keep the memory requirements reasonable. We denote the basic parameter set described above by

RVNS(1). In addition, we created another set, RVNS(2), by increasing the number of selection schemes

to 14. Thus the only difference between RVNS(1) and RVNS(2) is the number of seed selection schemes

considered. For the larger problem sets we selected the following parameter values based on intuition:

α1: 0.6−1.0 (in increments of 0.1 units), α3: 0.5−1.7 (in increments of 0.2 units), n =100, l=35, and the

number of seed selection schemes is one. All other parameter values are the same as in the set RVNS(1).

We denote the parameter set used to solve large problem sets by RVNS(3). The right value for

parameter n is strongly dependent on the problem size, so instead of using two different values 35 and

100 for 100-customer problems and others respectively, one should relate the value directly to problem

size. According to our experience, 30% of the total number of customers works relatively well.

 Given that the procedure used to reduce the number of routes is powerful and often produces the

minimum number of routes, we used the following heuristic rule to decrease the computational

workload. If we have previously obtained a solution with a smaller number of routes than now, or the

converse, we use the lower value as an estimate for the minimum number of routes. This information is

then used to stop the route elimination procedure once a number of routes equals to the estimate is

found, without spending heavy computational efforts in trying to eliminate additional routes. In case the

elimination procedure returns the same number of routes each time, we compare the values to the

number of routes in the initial solutions. If the values are the same, then we assume that the problem is

easy and we have obtained the minimum number of routes. Otherwise, the length of ejection chains is

increased to c =10, the geographical closeness range is increased to d =40 and l =65%, and the

elimination procedure is repeated in order to introduce more power to the search.

3.2. Experimental Analysis of the Proposed Procedures

The performance of the ICROSS and IRP-procedures is compared with the well-known inter-route

improvement heuristics in Table 1. The heuristics used in the comparison are CROSS-, 2-opt*, λ-

exchange, relocate and exchange-operators proposed by Taillard et al. (1997), Potvin and Rousseau

(1995), Osman (1993) and Savelsbergh (1992), respectively. Due to limited computational resources, we

only use a subset of six problems in Tables 1 and 2 below. This subset was created by selecting one

problem from each of the six problem groups of Solomon (1987). We tried to select the problems so that

they cover different characteristics and are not the easiest instances to solve.

18

Table 1: A comparison of inter-route improvement heuristics. TIME stands for the time consumption in

seconds for independently improving the initial solutions 50 times. Moreover, the value of total distance

obtained with each operator is given.

Method: TIME R105 RC101 RC206 R202 C103 C204

IRP 12 1576.2 1838.5 1313.4 1515.0 839.6 618.9

ICROSS 16 1425.0 1735.6 1345.4 1340.1 874.8 622.8

CROSS 12 1446.6 1735.6 1345.4 1356.6 884.5 622.8

λ-EXCHANGE 6 1519.2 1760.4 1345.4 1376.1 922.0 622.8

RELOCATE 4 1546.9 1853.8 1348.5 1382.7 1160.1 622.8

EXCHANGE 1 1596.7 1784.2 1437.5 1512.4 1145.9 623.3

2-OPT* 1 1551.6 1781.0 1422.5 1475.3 1142.4 623.3

 According to Table 1 none of the described operators is able to dominate all others in all 6 test

problems. However, in each case the best results are obtained either by using ICROSS or IRP, and in

general ICROSS appears to perform best. One of the greatest advantages of the ICROSS is its robustness

– it performs well in all tested problems. Similar findings were also obtained in comparison of different

intra-route local searches: our IOPT and O-opt outperformed Simple insertion and Or-opt, though the

differences remained nonsignificant.

 Since our operators are more sophisticated than the previously introduced approaches, it is reasonable

to assume that the time consumption is greater as well. For example, ICROSS is a generalization of the

CROSS, λ-exchange (if λ=1), relocate, exchange and 2-opt* operators and thus requires more time, as

can be seen from Table 1. In the same way, λ-exchange generalizes relocate and exchange and therefore

performs better, as can be seen from Table 1. However, here one must note that since the first-accept

strategy is used and previously performed moves always have a cumulative effect on the subsequent

moves, it is not always clear that a more complicated operator yields better final results.

 By comparing ICROSS and CROSS one can observe that ICROSS produces slightly better solutions

on R105, R202 and C103 and equally good solutions on the other three test problems. Thus, one can

conclude that even in the case of routing problems with time windows, the reversal of the customer

service order often improves the solution quality. Here though, one must bear in mind that the

differences are quite moderate, varying between 1.1 and 1.5%. The increase in time consumption

appears to be only 33% over the burden of CROSS-exchanges. The reason for this is that the most time-

consuming part of ICROSS is the feasibility-checking procedure for each move, and it is performed only

19

if the corresponding routes are improved in terms of distance. On the other hand, the feasibility of the

other route with inverted segment is checked only if the first route is found to be feasible and this often

reduces the workload.

 Another observation is that according to Table 1, IRP has difficulties in achieving robustness. For

example, it is not able to improve the initial solution of R202 at all. Still, even if it is the worst on

problem R202, it yields the best outcome to quite a similar problem, RC206. One reason for this

behavior is that IRP considers only distance when reinserting the related customers, and in the case of

routing problems with time windows this is not always the best strategy. Since R202 has tight time

constraints, one should consider also temporal aspects. One way to deal with the problem might be to

dynamically change the weight of geographical and temporal factors in the cost function according to

the features of the problem in question.

 The first row in Table 2 illustrates the results obtained by running the whole VND scheme using all

four improvement operators while not using the post-optimization procedure. The second row represents

the results obtained without using ICROSS, and the third, fourth and fifth rows depict the results

obtained without IRP, IOPT and O-opt respectively. The four last rows describe the results obtained by

using only one operator (ICROSS, IRP, IOPT or O-opt) and thus disregarding the VND scheme.

Table 2: Comparison of the total traveled distance produced by the whole VND scheme with approaches

that omit one of the improvement procedures and with results produced by only a single improvement

procedure. The results are the best of 100 combinations of random parameter values.

Method: R105 RC101 RC206 R202 C103 C204

FULL VND 1394.6 1747.2 1221.1 1207.2 828.1 590.6

VND – ICROSS 1427.2 1805.6 1298.8 1311.4 828.9 619.3

VND – IRP 1396.9 1747.2 1221.2 1228.2 828.1 602.5

VND – IOPT 1394.6 1747.2 1223.6 1207.2 828.1 590.6

VND – O-OPT 1394.6 1747.2 1221.1 1215.1 828.1 594.1

ICROSS 1410.6 1756.4 1250.4 1292.2 851.1 671.6

IRP 1427.2 1805.6 1368.1 1326.2 833.8 619.3

IOPT 1486.1 1823.5 1441.4 1405.7 1021.4 619.5

O-OPT 1486.1 1823.5 1441.8 1391.1 1017.4 613.2

20

 According to Table 2 the full VND scheme yields better results to every test problem than any of the

single improvement procedure. Regarding the individual operators, ICROSS is clearly the best method.

It performs best by itself, and also, the total traveled distance of the whole VND scheme is the worst if

ICROSS exchanges are not considered. The two intra-route operators IOPT and O-opt seem to be less

significant. Since the heuristic creating the initial solutions reorders the routes using Or-opt exchanges

after each k customer insertions, the routes of the initial solutions are already well-ordered. Also the

influence of the IRP operator seems to be quite small. Here, one must note that using only a single value

for parameter α1 clearly affects the results of IRP.

