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Abstract

Deliberative capabilities are essential for intelligent aerial robotic applications in modern life such as package delivery

and surveillance. This paper presents a real-time 3D path planning solution for multirotor aerial robots to obtain a

feasible, optimal and collision-free path in complex dynamic environments. High-level geometric primitives are employed to

compactly represent the situation, which includes self-situation of the robot and situation of the obstacles in the environment.

A probabilistic graph is utilized to sample the admissible space without taking into account the existing obstacles. Whenever

a planning query is received, the generated probabilistic graph is then explored by an A⋆ discrete search algorithm with an

artificial field map as cost function in order to obtain a raw optimal collision-free path, which is subsequently shortened.

Realistic simulations in V-REP simulator have been created to validate the proposed path planning solution, integrating it

into a fully autonomous multirotor aerial robotic system.

Keywords Path planning · Obstacle avoidance · Dynamic environments · Aerial robotics · Multirotor · UAV · MAV ·

Remotely operated vehicles · Mobile robots

1 Introduction

In order to enable new robotic applications in modern life

such as package delivery, search and rescue, or surveillance,

it is essential for future small multi-rotor aerial robots, also

known as drones or unmanned aerial systems (UAS), to

incorporate deliberative capabilities. They allow the robot
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to look ahead in time and generate a task to be performed

taking into account the current states of both the robot and

environment, and predicting the potential consequences of

the planned behaviors in the future. Trajectory planning, as

a crucial deliberative capability, is the ability to generate a

feasible collision-free set of motion commands which can

be executed by the robot, in order to reach a particular

desired state, called the goal.

A useful trajectory planner needs to be able to generate

feasible collision-free trajectories fast enough so as to

enable efficient reactions to changes in the goal, in the

environment, or in the state of the robot. This is especially

critical in aerial robots, since their unstable nature does not

allow them to passively wait for a slow response from the

trajectory planner.

Additionally, complex and highly dynamic environment

(such as the ones represented in Figs. 12 and 21) poses great

challenges for both collision-free planning components and

perception components, as such environment is constantly

changing and consists of both moving and static objects.

The perception components are responsible for estimating

the state of the environment using a representation that is

useful for the planning components. Therefore, they are

highly related.
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Before continuing, it is important to clarify the difference

between the concepts of path and trajectory. According to

Aguiar and Hespanha [2], a path is a continuous function

that connects two points of any particular space. A trajectory

is defined as a path with explicit parametrization of time and

therefore, specifications on velocity, acceleration, jerk, etc.

are introduced.

Commonly used multirotor aerial robots are under-

actuated, i.e. they only have four controllable inputs to move

in a higher dimensional space. This type of aerial robots

are non-holonomic systems in their complete state space

(i.e. pose, velocity, and acceleration), i.e. its state depends

on the trajectory taken in order to achieve it. Moreover,

planning collision-free trajectories requires knowledge of

not only constraints and state of the aerial robot but also

constraints and state of the environment where the robot

performs, which increases the complexity of search for a

feasible collision-free trajectory.

For simplifying the complexity of the feasible collision-free

trajectory search problem, a slow-motion (near-hovering)

assumption can be used. This assumption is valid for trajectory

planning as long as aggressive maneuvers such as flips are

not required, it is therefore eligible for aforementioned appli-

cations. With this assumption the state of aerial robots can be

simplified to their heading (yaw angle) and their position,

which makes them holonomic systems.

The trajectory planning problem can be executed sequen-

tially, as proposed in Richter et al. [29], with first of all a

collision-free path planning and afterwards the post-processing

of this path to obtain a feasible collision-free trajectory.

A typical solution adopted for complex and highly

dynamic environment is to incorporate two layers in the path

planning system, ros [1], one capable of finding a global

solution for the complex problem without considering the

dynamic objects of the environment, and the other able

to obtain a local solution (which can be deliberative or

reactive) for the collision avoidance of dynamic obstacles

that are in the vicinity of the robot. Despite having

demonstrated their performance in multiple applications,

these two layered path planning systems are not capable

of finding an optimal solution for the complete problem of

navigating in a complex dynamic environment.