 Table 3 illustrates the solution values obtained for the test problems both with and without using the

minima-escaping procedure, i.e., changing the objective function. In the course of the experiments we

found that it was too time-consuming to improve each of the created solutions separately by varying the

objective function. Therefore, we decided to apply it only to the best solution found during the search.

The average time consumption of this post-optimization procedure was approximately 0.8 minutes,

which is only about 2% of the total time consumption of the RVNS(1) method, which was 37 minutes.

Table 3: The effect of the post-optimization procedure on the average traveled distance of the final

solutions in each of the six problem groups.

R1 R2 C1 C2 RC1 RC2

No Post-opt 1232.91 995.41 828.38 590.30 1404.52 1147.13

Post-opt 1229.48 989.62 828.38 590.30 1394.26 1141.57

 As can be seen from Table 3, the significance of the post-optimization regarding total distance is

generally quite small, only about 0.5% on the average. It was not able to improve the results of C1 and

C2 at all. Here though, one must note that the RVNS(1) without post-optimization already yields optimal

solutions on problems in groups C1 and C2, except on problem C204 in group C2. However,

considering the moderate time consumption and the achievement of two new best-known solutions, we

found the post-optimization procedure to be valuable. The variation of the objective function seems to

help in escaping from the local minimum.

3.3. Comparative Analysis of Algorithms

In Table 4 we compare the results obtained in a single run with our RVNS(1) and RVNS(2) parameter

sets with the best results reported in the recent studies. Since only LS, HG1 and RGP report the number

21

of runs and time consumption used to obtain the results in Table 4, we do not consider the computational

burden here. All methods in Table 4 consider the number of vehicles as the primary objective and total

distance as the secondary objective.

Table 4: Comparison of the final solutions produced by the proposed RVNS method with two different

parameter sets, RVNS(1) and RVNS(2), with the results of the best metaheuristics proposed recently by

other authors. For each problem group the average number of vehicles and total distance are given. The

notation CNV in the last row indicates the cumulative number of vehicles over all 56 test problems.

PROB. TBGGP CR LS GTA HG RGP CLM RVNS(1) RVNS(2)

R1 12.17 12.17 12.17 12.00 11.92 12.08 12.08 12.00 11.92

1209.35 1204.19 1249.57 1217.73 1228.06 1210.21 1210.14 1229.48 1222.12

R2 2.82 2.73 2.82 2.73 2.73 3.00 2.73 2.73 2.73

980.27 986.32 1016.58 967.75 969.95 941.08 969.57 989.62 975.12

C1 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00

828.38 828.38 830.06 828.38 828.38 828.38 828.38 828.38 828.38

C2 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00

589.86 591.42 591.03 589.86 589.86 589.86 589.86 590.30 589.86

RC1 11.50 11.88 11.88 11.63 11.63 11.63 11.50 11.50 11.50

1389.22 1397.44 1412.87 1382.42 1392.57 1382.78 1389.78 1394.26 1389.58

RC2 3.38 3.25 3.25 3.25 3.25 3.38 3.25 3.25 3.25

1117.44 1229.54 1204.87 1129.19 1144.43 1105.22 1134.52 1141.07 1128.38

CNV 410 411 412 407 406 412 407 406 405

The research teams in Table 4 are:

TBGGP: Taillard et al. (1997), CR: Chiang and Russell (1997), LS: Liu and Shen (1999), GTA:

Gambardella et al. (1999), HG: Homberger and Gehring (1999), RGP: Rousseau et al. (2000), CLM:

Cordeau et al. (2001), RVNS(1) and RVNS(2): this paper

 A very important observation regarding Table 4 is that none of the methods is able to dominate all

other methods in all problem groups. The purpose of Table 4 is solely to demonstrate that we are

competitive with the best results of the best methods, even if a limited amount of parameter values and a

single run is used. For clustered problem groups, many methods yield equally good results, but in other

problem groups RVNS(2) dominates all previous approaches in at least three cases out of four. The

CNV of RVNS(2), is the lowest known at 405. It matches the minimum number of routes reported for

22

the best-known solutions every time, except for problem R101 for which Thangiah et al. (1994) report a

solution requiring one route less. Moreover, we were able to find four new best known solutions that are

given in Appendix 2.

Table 5: Comparison of the results for real-life problems by Russell (1995) with the results of the best

heuristic and metaheuristic methods. The Time column shows the average time consumption of a single

run in minutes, and Runs refers to the number of runs required to get the reported results.

Reference Time Runs Problem D417 Problem E417

Vehicles Distance Vehicles Distance

TOS 26 - 54 4866 55 4149

KB 11 5 55 4273.4 55 4985.7

RT - - 54 6264.80 54 7211.83

R 7 3 55 4964 55 6092

CR1 25 - 55 4232.39 55 4397.49

TBGGP - - 55 3439.8 55 3707.1

CR2 37 - 55 3455.28 55 3796.61

LS 45 3 54 3747.52 54 4691.14

HG1 30 5 54 4703 55 4732

HG2 30 5 54 9708 54 5174

RVNS(3) 378 1 54 3506.21 54 3801.64

The authors in Table 5 are:

TOS: Thangiah et al. (1994), KB: Kontoravdis and Bard (1995), RT: Rochat and Taillard (1995), R:

Russell (1995), CR1: Chiang and Russell (1996), TBGGP: Taillard et al. (1997), CR2: Chiang and

Russell (1997), LS: Liu and Shen (1999), HG1: Homberger and Gehring (1999), HG2: Homberger and

Gehring (1999), RVNS(3): this paper.

 In the end, the performance of the RVNS(3) was tested on the larger problems introduced by Russell

(1995) and Gehring and Homberger (1999) to test scaling issues. The results are presented in tables 5−7.

Regarding the solution quality, the performance was found to be excellent. For the real-life problems by

Russell (1995) we obtained the best-known solutions using just a single trial and without optimizing the

parameter values in any way, though our method requires more time than the previous approaches. The

reason for the higher time consumption, compared for example to the 400-customer problems by

23

Gehring and Homberger (1999), is that the distances between customers are clearly smaller in D417 and

E417. Thus, there are many more alternatives examined by the algorithms. We should perhaps have used

lower values for parameters such as d and l instead of fixed values in order to reduce the number of

insertions considered.

Table 6: Results for 200 customer problem sets by Gehring and Homberger (1999) using parameter set

RVNS(3). The time columns depict the time consumption in minutes.

GEHRING et al. (1999) BRÄYSY (2001)

Vehicles Distance Time Vehicles Distance Time

C1 18.90 2782 40 18.90 2778.80 12

C2 6.00 1846 40 6.00 1842.43 28

R1 18.20 3705 40 18.10 3821.43 21

R2 4.00 3055 40 4.00 3045.29 12

RC1 18.00 3511 40 18.00 3508.07 20

RC2 4.30 2658 40 4.40 2628.36 15

 From tables 6 and 7 one can see that our approach dominates Gehring and Homberger (1999) in five

out of six sets of 200-customer problems, and four out of six sets of 400-customer problems, though the

differences seem to be small, especially in 200-customer problems. The number of routes seems to be

the same for both methods. For R1, our approach requires one vehicle less, but on the other hand our

method is worse on RC2.

Table 7: Results for 400 customer problem sets by Gehring and Homberger (1999) using parameter set

RVNS(3). The Time columns depict the time consumption in minutes.