This paper, as the continuation of our previous work,

Sanchez-Lopez et al. [37], presents a single layered 3D

deliberative path planning solution for the collision-free navi-

gation of multirotor aerial robots in dynamic environments.

Our path planner incorporates a single layer to obtain an

optimal feasible collision-free path in a complex dynamic

environment formed by static and moving objects. The situation,

including the self-situation (the situation of the aerial robot

itself) and the situation of the environment, is compactly

represented by high-level geometric primitives. More-

over, to reduce the computational cost of the planner, the

admissible space is sampled at launching time, i.e. with-

out incorporating information of the objects present in

the environment, by means of a probabilistic graph. At

query time, the probabilistic graph is explored by a discrete

search algorithm, i.e. A⋆ algorithm, to find an optimal

raw collision-free path. To guarantee the generated path

is collision-free and also speed up the search, an artificial

potential field map is employed by the discrete search algo-

rithm as its cost function. Finally, the obtained raw path is

shortened.

Despite being a single-layered approach, the proposed

collision-free path planner is able to operate real-time and

tackle complex dynamic environments, as the following

features are in place: (1) compact definition of the situation;

(2) sampling of the admissible space at launching time

without the need of modifying it when the situation

changes; (3) utilization of an artificial potential field

map as a cost function of the discrete search algorithm,

which incorporates the situation of the obstacles in the

environment; (4) usage of a search algorithm, which

guarantees optimality of the collision-free path, if exists. To

the best of our knowledge, this is the first 3D collision-free

path planner for multirotor aerial robots, real-time capable,

and specially designed for highly dynamic environments.

The contributions of this paper, when compared to our

previous work, [37], are as follows: (1) extension from 2D

to 3D spaces; (2) adaptation of the representation of the

work-space for 3D environments; (3) enhanced definition

of the admissible space, incorporating concepts imported

from control theory, (4) refined description of the artificial

potential field map, which improves the quality of the

collision-free path; (5) improved design of the path planning

solution with newly added functionalities.

The remainder of the paper is organized as follows:

Section 2 presents an overview of the state of the art on

path planning. Section 3 introduces the complete solution

of the proposed path planning, which is composed of

two parts, as described below. The core functionality of

the presented solution, i.e. the path planning, is detailed

in Section 4, whereas newly added functionalities are

presented in Section 5. In Section 6, the proposed path

planning solution is validated through simulations and real

experiments. Finally, Section 7 concludes the paper and

points out some future work lines. We recommend the

reader to print the paper in color, as the images it contains

are complex and color is needed to follow them.

2 RelatedWork

Path planning for robotic applications as a research topic

has been actively studied in recent years. While most

works focus only on 2-dimensional (2D) or 2.5-dimensional
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(2.5D) methods, approaches for 3D path planning remain

less explored. Nevertheless, different types of approaches

such as node-based optimal algorithms, sampling based

algorithms, and bioinspired algorithms have been proposed

for tackling 3D path planning in the literature, Yang et al.

[44].

Node-based optimal algorithms, also called discrete

search algorithms, aim to search for an optimal collision-

free path through a generated node network (or grid map).

For 3D environment path planning, A⋆ algorithm, Hart et

al. [8] and Dechter and Pearl [7], has been a popular choice

among others due to its fast search ability. However it is only

limited to tackling static environments. The counterpart D⋆,

Stentz [39], on the other hand, is able to deal with dynamic

environments, though can produce unrealistic distance.

Another widely implemented family of algorithms

is sampling-based algorithms, including rapidly-exploring

random trees (RRT), LaValle [16], Probabilistic Road

Maps (PRM), Kavraki et al. [13], visibility graph, Lacasa

et al. [15], and Artificial Potential Field (APF), Hwang

and Ahuja [11]. In general, this kind of algorithms

requires mathematical representation for the workspace.

They sample the environment in various forms such as a

set of nodes or cells, and then either map the environment

or search randomly in order to obtain a feasible path.

Therefore, according to Yang et al. [44], APF is categorized,

as a sampling-based algorithm.

In comparison to node-based optimal algorithms, mathe-

matic model-based algorithms use kinodynamic constraints

in conjunction with polynomial forms to optimize path plan-

ning, while the former utilize grids to describe configuration

space with the assumption that robot is a point and that only

acceleration and velocity constraints are considered. Exam-

ples of these types of algorithms are linear algorithms e.g.