GEHRING et al. (1999) BRÄYSY (2001)

Vehicles Distance Time Vehicles Distance Time

C1 38.00 7584 80 38.00 7321.68 70

C2 12.00 3939 80 12.00 3922.71 65

R1 36.30 8925 80 36.20 9154.50 129

R2 8.00 6502 80 8.00 6547.87 118

RC1 36.10 8763 80 36.10 8628.74 133

RC2 8.60 5507 80 8.70 5633.28 78

24

 Regarding time consumption, our method seems to be faster on the 200-customer problems, but

slightly slower on the 400-customer problems. However, considering that we implemented our

algorithms with JAVA, which is often considered much slower than C, one can conclude that our

approach is faster and that its overall performance is better on larger test problems. This is especially

due to the fact that we did only one trial without optimizing the parameter values in any way. One must

note that in Tables 6 and 7 the time consumption reported by Gehring and Homberger is multiplied by

four, since they used a parallel implementation with four processors.

 In Table 8 we only included approaches where a sufficient amount of information is provided by the

authors. At least, the computer type, the number of computational runs, as well as the time consumption,

number of vehicles and total traveled distance for each problem group must be reported. In cases where

several results are reported by the authors using different running times, we selected the one that best

facilitates the comparison. One must note that the computational times are scaled to equal the running

times of a Sun Sparc 10/50 using Dongarra’s (1998) factors. In addition, if several runs are required to

get the reported results, the computational times are multiplied by this number to see the real

computational burden. Details for calculating the values in Table 8 can be found in Bräysy (2001). One

must note that the times described in Table 8 are only indicative and should be used solely to get a

picture of the magnitude of the running times. The average number of routes and total traveled distance

are rounded after the first decimal place and to nearest integer, respectively, to clarify the Table. For the

same reason, problem groups C1 and C2 are not considered. Another reason for disregarding them is the

easy nature of the clustered problems and thus the often insignificant differences between the various

approaches. Most of the approaches in Table 8 use a similar objective function, where the primary

objective is to minimize the number of routes and the secondary objective is to minimize either total

traveled distance or total time. The only exception is KPS, where the only objective is to minimize total

distance.

 The first observation from Table 8 is that none of the methods is able to dominate all other methods

in all problem groups. Considering the solution quality and time consumption, our approach seems to be

most efficient. RVNS(1) and RVNS(2) dominate all other approaches except HG1, HG2 and HG3 in all

problem groups. RVNS(2) also dominates HG2 and HG3 in all cases and HG1 in three cases out of four.

Moreover, RVNS(1) and RVNS(2) are clearly faster than HG1 and HG2. HG3 appears to be faster than

RVNS(1) and RVNS(2), but here one must note that our methods were implemented using JAVA, which

is clearly slower than C. The time consumption of our methods would be smaller if C had been used.

25

Table 8: Comparison of the solution quality and computational burden. The notations NV, TD and

TIME indicate the average number of vehicles, average total distance and total time consumption in

minutes, respectively, with regard to the four problem groups of Solomon (1987).

PROB R1 R2 RC1 RC2

NV TD TIME NV TD TIME NV TD TIME NV TD TIME

S 13.6 1437 <0.1 3.3 1402 <0.1 13.5 1597 <0.1 3.9 1682 <0.1

TP 13.1 1367 <0.1 3.1 1299 <0.1 13.0 1534 <0.1 3.7 1672 <0.1

PR 13.3 1509 <0.1 3.1 1387 <0.1 13.4 1724 <0.1 3.6 1651 <0.1

GPR 12.9 1320 2.5 3.1 1229 1.8 12.9 1483 2.2 3.9 1551 1.8

R 12.7 1317 0.6 2.9 1167 0.9 12.4 1523 0.5 3.4 1398 0.8

KB 12.6 1325 6.1 3.1 1164 9.6 12.6 1501 6.0 3.5 1414 10.6

AD 12.8 1386 0.3 3.1 1367 0.2 12.5 1546 0.2 3.4 1598 0.2

RT 12.6 1197 67.5 3.1 954 245.0 12.4 1370 65.0 3.6 1140 195.0

BHM 12.8 1417 10.2 3.1 1250 6.1 12.5 1532 9.5 3.4 1512 8.3

PKGRa 12.6 1295 10.7 3.1 1186 12.0 12.6 1465 9.8 3.4 1476 11.0

TBGGP 12.3 1220 229.6 3.0 1013 337.2 11.9 1381 187.7 3.4 1199 193.3

S 1 12.4 1206 75.0 12.1 1363 75.0

S 2 12.5 1198 94.5 12.1 1361 94.5

C-WC 12.5 1242 41.5 2.9 995.4 40.0 12.4 1409 21.7 3.4 1140 28.4

SF 12.5 1268 218.3 3.1 1056 524.3 12.3 1396 193.9 3.4 1308 397.6

GTA 12.4 1211 210.0 3.0 960.3 210.0 11.9 1388 210.0 3.3 1149 210.0

KPS 12.7 1200 362.5 3.0 966.6 362.5 12.1 1388 362.5 3.4 1133 362.5

LS 12.2 1250 225.8 2.8 1017 33.9 11.9 1413 155.3 3.3 1205 36.3

HG1 11.9 1228 275.0 2.7 967.0 352.0 11.6 1393 242.0 3.3 1144 363.0

HG 2 12.0 1226 431.2 2.7 1034 477.4 11.5 1407 515.9 3.3 1176 469.3

HG 3b 12.4 1201 44.0 2.9 945 44.0 12.0 1356 44.0 3.3 1140 44.0

RVNS(1) 12.0 1229 125.7 2.7 990 107.2 11.5 1394 102.2 3.3 1141 51.9

RVNS(2) 11.9 1222 288.1 2.7 975 259.3 11.5 1390 214.6 3.3 1128 129.8

a Tabu A- implementation.
b Method ES4C using 4 communicating processors.

The authors in Table 8 are:

S: Solomon (1987), TP: Thompson and Psaraftis (1993), PR: Potvin and Rousseau (1993), GRP: Garcia

et al. (1994), R: Russell (1995), KB: Kontoravdis and Bard (1995), AD: Antes and Derigs (1995), RT:

26

Rochat and Taillard (1995), BHM: Bachem et al. (1996), PKGR: Potvin et al. (1996a), TBGGP: Taillard

et al. (1997), S1: Shaw (1997), S2: Shaw (1998), C-WC: Cordone and Wolfler-Calvo (2001), SF:

Schulze and Fahle (1999), GTA: Gambardella et al. (1999), KPS: Kilby et al. (1999), LS: Liu and Shen

(1999), HG1: Homberger and Gehring (1999), HG2: Homberger and Gehring (1999), HG3: Gehring and

Homberger (1999), RVNS(1) and RVNS(2): this paper.

 According to Table 8, there are several heuristic and metaheuristic methods that are faster than

RVNS(1) or RVNS(2). However, all of them are clearly inferior regarding solution quality. For

example, the difference between S and RVNS(1) in problem group RC2 is about 18% in the number of

vehicles and about 47% in total traveled distance, which are clearly unacceptable from a practical

viewpoint.