Mixed-Integer Linear Programming (MILP) methods, Yue

et al. [46], and optimal control algorithms e.g. Tisdale et al.

[41].

Bioinspired algorithms stem from imitating the behavior

of humans or other natural creatures with the motivation

to enable algorithms to learn by themselves from their

own experience. In general, they do not rely on complex

environment models to reach a near optimal solution. This

type of algorithms is often used when general mathematic

model-based algorithms fail or trapped into local minimum.

However, algorithms of this type generally have high time

complexity and their performance may vary significantly

depending on the model diagrams. Popular examples of

bioinspired algorithms are neural networks (NN), Kassim

and Kumar [12], Particle Swam Optimization (PSO),

Kennedy [14], genetic algorithm (GA), Holland [9], etc.

Each type of aforementioned algorithms has their

advantages and disadvantages. In order to be able to cope

with increasingly complex 3D environments in robotics

applications, recent research efforts have been made to

overcome the shortcomings of individual algorithms by

exploring different combinations among them and beyond.

In Liu et al. [18], a search based planning method

incorporating discretized optimal control problem solving

was proposed for fast online replanning during continuous

flight. Lin and Saripalli [17] proposed a method based

on the closed-loop RRT algorithm and developed three

variations of it to handle different types of aerial robots

and varying dynamic obstacle conditions. Arantes et al. [3]

combined visibility graph with a multi-population genetic

algorithm. Chen et al. [6] fused APF with optimal control

theory. A multi-layered path planning approach is proposed

in Nieuwenhuisen et al. [22], which employs a mission

planning layer consisting of global and local path planning

and a reactive layer based on APF. Hossain and Ferdous

[10], developed a path planning method based on Bacterial

Foraging Optimization (BFO) technique, Gaussian cost

function and a high level decision strategy and results are

compared with PSO method. Yao et al. [45] introduced

a 3D path-planning algorithm based on interfered fluid

flow for dynamic obstacle obstacle avoidance. Yan et al.

[43] illustrated a 3D path planning approach which utilizes

random sampling in a bounding box in the whole 3D

space to improve the efficiency of PRM, and then applies

A⋆ algorithm to the generated roadmap for feasible path

generation. Narayanan et al. [21] presented an anytime

planner which is essentially a fast A⋆ variant based on time

interval for dynamic path planning.

3 Path Planning Solution

The complete path planning solution is formed by two

components: the manager and the path planner. Both

components use three different paradigms for inter and intra

communication: data streams, request/reply tasks (called

services), and preemptable tasks (called actions). This path

planning solution is shown in Fig. 1.

The main functionality of the planner component (as

explained in Section 4) is the generation of collision-

free paths given a goal and taking into account the

estimated pose of the aerial robot in world coordinates,

and the estimated information relative to the static

and dynamic objects existing in the environment. The

situational awareness information is provided by the

situation awareness system in the required format and it is

received through three different data streams. This collision-

free path is calculated thanks to a provided service, whose

request is the goal to achieve, and whose reply is that

calculated collision-free path.

Besides, in a parallel execution thread, the path planner

includes an action that, when enabled, it continuously



J Intell Robot Syst

Fig. 1 Path planning solution. It is formed by two components: the

manager and the path planner. The continuous lines represent the data

streams; the dashed lines, the services; and the dotted lines, the actions.

In both services and actions, the black arrows represent the server side,

whereas the white arrows encode the client side

checks if a given collision-free path remains collision-

free despite the changes in the situation awareness (see

Section 5.1).

Furthermore, once again in a parallel execution thread,

the path planner provides a service that calculates a better

collision-free path, if any, in terms of cost (as described

in Section 5.2). The request of this service is the goal to

achieve and the reference collision-free path. Its reply is the

new collision-free path, if any.

The manager handles the path planner component, acting

as an intermediary with the mission planner. It receives the

goal to achieve given by the mission planner, by means

of an action that it provides, continuously returning the

most optimum collision-free path despite the changes in

the situation (both self-localization and environment). It

requests the path planner the generation of a collision-

free path, activating the collision-free check action after

receiving it. Whenever the collision-free check is not

passed, it requests again the path planner the generation of

a collision-free path. Moreover, in parallel to the collision-

free check, the manager cyclically calls the better collision-

free generation service to find a new optimum collision-free

path.