4. Conclusions

We proposed a new construction heuristic and five new improvement procedures. These were used to

design a new metaheuristic for the VRPTW. The proposed method uses a new four-phase approach. In

the first phase an initial solution is created using the construction heuristic. Then, a special route-

elimination operator, based on a new type of ejection chain is used to minimize the number of routes. In

the third and fourth phases the created solutions are improved in terms of distance using a new type of

particular Variable Neighborhood Search technique called Variable Neighborhood Descent. In these

schemes, we apply cyclically four new types of improvement procedures until no improvement can be

found. In addition, after each cycle of application of the four operators, the neighborhoods are enlarged

by increasing the segment lengths considered by these operators. In the fourth phase the objective

function used by the local search operators is modified to also consider waiting time to escape from a

local minimum. The computational testing of the proposed methods was carried out with the 56 test

problems of Solomon, 2 real-life problems by Russell (1995) and 120 test problems of 200 and 400

customers taken from Gehring and Homberger (1999).

 In the comparison of the two proposed inter-route improvement operators with the other well-known

inter-route improvement procedures, it was found that the best outcomes were always obtained with one

of the two procedures proposed in this paper. The same finding also applies to our intra-route

procedures, although the differences between competing approaches were small. Finally, the variable

neighborhood scheme was found to give better output than any of the single operators, and when

27

analyzing the importance of the post-optimization procedure (phase four), it was found that in most

cases small improvements can be found quickly. Thus it was concluded that alternating the objective

function seems to help in escaping the local minimum.

 In the end, different comparisons were performed with the other previous approaches for solving

VRPTW. In the first comparison, the results of two different parameter sets, denoted by RVNS(1) and

RVNS(2), were compared with the best results obtained with the best metaheuristics, studied by other

authors. The purpose of this comparison was mainly to illustrate that our approaches can consistently

produce results that are competitive with the best known results.

 To make possible a proper comparison between the different methods proposed in the literature, in

terms of efficiency, we modified the computation times using Dongarra’s (1998) factors. In terms of

solution quality, the best performing methods were RVNS(1), RVNS(2) and the methods of Homberger

et al. (1999) and Gehring and Homberger (1999). To the best of our knowledge, RVNS(2) is the only

approach that can consistently produce the lowest known cumulative number of vehicles (405) to

Solomon’s test problems. In addition, four new best-known solutions were obtained. The performance of

RVNS(3) was found to be excellent in the larger test problems proposed by Russell (1995) and Gehring

and Homberger (1999). Due to its deterministic nature, our metaheuristic is more reliable than the best

competing approaches. In addition, our method seems to be very robust, yielding feasible solutions of

acceptable quality to all types of well-known test problems in every case. We conclude that the

approach presented in this paper is currently the most effective one for the vehicle routing problem with

time windows.

 Future work will explore the usage of more sophisticated schemes for creating initial solutions as

well as implementation on parallel computers. Currently, the most time-consuming part of the search is

the route elimination procedure. New strategies for speeding it up will be examined and the proposed

procedures will also be tested on other routing problems.

28

Appendix 1

The detailed best results of our approaches to Solomon’s test problems. For each problem both number

of vehicles and total distance are depicted.

THE RESULTS OBTAINED WITH RVNS(1)

R1.. R2.. C1.. C2.. RC1.. RC2..

01/ 19/ 1652.22 01/ 4/ 1260.91 01/ 10/ 828.94 01/ 3/ 591.56 01/ 14/ 1698.82 01/ 4/ 1428.09

02/ 17/ 1486.22 02/ 3/ 1198.56 02/ 10/ 828.94 02/ 3/ 591.56 02/ 12/ 1579.75 02/ 3/ 1375.45

03/ 13/ 1311.11 03/ 3/ 957.02 03/ 10/ 828.06 03/ 3/ 591.17 03/ 11/ 1280.14 03/ 3/ 1062.52

04/ 10/ 999.59 04/ 2/ 894.69 04/ 10/ 824.78 04/ 3/ 594.06 04/ 10/ 1143.86 04/ 3/ 812.81

05/ 14/ 1381.45 05/ 3/ 1032.96 05/ 10/ 828.94 05/ 3/ 588.88 05/ 13/ 1632.34 05/ 4/ 1326.83

06/ 12/ 1262.49 06/ 3/ 929.62 06/ 10/ 828.94 06/ 3/ 588.49 06/ 11/ 1432.12 06/ 3/ 1197.46

07/ 10/ 1155.29 07/ 2/ 982.01 07/ 10/ 828.94 07/ 3/ 588.29 07/ 11/ 1234.30 07/ 3/ 1071.48

08/ 9/ 974.85 08/ 2/ 737.17 08/ 10/ 828.94 08/ 3/ 588.32 08/ 10/ 1152.77 08/ 3/ 853.90

09/ 11/ 1238.58 09/ 3/ 944.94 09/ 10/ 828.94

10/ 10/ 1132.37 10/ 3/ 975.26

11/ 10/ 1139.44 11/ 2/ 972.55

12/ 9/ 1019.41

THE RESULTS OBTAINED WITH RVNS(2)

R1.. R2.. C1.. C2.. RC1.. RC2..

01/ 19/ 1650.80 01/ 4/ 1253.21 01/ 10/ 828.94 01/ 3/ 591.56 01/ 14/ 1697.43 01/ 4/ 1417.60

02/ 17/ 1486.12 02/ 3/ 1197.03 02/ 10/ 828.94 02/ 3/ 591.56 02/ 12/ 1569.33 02/ 3/ 1375.45

03/ 13/ 1299.14 03/ 3/ 944.55 03/ 10/ 828.06 03/ 3/ 591.17 03/ 11/ 1274.02 03/ 3/ 1062.52

04/ 9/ 1012.76 04/ 2/ 894.69 04/ 10/ 824.78 04/ 3/ 590.60 04/ 10/ 1140.51 04/ 3/ 799.40

05/ 14/ 1377.11 05/ 3/ 1018.75 05/ 10/ 828.94 05/ 3/ 588.88 05/ 13/ 1632.34 05/ 4/ 1304.10

06/ 12/ 1256.36 06/ 3/ 913.68 06/ 10/ 828.94 06/ 3/ 588.49 06/ 11/ 1426.60 06/ 3/ 1157.35

07/ 10/ 1123.66 07/ 2/ 947.16 07/ 10/ 828.94 07/ 3/ 588.29 07/ 11/ 1232.26 07/ 3/ 1071.48

08/ 9/ 973.22 08/ 2/ 735.70 08/ 10/ 828.94 08/ 3/ 588.32 08/ 10/ 1144.14 08/ 3/ 839.10

09/ 11/ 1220.76 09/ 3/ 914.57 09/ 10/ 828.94

10/ 10/ 1132.37 10/ 3/ 962.31

11/ 10/ 1121.31 11/ 2/ 944.68

12/ 9/ 1011.81

29

THE RESULTS FOR 200 CUSTOMER TEST PROBLEMS BY GEHRING AND HOMBERGER (1999)

R1.. R2.. C1.. C2.. RC1.. RC2..

01/ 19/ 5024.65 01/ 4/ 4854.36 01/ 20/ 2704.57 01/ 6/ 1931.44 01/ 18/ 4172.32 01/ 6/ 3167.78

02/ 18/ 4234.35 02/ 4/ 3823.58 02/ 18/ 3140.52 02/ 6/ 1863.16 02/ 18/ 3674.81 02/ 5/ 2873.11

03/ 18/ 3552.48 03/ 4/ 3023.78 03/ 18/ 2832.99 03/ 6/ 1808.60 03/ 18/ 3284.38 03/ 4/ 2743.38

04/ 18/ 3177.67 04/ 4/ 2020.95 04/ 18/ 2696.14 04/ 6/ 1754.79 04/ 18/ 3044.29 04/ 4/ 2110.85

05/ 18/ 4464.08 05/ 4/ 3485.74 05/ 20/ 2702.05 05/ 6/ 1879.31 05/ 18/ 3887.09 05/ 4/ 3379.67

06/ 18/ 3824.87 06/ 4/ 3009.36 06/ 20/ 2701.04 06/ 6/ 1857.35 06/ 18/ 3705.53 06/ 5/ 2666.24

07/ 18/ 3330.56 07/ 4/ 2534.06 07/ 20/ 2701.04 07/ 6/ 1850.13 07/ 18/ 3508.34 07/ 4/ 2704.06

08/ 18/ 3085.72 08/ 4/ 1856.32 08/ 19/ 2799.85 08/ 6/ 1822.65 08/ 18/ 3341.86 08/ 4/ 2371.97

09/ 18/ 4026.50 09/ 4/ 3135.40 09/ 18/ 2775.27 09/ 6/ 1848.12 09/ 18/ 3263.93 09/ 4/ 2231.63

10/ 18/ 3493.38 10/ 4/ 2709.33 10/ 18/ 2734.56 10/ 6/ 1808.72 10/ 18/ 3198.18 10/ 4/ 2034.94

THE RESULTS FOR 400 CUSTOMER TEST PROBLEMS BY GEHRING AND HOMBERGER (1999)

R1.. R2.. C1.. C2.. RC1.. RC2..

01/ 38/ 11084.00 01/ 8/ 9734.34 01/ 40/ 7152.06 01/ 12/ 4116.31 01/ 37/ 9038.21 01/ 11/ 7551.22

02/ 36/ 10064.93 02/ 8/ 7991.14 02/ 37/ 7599.96 02/ 12/ 3986.08 02/ 36/ 9020.71 02/ 10/ 6357.11

03/ 36/ 8657.06 03/ 8/ 6257.51 03/ 36/ 7504.78 03/ 12/ 3923.80 03/ 36/ 8251.02 03/ 8/ 5427.41

04/ 36/ 7678.69 04/ 8/ 4591.97 04/ 36/ 7297.27 04/ 12/ 3837.81 04/ 36/ 7747.15 04/ 8/ 3769.80

05/ 36/ 10242.88 05/ 8/ 7461.57 05/ 40/ 7152.06 05/ 12/ 3945.86 05/ 36/ 9195.27 05/ 9/ 6558.59

06/ 36/ 9379.62 06/ 8/ 6533.67 06/ 40/ 7153.46 06/ 12/ 3885.02 06/ 36/ 8974.22 06/ 9/ 6031.59

07/ 36/ 8298.71 07/ 8/ 5441.64 07/ 40/ 7149.43 07/ 12/ 3935.49 07/ 36/ 8801.69 07/ 8/ 6020.05

08/ 36/ 7621.03 08/ 8/ 4336.30 08/ 38/ 7380.76 08/ 12/ 3845.92 08/ 36/ 8569.39 08/ 8/ 5145.53

09/ 36/ 9629.72 09/ 8/ 6888.98 09/ 37/ 7284.05 09/ 12/ 3959.18 09/ 36/ 8472.82 09/ 8/ 4853.95

10/ 36/ 8888.35 10/ 8/ 6241.62 10/ 36/ 7542.93 10/ 12/ 3791.62 10/ 36/ 8216.87 10/ 8/ 4617.50

Appendix 2

The best known solutions:

Problem: RC105; Routes: 13; Total traveled distance: 1632.34;

< 0, 98, 14, 47, 15, 16, 9, 10, 13, 17, 0 > < 0, 31, 29, 27, 30, 28, 26, 32, 34, 50, 80, 0 >

< 0, 39, 36, 44, 38, 40, 37, 35, 43, 0 > < 0, 63, 62, 67, 84, 51, 85, 91, 0 >

< 0, 42, 61, 8, 6, 46, 4, 3, 1, 70, 0 > < 0, 72, 71, 81, 41, 54, 96, 94, 93, 0 >

< 0, 33, 76, 89, 48, 21, 25, 24, 0 > < 0, 65, 82, 12, 11, 87, 59, 97, 75, 58, 0 >

< 0, 2, 45, 5, 7, 79, 55, 68, 0 > < 0, 92, 95, 64, 99, 52, 86, 57, 74, 0 >

< 0, 83, 19, 23, 18, 22, 49, 20, 77, 0 > < 0, 69, 88, 78, 73, 60, 100, 0 >

< 0, 90, 53, 66, 56, 0 >

30

Problem: RC202; Routes: 3; Total traveled distance: 1375.45;

< 0, 91, 92, 95, 85, 63, 33, 28, 26, 27, 29, 31, 30, 62, 67, 71, 72, 38, 40, 41, 81, 90, 84, 49, 20, 83, 66, 56, 50, 34, 32, 89, 24,

21, 25, 77, 75, 58, 0 >

< 0, 45, 5, 3, 1, 42, 39, 37, 36, 44, 61, 88, 73, 16, 99, 53, 78, 79, 8, 6, 46, 2, 55, 68, 43, 35, 54, 96, 93, 94, 80, 0 >

< 0, 65, 82, 98, 12, 14, 47, 15, 11, 69, 64, 19, 23, 48, 18, 76, 51, 22, 86, 87, 9, 57, 52, 10, 97, 59, 74, 13, 17, 7, 4, 60, 100, 70,

0 >

Problem: D417; Routes: 54; Total traveled distance: 3506.21;

< 0, 324, 328, 327, 323, 325, 320, 332, 351, 334, 0 > < 0, 353, 113, 33, 6, 14, 81, 100, 0 >

< 0, 74, 32, 55, 50, 2, 44, 379, 368, 0 > < 0, 47, 49, 46, 1, 143, 109, 28, 0 >

< 0, 407, 370, 400, 376, 406, 410, 387, 37, 310, 0 > < 0, 395, 403, 409, 394, 145, 347, 343, 393, 396, 413, 0 >

< 0, 304, 218, 179, 316, 315, 221, 42 0 > < 0, 245, 258, 275, 257, 247, 246, 291, 198, 0 >

< 0, 357, 359, 40, 346, 388, 52, 29, 0 > < 0, 313, 252, 367, 411, 381, 287, 260, 220, 0 >

< 0, 122, 415 ,91, 105, 417, 103, 31, 23, 0 > < 0, 372, 18, 124, 116, 30, 13, 88, 99, 0 >

< 0, 391, 366, 385, 378, 64, 142, 0 > < 0, 242, 250, 306, 244, 251, 317, 262, 0 >

< 0, 215, 211, 279, 259, 254, 271, 0 > < 0, 213, 190, 289, 237, 236, 202, 210, 206, 267, 0 >

< 0, 283, 299, 255, 276, 288, 292, 280, 183, 0 > < 0, 180, 181, 191, 273, 239, 277, 240, 286, 0 >

< 0, 75, 17, 104, 72, 35, 171, 168, 150, 0 > < 0, 269, 174, 223, 261, 284, 194, 293, 229, 0 >

< 0, 84, 12, 20, 119, 108, 16, 98, 0 > < 0, 226, 187, 214, 248, 235, 225, 196, 189, 224 0 >

< 0, 290, 238, 307, 264, 216, 308, 228, 0 > < 0, 102, 354, 356, 362, 319, 321, 329, 326, 342, 0 >

< 0, 159, 158, 169, 161, 160, 146, 278, 184, 0 > < 0, 76, 7, 114, 69, 112, 70, 68, 95, 0 >