4 Path Planning Algorithm

This section presents the proposed algorithm for the

generation of collision-free paths, which is implemented

as a service of the path planner component presented in

Section 3.

4.1Work Space

The work space incorporates the knowledge of the complete

situation, including the self-situation and the situation of

the environment. This situation knowledge is given by

the situation awareness system, but the presented planning

algorithm imposes the kind of descriptor required.

The proposed path planning algorithm describes the situation

by means of high-level geometric primitives (see Section 4.1.1)

unlike other commonly used more computationally expen-

sive representations such as grid maps or octrees, [42]. The

main advantages of this simplified environment representa-

tion are (1) compact description of the environment without

loss of resolution (i.e. no need of approximations), and (2)

capability of easily handle dynamic environments.

Moreover, the presented path planning algorithm distin-

guishes between static and dynamic objects included in the

environment (see Section 4.1.2).

4.1.1 Situation Described with High-Level Geometric

Primitives

All the objects of the environment including the aerial robot

itself are described as a set of uniquely labeled high-level

geometric primitives. As mentioned, using this environment

representation reduces the required information to com-

pletely describe it, but without the need of approximations

(e.g. a cylinder has to be approximated when using an octree

to describe the environment). This contributes to reduce the

complexity of the distance to an object evaluation whenever

is required, speeding up the planning algorithm.
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For simplicity, our proposed approach only implements

three kinds of high-level geometric primitives to describe

objects of the environment: cuboids, cylinders, and ellip-

soids. The parameters that describe the implemented high-

level geometric primitives are:

– Pose (position and orientation) of the center of the

reference frame attached to the object in world

coordinates, pW
O⋆ = {tW

O⋆, q
W
O⋆}.

– Dimensions of the object, rO⋆ =
[

rx, ry, rz
]T

. For

ellipsoids, their radii are used; while for cuboids, the

dimension of their sides are used; and for cylinders, the

two first parameters describe their radii, and the third

one their height.

It is important to highlight that the robot situation is as

well described by means of high-level geometric primitives,

once again, without the need of approximations. For

simplicity, our proposed path planning algorithm assumes

that the shape of the robot is a cylinder.

Figure 2 shows an example of a work space.

It is worth to mention that for the sake of completeness,

our algorithm is not limited to the previously presented

three kinds of high-level geometric primitives. In general,

any kind of geometric primitive might be used for the

situation description (e.g. planes, pyramids, cones, barrels,

etc). Moreover, an object of the environment with a complex

shape might be described as a set of simple geometric

primitives. Furthermore, if an object has a very complex

shape that cannot be easily described as a set of geometric

primitives, other kinds of representation can be used, such

as an octree including exclusively the shape information of

this object.

4.1.2 Distinction Between Static and Dynamic Objects

of the Environment

As mentioned before, the presented path planning algorithm

distinguishes between static and dynamic objects included

in the environment. This distinction allows to ignore the

moving objects whenever they are far enough from the robot

(in the admissible space explained below), i.e. distance

between them is greater than a configurable threshold which

depends on the velocity of the moving objects. That implies

the fact that the moving objects will most likely change their

current pose before the robot reaches that point whenever

they are far, which thus simplifies the path planning query.

It is worth to mention that our path planner do not take

advantage of the dynamic part of the situation information

Fig. 2 Environment formed by

several cuboids and cylinders

(gray). The robot is represented

by a purple cylinder whose

center is at the point

tW
R = [−4, −2, 0.7]T with an

orientation qW
R = [1, 0, 0, 0]T
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(i.e. velocity and acceleration) of the moving objects,

remaining as a future work. Despite this, our path planner

is capable of handling dynamic environments as it is able

to plan collision-free paths in a reduced time thanks to its

features listed in Section 1 and detailed along Section 4.

4.2 Admissible Space

The work space (presented in Section 4.1), W , is included

in the Lie group SE(3) space, W ∈ SE(3), which has

dimension 6. It has to be converted to a space, called

admissible space, A, where the collision-free path can be

searched taking into account all the restrictions of the robot.

4.2.1 Configuration Space

The configuration space, C, is a space that maps the work

space into a space where the search of the collision-

free path is possible and simplified. In the presented path

planner, the state of the robot is simplified to its pose

(i.e. velocity and acceleration is not considered). Also, as

mentioned before in Section 4.1.2, the dynamic part of the

situation information (i.e. velocity and acceleration) of the

moving objects is not taken into account. Therefore, the

configuration space is defined as a 6-dimensional space that

is directly generated using the work space. Moreover, in the

configuration space, the objects included in the work space,

are dilated taking into account the dimensions of the robot

using the Minkowski addition. It is important to highlight

that the objects dilating is done along the 6 dimensions of

the configuration space, i.e. it does not only depends on the

position, but also depend on the orientation of the robot. For

example, if the robot is described as a cylinder, the objects

dilation clearly depends on the orientation of this cylinder.

To be able to plan a collision-free path, the previously

defined configuration space cannot be used. It might be

possible that some parts of the state of the situation cannot

be perceived (e.g. the pitch and the roll of the aerial

robot cannot be observed). It might be also possible that

some parts of the state of the robot cannot be directly

modified to reach the goal and are imposed (e.g. the planner

cannot modify the yaw angle of the aerial robot and it is

externally imposed). To overcome these limitations of the

configuration space, we need to incorporate in a new space

all the imposed restrictions on the motion, together with the

restrictions on the perception of the situation. In this new

Fig. 3 Simple example to

illustrate the concepts

introduced in this section
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Fig. 4 Observable space of the example introduced in Fig. 3 in the

case that θ is not observable

space, the search of the collision-free path can be done. To

define this space, we use two intermediate spaces that are

inspired by the state-space control theory: the observable

space and the controllable space.

To illustrate the concepts introduced in this section,

the simple example represented in Fig. 3 is used. In

this example, an holonomic 2D elliptical robot with three

degrees of freedom, x, y, and θ can move in the work space

shown in Fig. 3a. Its configuration space is 3-dimensional,

and for illustration purposes, only two slices of it, for the

limit values of θ = 0◦ and θ = 90◦, are shown in Fig. 3b

and c, respectively.

4.2.2 Observable Space

First of all, we define the observable space, O, as a subspace

of the configuration space, O ⊆ C that incorporates all the

restrictions on the perception of the situation. For all the

restrictions, i, on the perception of the situation, an infinite

set of j subspaces of the configuration space, Ci,j for all the

j values that the restriction i can have. The observable space

incorporate the worse case by means of:

O = ⊕∀i,jCi,j (1)

where ⊕ is the operation composition of subspaces.

For example, in case that the pitch, φ, and roll, θ , of the

aerial robot, are not observable, we have infinite restricted

configuration spaces, Cφ,j and Cθ,k , for all the j -values and

k-values that the pitch and roll can have (φ, θ ∈ [−π, π ]]),

being the observable space, O, the worse case subspace

defined as:

O =
(

⊕∀j∈[−π,π]Cφ,j

)

⊕
(

⊕∀k∈[−π,π]Cθ,k

)

In the presented path planner, the pitch and the roll

components of the orientation the robot are not assumed

to be available, and therefore, the observable space is a

4-dimensional subspace of the configuration space.

Following the example introduced in Fig. 3, in the case

that θ is not observable, while the other degrees of freedom

are observable, the observable space is 2-dimensional, and

it is shown in Fig. 4.

4.2.3 Controllable space

Second, we define the controllable space, U , as a subspace

of the configuration space, U ⊆ C that takes into account

the non-modeled imposed restrictions on the motion. For

every non-modeled imposed restrictions, i, on the motion,

a subspace of the configuration space, Ci,αi
for a value

αi that the imposed restriction i takes, is generated. The

controllable space is the part of the configuration space that

considers only all the imposed restrictions as:

U = ∩∀iCi,αi
(2)

This controllable space changes constantly whenever the

values of the imposed restrictions, αi change.