< 0, 94, 352, 348, 361, 345, 360, 355, 333, 0 > < 0, 144, 303, 87, 61, 60, 34, 136, 0 >

< 0, 311, 386, 399, 382, 373, 369, 363, 412, 0 > < 0, 314, 203, 268, 110, 71, 121, 77, 26, 0 >

< 0, 416, 21, 8, 82, 48, 43, 45, 80, 0 > < 0, 123, 156, 157, 163, 162, 167, 149, 152, 0 >

< 0, 263, 241, 253, 305, 243, 318, 309, 274, 0 > < 0, 374, 377, 364, 401, 249, 371, 375, 383, 414, 39, 0 >

< 0, 295, 301, 256, 302, 297, 265, 186, 312, 0 > < 0, 341, 335, 322, 330, 358, 89, 0 >

< 0, 25, 15, 101, 86, 85, 138, 118, 0 > < 0, 298, 389, 365, 402, 137, 380, 38, 0 >

< 0, 195, 217, 204, 212, 200, 197, 209, 208, 219, 207, 0 > < 0, 125, 115, 63, 62, 126, 79, 0 >

< 0, 178, 188, 266, 272, 177, 296, 201, 230, 176, 0 > < 0, 139, 66, 41, 170, 59, 58, 135, 0 >

< 0, 285, 205, 173, 232, 185, 222, 199, 231, 175, 0 > < 0, 22, 27, 3, 127, 128, 51, 294, 0 >

< 0, 344, 336, 337, 339, 340, 338, 111, 0 > < 0, 164, 153, 172, 151, 154, 148, 36, 106, 0 >

< 0, 54, 4, 93, 141, 83, 5, 57, 90, 0 > < 0, 282, 11, 120, 140, 131, 53, 92, 0 >

< 0, 78, 65, 117, 19, 73, 24, 9, 130, 0 > < 0, 270, 300, 227, 193, 192, 233, 234, 0 >

< 0, 165, 155, 166, 147, 133, 0 > < 0, 96, 350, 349, 331, 97, 134, 0 >

< 0, 408, 404, 397, 392, 398, 405, 384, 390, 0 > < 0, 281, 182, 67, 10, 129, 56, 107, 132, 0 >

31

Problem: E417; Routes: 54; Total traveled distance: 3801.64;

< 0, 395, 409, 397, 404, 145, 394, 403, 396, 413, 393, 0 > < 0, 226, 192, 193, 217, 220, 206, 196, 293, 267, 0 >

< 0, 324, 328, 323, 325, 327, 320, 326, 342, 361, 0 > < 0, 283, 386, 402, 109, 18, 183, 310, 0 >

< 0, 180, 191, 273, 239, 243, 305, 256, 186, 0 > < 0, 74, 2, 50, 55, 113, 415, 143, 28, 0 >

< 0, 22, 45, 31, 91, 105, 64, 13, 0 > < 0, 341, 356, 330, 329, 348, 332, 347, 343, 0 >

< 0, 104, 17, 114, 95, 72, 89, 155, 0 > < 0, 25, 15, 101, 108, 86, 99, 136, 0 >

< 0, 182, 227, 235, 300, 214, 187, 210, 202, 237, 0 > < 0, 159, 163, 162, 157, 158, 169, 160, 278, 41, 0 >

< 0, 281, 212, 307, 264, 260, 313, 288, 248, 0 > < 0, 178, 177, 296, 170, 152, 146, 184, 201, 0 >

< 0, 269, 189, 311, 259, 301, 242, 277, 224, 0 > < 0, 270, 37, 252, 39, 367, 364, 287, 255, 0 >

< 0, 377, 374, 411, 369, 412, 363, 370, 203, 0 > < 0, 304, 261, 291, 232, 284, 173, 205, 218, 0 >

< 0, 314, 381, 299, 207, 289, 219, 190, 194, 0 > < 0, 245, 258, 181, 266, 188, 240, 286, 0 >

< 0, 195, 225, 276, 389, 137, 380, 38, 280, 0 > < 0, 416, 32, 8, 20, 81, 14, 6, 119, 0 >

< 0, 26, 88, 100, 16, 12, 121, 71, 0 > < 0, 295, 211, 279, 309, 302, 297, 265, 0 >

< 0, 213, 204, 236, 274, 271, 254, 198, 231, 0 > < 0, 76, 111, 337, 70, 68, 102, 75, 0 >

< 0, 110, 127, 51, 77, 129, 79, 131, 0 > < 0, 164, 147, 36, 172, 171, 168, 154, 0 >

< 0, 47, 49, 46, 82, 1, 48, 43, 0 > < 0, 357, 346, 359, 40, 345, 360, 349, 331, 0 >

< 0, 353, 350, 97, 134, 96, 85, 0 > < 0, 391, 366, 385, 379, 23, 103, 417, 0 >

< 0, 238, 290, 200, 197, 208, 209, 216, 222, 185, 0 > < 0, 372, 249, 383, 401, 371, 414, 375, 233, 234, 0 >

< 0, 67, 60, 61, 53, 135, 58, 140, 0 > < 0, 263, 306, 244, 251, 317, 318, 272, 0 >

< 0, 388, 405, 408, 384, 398, 392, 390, 44, 0 > < 0, 298, 400, 365, 368, 378, 116, 142, 0 >

< 0, 215, 253, 241, 250, 262, 312, 199, 229, 0 > < 0, 144, 84, 98, 118, 90, 138, 34, 0 >

< 0, 407, 382, 399, 373, 406, 376, 410, 387, 308, 0 > < 0, 165, 151, 148, 35, 150, 166, 153, 0 >

< 0, 315, 179, 316, 221, 120, 11, 132, 0 > < 0, 352, 321, 319, 322, 358, 344, 7, 0 >

< 0, 69, 336, 339, 354, 334, 333, 355, 83, 0 > < 0, 122, 80, 27, 30, 124, 268, 292, 228, 0 >

< 0, 42, 56, 130, 106, 65, 78, 66, 0 > < 0, 285, 223, 174, 247, 246, 257, 275, 176, 230, 0 >

< 0, 4, 93, 5, 57, 52, 29, 33, 21, 0 > < 0, 294, 3, 128, 10, 92, 107, 175, 0 >

< 0, 123, 161, 156, 133, 73, 24, 9, 115, 0 > < 0, 54, 87, 63, 62, 126, 125, 0 >

< 0, 282, 139, 59, 117, 19, 149, 167, 303, 0 > < 0, 141, 94, 351, 335, 362, 340, 338, 112, 0 >

Acknowledgements

This work was partially supported by the Emil Aaltonen Foundation and TOP project funded by

Research Council of Norway. This support is gratefully acknowledged. We would also like to thank

three anonymous referees and associate editor for their valuable comments.

32

References

Antes, J., U. Derigs. 1995. A new parallel tour construction algorithm for the vehicle routing problem

with time windows. Working Paper, Department of Economics and Computer Science, University of

Köln, Germany.

Bachem, A., W. Hochstättler, M. Malich. 1996. The simulated trading heuristic for solving vehicle

routing problems. Discrete Applied Mathematics 65 47−72.

Badeau, P., M. Gendreau, F. Guertin, J.-Y. Potvin, E. Taillard. 1997. A parallel tabu search heuristic for

the vehicle routing problem with time windows. Transportation Research – C 5 109−122.

Baker, E.K., J.R. Schaffer. 1986. Solution improvement heuristics for the vehicle routing and scheduling

problem with time window constraints. American Journal of Mathematical and Management

Sciences 6 261−300.

Barnes, J.W., W.B. Carlton. 1995. A tabu search approach to the vehicle routing problem with time

windows. Presented at the Fall INFORMS Conference, New Orleans, LA.

Battiti, R., G. Tecchiolli. 1994. The reactive tabu search. ORSA Journal on Computing 6, 126−140.

Berger, J., M. Salois, R. Begin. 1998. A hybrid genetic algorithm for the vehicle routing problem with

time windows. Lecture Notes in Artificial Intelligence 1418, AI’98, Advances in Artificial

Intelligence, Vancouver, BC, Canada, 114−127.

Blanton, J.L., R.L. Wainwright. 1993. Multiple vehicle routing with time and capacity constraints using

genetic algorithms. S. Forrest, ed. Proceedings of the Fifth International Conference on Genetic

Algorithms. Morgan Kaufmann Publishing, San Francisco. 452−459.

Bramel, J., D. Simchi-Levi. 1996. Probabilistic analyses and practical algorithms for the vehicle routing

problem with time windows. Operations Research 44 501−509.

Brandão, J. 1999. Metaheuristic for the vehicle routing problem with time windows. S. Voss, S.

Martello, I.H. Osman, C. Roucairol, eds. Meta-heuristics – Advances and Trends in Local Search

Paradigms for Optimization. Kluwer Academic Publishers, Boston. 19−36.

Bräysy, O. 1999a. A hybrid genetic algorithm for the vehicle routing problem with time windows.

Licentiate thesis, University of Vaasa, Vaasa, Finland.

Bräysy, O. 1999b. A new algorithm for the vehicle routing problem with time windows based on the

hybridization of a genetic algorithm and route construction heuristics. Proceedings of the University

of Vaasa, Research papers 227.

33

Bräysy, O., J. Berger, M. Barkaoui. 2000. A new hybrid evolutionary algorithm for the vehicle routing

problem with time windows. Presented at the Route 2000-Workshop, Skodsborg, Denmark.

Bräysy, O. 2001. Local search and variable neighborhood search algorithms for the vehicle routing

problem with time windows. Doctoral thesis, University of Vaasa, Finland.

Carlton, W.B. 1995. A tabu search approach to the general vehicle routing problem. Ph.D. thesis,

University of Texas, Austin, U.S.A.

Caseau, Y., F. Laburthe. 1999. Heuristics for large constrained vehicle routing problems. Journal of

Heuristics 5 281−303.

Chiang, W.C., R.A. Russell. 1996. Simulated annealing metaheuristics for the vehicle routing problem

with time windows. Annals of Operations Research 63 3−27.

Chiang, W.C., R.A. Russell. 1997. A reactive tabu search metaheuristic for the vehicle routing problem

with time windows. INFORMS Journal on Computing 9 417−430.

Clarke, G., J.W. Wright. 1964. Scheduling of vehicles from a central depot to a number of delivery

points. Operations Research 12 568−581.

Cook, W., J.L. Rich. 1999. A parallel cutting-plane algorithm for the vehicle routing problems with time

windows. Working Paper, Department of Computational and Applied Mathematics, Rice University,

Houston.

Cordeau, J.-F., G. Laporte, A. Mercier. 2001. A unified tabu search heuristic for vehicle routing

problems with time windows. Journal of the Operational Research Society 52, 928–936.

Cordeau, J.-F., G. Desaulniers, J. Desrosiers, M.M. Solomon, F. Soumis. 2001. The VRP with time

windows. P. Toth and D. Vigo, eds. The Vehicle Routing Problem, SIAM Monographs on Discrete

Mathematics and Applications. SIAM, Philadelphia.

Cordone, R., R. Wolfler-Calvo. 2001. A heuristic for the vehicle routing problem with time windows.

Journal of Heuristics 7, 107–129.

De Backer, B., V. Furnon, P. Kilby, P. Prosser, P. Shaw. 2000. Solving vehicle routing problems using

constraint programming and metaheuristics. Journal of Heuristics 6 501−523.

Desrochers, M., J.K. Lenstra, M.W.P. Savelsbergh, F. Soumis. 1988. Vehicle routing with time

windows: optimization and approximation. B. Golden and A. Assad, eds. Vehicle Routing: Methods

and Studies. Elsevier Science Publishers, Amsterdam. 65–84.

34

Desrosiers, J., Y. Dumas, M.M. Solomon, F. Soumis. 1995. Time constrained routing and scheduling.

M. Ball, ed. Handbooks in Operations Research and Management Science 8: Network Routing.

Elsevier Science Publishers, Amsterdam. 35–139.

Dongarra, J. 1998. Performance of various computers using standard linear equations software. Report

CS-89-85, Department of Computer Science, University of Tennessee, U.S.A.

Gambardella, L.M., E. Taillard, G. Agazzi. 1999. MACS-VRPTW: a multiple ant colony system for

vehicle routing problems with time windows. D. Corne, M. Dorigo and F. Glover, eds. New Ideas in

Optimization. McGraw-Hill, London. 63−76.

Garcia, B.-L., J.-Y. Potvin, J.-M. Rousseau. 1994. A parallel implementation of the tabu search heuristic

for vehicle routing problems with time window constraints. Computers & Operations Research 21

1025−1033.

Gehring, H., J. Homberger. 1999. A parallel hybrid evolutionary metaheuristic for the vehicle routing

problem with time windows. K. Miettinen, M. Mäkelä and J. Toivanen, eds. Proceedings of

EUROGEN99 - Short Course on Evolutionary Algorithms in Engineering and Computer Science,

Reports of the Department of Mathematical Information Technology, Series A. Collections, No. A

2/1999. University of Jyväskylä, Jyväskylä. 57−64.

Gehring, H. and J. Homberger. 2001. Parallelization of a two-phase metaheuristic for routing problems

with time windows. Asia-Pacific Journal of Operational Research 18 35−47.

Glover, F. 1991. Multilevel tabu search and embedded search neighborhoods for the traveling salesman

problem. Working Paper, College of Business & Administration, University of Colorado, Boulder.

Glover, F. 1992. New ejection chain and alternating path methods for traveling salesman problems. O.

Balci, R. Sharda, and S. Zenios, eds. Computer Science and Operations Research: New

Developments in Their Interfaces. Pergamon Press, Oxford. 449−509.

Golden, B.L., A.A. Assad. 1986. Perspectives on vehicle routing: exciting new developments.

Operations Research 34 803−809.

Golden, B.L., A.A. Assad. 1988. Vehicle Routing: Methods and Studies. Elsevier Science Publishers,

Amsterdam.

Hansen, P., N. Mladenovic. 2000. Variable neighborhood search: A Chapter of Handbook of Applied

Optimization. Working paper, Group for Research in Decision Analysis, University of Montreal,

Canada.

35

Homberger, J., H. Gehring. 1999. Two evolutionary meta-heuristics for the vehicle routing problem with

time windows. INFOR 37 297−318.

Kilby, P., P. Prosser, P. Shaw. 1999. Guided local search for the vehicle routing problem with time

windows. S. Voss, S. Martello, I.H. Osman and C. Roucairol, eds. META-HEURISTICS Advances

and Trends in Local Search Paradigms for Optimization. Kluwer Academic Publishers, Boston.

473−486.