Fig. 5 Controllable space of the

example introduced in Fig. 3 in

the case that θ is not controllable
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For example, in case that the yaw of the aerial robot, ψ , is

externally imposed with a value αψ , the controllable space

is defined as:

U = Cψ,αψ

In the presented path planner, only the position is

assumed to be controllable, being the values of its

orientation imposed but not modeled, and therefore, the

controllable space is 3-dimensional. Note that for an aerial

robot, the pitch and the roll are directly related to the x and y

by means of its motion model. Nevertheless, for simplicity

we assume that this relationship cannot be modeled, and

therefore, we treat the pitch and the roll as a non-modeled

imposed given values.

Continuing with the example introduced before, in Fig. 3,

if now, θ , instead of being not observable as before,

is not controllable, while the other degrees of freedom

are controllable, the controllable space is 2-dimensional.

The controllable space depends on the values of the non-

modeled imposed restriction, in this case, the value of θ .

Figure 5 shows the controllable space for two different

example values of θ .

4.2.4 Valid Space

Once the observable and the controllable spaces are

determined, the valid space, V , has to be defined, combining

them as:

V = ∩∀k

(

⊕∀i,jCi,j

)

k,αk
= ∩∀kOk,αk

= U (O) (3)

that is, the controllable space considering the observable

space instead of the configuration space.

In the presented path planner, the valid space is 3-

dimensional.

4.2.5 Admissible Space

Finally, the valid space is mapped to the admissible space,

A, to find the control inputs needed to obtain a collision-free

path to reach a goal.

In the proposed path planner, the control inputs are the

position of the aerial robot, and it is assumed to be holonomic.

Therefore, the mapping from the valid space to the admissible

space is a unit transformation, and consequently, the

admissible space is the same than the valid space.

Fig. 6 Admissible space of the

example presented in Fig. 2. The

robot is located in the point

P0 = [−4, −2, 0.7]T
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Figure 6 shows the admissible space of the example

presented in Fig. 2.

4.3 Probabilistic Graph

To reduce the time that the planner requires to find a

collision-free path, the admissible space is probabilistically

sampled. This probabilistic sampling generates n random

points (also called nodes or vertices) following a uniform

distribution within the admissible space boundaries. The n

sampled points are connected by means of edges to their

nearest m neighbors (called m-neighborhood), creating a

probabilistic graph. The connection between any of two

nodes of the probabilistic graph has to fall completely inside

the admissible space. The generation of this probabilistic

graph is the most computationally expensive operation.

The probabilistic graph is generated at launching time,

and therefore, no knowledge of the objects existing on

the work space is taken into account (as shown in

Fig. 7, continuing with the previous example). Whenever

a static object is included in the situation awareness of the

environment (i.e. a static object is mapped), the probabilistic

graph could be modified to remove its nodes that fall inside

the objects.

The previously known knowledge of the static objects

of the environment can be as well incorporated to the

probabilistic graph by modifying the uniform sampling

function of the node generation into a custom probability

density function. Moreover, this custom probability density

function might be adapted to include the a priori knowledge

of existing important areas (e.g. corridors).

The number of nodes n of the probabilistic graph must be

representative of the environment. If the robot is operating

in an environment that is not very cluttered, the number of

nodes n might be reduced to decrease the complexity of the

graph search and therefore the path planning time.

Whenever the path planner receives a planning query

from the current state, x0, to the desired state, xf , their

values are converted to the admissible space, P0 and Pf

respectively, and connected to the probabilistic graph as

temporary nodes, that are deleted from the graph once the

search has finished.

This proposed probabilistic graph approach differs

from other existing probabilist approaches such as PRM,

Fig. 7 Probabilistic graph with

1000 nodes and 6-neighborhood

of the example presented in

Fig. 2. The robot is located in the

point P0 = [−4, −2, 0.7]T . The

goal point is Pf = [−3, 1, 1]T
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Kavraki et al. [13], where the probabilistic graph is

generated including the information of all the objects

of the environment. On the one hand, our approach

requires higher time to complete the search of a collision-

free path as the graph includes some nodes that fall

inside the obstacles. Nevertheless, on the other hand,

it allows handling dynamic environments without the

need of modifying the probabilistic graph (which is very

computationally expensive).