Kohl, N. 1995. Exact methods for time constrained routing and related scheduling problems. Ph.D.

thesis, Institute of Mathematical Modelling, Technical University of Denmark, Lyngby, Denmark.

Kohl, N., J. Desrosiers, O.B.G. Madsen, M.M. Solomon, F. Soumis. 1999. 2-path cuts for the vehicle

routing problem with time windows. Transportation Science 33 101−116.

Kontoravdis, G.A., J.F. Bard. 1995. A GRASP for the vehicle routing problem with time windows.

Journal on Computing 7 10−23.

Larsen, J. 1999. Parallelization of the vehicle routing problem with time windows. Ph.D. thesis, Institute

of Mathematical Modelling, Technical University of Denmark, Lyngby, Denmark.

Liu, F.-H., S.-Y. Shen. 1999. A route-neighborhood-based metaheuristic for vehicle routing problem

with time windows. European Journal of Operations Research 118 485−504.

Mladenovic, N., P. Hansen. 1997. Variable neighborhood search. Computers & Operations Research 24

1097−1100.

Or, I. 1976. Traveling salesman-type combinatorial problems and their relation to the logistics of

regional blood banking. Ph.D. thesis, Northwestern University, Evanston, Illinois.

Osman, I.H. 1993. Metastrategy simulated annealing and tabu search algorithms for the vehicle routing

problems. Annals of Operations Research 41 421−452.

Potvin, J.-Y., J.-M. Rousseau. 1993. A parallel route building algorithm for the vehicle routing and

scheduling problem with time windows. European Journal of Operational Research 66 331−340.

Potvin, J.-Y., J.-M. Rousseau. 1995. An exchange heuristic for routeing problems with time windows.

Journal of the Operational Research Society 46 1433−1446.

Potvin, J.-Y., C. Robillard. 1995. Clustering for vehicle routing with a competitive neural network.

Neurocomputing 8 125−139.

Potvin, J.-Y., S. Bengio. 1996. The vehicle routing problem with time windows part II: genetic search.

Journal on Computing 8 165−172.

36

Potvin, J.-Y., T. Kervahut, B.L. Garcia, J.-M. Rousseau. 1996a. The vehicle routing problem with time

windows part I: tabu search. Journal on Computing 8 157−164.

Potvin, J.-Y., D. Dube, C. Robillard. 1996b. A hybrid approach to vehicle routing using neural networks

and genetic algorithms. Applied Intelligence 6 241-252.

Rochat, Y., E. Taillard. 1995. Probabilistic diversification and intensification in local search for vehicle

routing. Journal of Heuristics 1 147−167.

Rousseau, L.-M., M. Gendreau, G. Pesant. 2000. Using constraint-based operators to solve the vehicle

routing problem with time windows. Working Paper, Centre for Research on Transportation,

University of Montreal, Montreal, Canada. To appear in Journal of Heuristics.

Russell, R. 1977. An effective heuristic for the M-tour traveling salesman problem with some side

conditions. Operations Research 25 517−524.

Russell, R.A. 1995. Hybrid heuristics for the vehicle routing problem with time windows.

Transportation Science 29 156−166.

Savelsbergh, M.W.P. 1992. The vehicle routing problem with time windows: minimizing route duration.

Journal on Computing 4, 146−154.

Schulze, J., T. Fahle. 1999. A parallel algorithm for the vehicle routing problem with time window

constraints. Annals of Operations Research 86 585−607.

Shaw, P. 1997. A new local search algorithm providing high quality solutions to vehicle routing

problems. Working Paper, Department of Computer Science, University of Strathclyde, Glasgow,

Scotland.

Shaw, P. 1998. Using constraint programming and local search methods to solve vehicle routing

problems. M. Maher and J.-F. Puget, eds. Principles and Practice of Constraint Programming –

CP98, Lecture Notes in Computer Science. Springer-Verlag, New York. 417−431.

Solomon, M.M. 1987. Algorithms for the vehicle routing and scheduling problems with time window

constraints. Operations Research 35 254−265.

Solomon, M.M., E.K. Baker, J.R. Schaffer. 1988. Vehicle routing and scheduling problems with time

window constraints: efficient implementations of solution improvement procedures. B. Golden and

A. Assad, eds. Vehicle Routing: Methods and Studies. Elsevier Science Publishers, Amsterdam 85–

106.

Solomon, M.M., J. Desrosiers. 1988. Time window constrained routing and scheduling problems.

Transportation Science 22 1−13.

37

Tan, K. C., L. H. Lee, K. Q. Zhu. 2000. Heuristic methods for vehicle routing problem with time

windows. Proceedings of the 6th International Symposium on Artificial Intelligence & Mathematics,

Ft. Lauderdale, Florida.

Tan, K. C., L. H. Lee, K. Ou. 2001. Hybrid genetic algorithms in solving vehicle routing problems with

time window constraints. Asia-Pacific Journal of Operational Research 18, 121−130.

Taillard, E., P. Badeau, M. Gendreau, F. Guertin, J-Y. Potvin. 1997. A tabu search heuristic for the

vehicle routing problem with soft time windows. Transportation Science 31 170−186.

Thangiah, S., I. Osman, T. Sun. 1994. Hybrid genetic algorithm, simulated annealing and tabu search

methods for vehicle routing problems with time windows. Working Paper UKC/IMS/OR94/4,

Institute of Mathematics and Statistics, University of Kent, Canterbury.

Thangiah, S. 1995. Vehicle routing with time windows using genetic algorithms. L. Chambers, ed.

Application Handbook of Genetic Algorithms: New Frontiers, Volume II. CRC Press, Boca Raton.

253−277.

Thangiah, S.R., I.H. Osman, R. Vinayagamoorthy, T. Sun. 1995. Algorithms for the vehicle routing

problems with time deadlines. American Journal of Mathematical and Management Sciences 13

323−355.

Thompson, P. M., H.N. Psaraftis. 1993. Cyclic transfer algorithms for multivehicle routing and

scheduling problems. Operations Research 41 935−946.

Van Landeghem, H.R.G. 1988. A bi-criteria heuristic for the vehicle routing problem with time

windows. European Journal of Operations Research 36 217−226.

Voudouris, C. 1997. Guided local search for combinatorial problems. Ph.D. thesis, Department of

Computer Science, University of Essex, Colchester, UK.

Voudouris, C., E. Tsang. 1998. Guided local search. European Journal of Operations Research 113

80−119.

	A Reactive Variable Neighborhood Search for the Vehicle Routing Problem with Time Windows
	
	2.1. Creation of the Initial Solution

	2.2. Route Elimination Procedure
	2.3. Route Improvement Procedures

	3. Computational Comparison of the Procedures
	3.1. Problem Data and Parameter Values
	
	
	Table 3: The effect of the post-optimization procedure on the average traveled distance of the final solutions in each of the six problem groups.

	3.3. Comparative Analysis of Algorithms
	
	
	C1
	C1

	Table 8: Comparison of the solution quality and computational burden. The notations NV, TD and TIME indicate the average number of vehicles, average total distance and total time consumption in minutes, respectively, with regard to the four problem group

	Appendix 1
	
	
	THE RESULTS OBTAINED WITH RVNS(1)
	THE RESULTS OBTAINED WITH RVNS(2)
	THE RESULTS FOR 200 CUSTOMER TEST PROBLEMS BY GEHRING AND HOMBERGER (1999)
	THE RESULTS FOR 400 CUSTOMER TEST PROBLEMS BY GEHRING AND HOMBERGER (1999)

	Appendix 2