4.4 Cost Function: Potential Field Map

To guide the collision-free search task, and to incorporate

the knowledge of the objects of the environment, a potential

field map on the admissible space, that depends on the initial

and desired state, is created as follows:

p(P ) = pq(P ) + pO(P ) (4)

where P is any point of the admissible space, pq is the

contribution to the potential field map of the planning

query (see Section 4.4.1), and pO is the contribution to the

potential field map of the obstacles of the environment (see

Section 4.4.2).

Figure 8 illustrates the concept of the potential field map

following the previous example.

This concept of the potential field map has been previously

introduced in Hwang and Ahuja [11], but used in a different

way than presented in our work. In our work, the potential

Fig. 8 Different slices of the potential field map for a query from P0 = [−4, −2, 0.7]T to Pf = [−3, 1, 1]T . For visualization purposes, the

potential field map has be extracted for three different values of z
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field map is used to guide the graph search algorithm

described in Section 4.5 and therefore, our planner never

falls in a local minima when calculating the collision-free

path, computing always the most optimum path.

4.4.1 Potential Field Map of the Planning Query

To guide the search in the direction from the initial point, P0,

to the target point, Pf , a potential field map cost function,

pq , is created.

The potential field map of the planning query, pq = pq
(

P,P0, Pf

)

, in a point P of the admissible space given by

its coordinates xP
i , is defined as an elliptic hyperparaboloid

expression where the minimum is located in Pf :

pq =
∑

∀i

(

xP
i − x

Pf

i

)2

ci

+ d (5)

being

ci =

⎧

⎪

⎨

⎪

⎩

∑

∀i

(

x
P0
i

−x
Pf
i

)2

kr1i

k0−kf
, if i = 1

kr1i
· c1, otherwise

(6)

d = kf (7)

where the coefficient kr1i
determines the priority of the

planned movement in a specific direction i, when compared

with the priority in the first direction; the coefficient k0

determines the value of the potential field map in the initial

point; and the coefficient kf determines the value of the

potential field map in the final point. All these coefficients

determine the aggressiveness in the search of the planner.

4.4.2 Potential Field Map of the Obstacles

To include the situation of the objects of the environment,

being able to find a collision-free path in the probabilistic

graph, a potential field map cost function, pO , is created.

The potential field map of the obstacles, O, of the

environment, pO = pO (P,O), in a point P of the

admissible space given by its coordinates xP
i , is defined as:

pO =

{

∞, if d ≤ 0
k1

1+ek2·d , otherwise
(8)

where d is the minimum distance (in the admissible space)

to all the objects of the environment in the point P of the

admissible space, and k1 and k2 define the tendency of the

planned path to approach to the obstacles.

Fig. 9 Raw collision-free path

generated with the A⋆ algorithm

from point P0 = [−4, −2, 0.7]T

to point Pf = [−3, 1, 1]T of the

admissible space
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4.4.3 Cost of Moving Between Two Points

Given a potential field map p, it generates a surface S given

by S = [P, p (P )]T , for all points P of the admissible

space.

The cost of moving between points A and B of the

admissible space following the curve CA→B , is given by the

line integral for the unit scalar field along the curve CA′→B ′ ,

that is the projection of the curve CA→B over the surface S:

c (A, B) =

∫

CA′→B′

1 · ‖dl‖ ≅

∑

CA′→B′

‖�l‖ (9)

where A′ = [A, p(A)]T , B ′ = [B, p(B)]T , and dl =

[dt(P ), dp(P )]T , with dt(P ) being the tangent vector of the

curve CA→B in the point P .

If the curve CA→B is parametrized by s ∈ [smin, smax],

then, any point P of this curve is given by tP (s), and for a

�s = si − si−1:

�l =

[

�t

�p

]

=

[

tP (si) − tP (si−1)

p (tP (si)) − p (tP (si−1))

]

(10)

and sampling the s interval, the cost of moving between

points A and B, is calculated combining Eqs. 9 and 10,

getting:

c (A, B) ≅

smax
∑

si=smin

√

‖�t‖2 + ‖�p‖2 (11)

In the case that the curve, CA→B is a straight line

connecting points A and B, the following parametrization

can be used:

s ∈ [smin, smax] =
[

0,
∥

∥tPB
− tPA

∥

∥

]

(12)

being a generic point P of the admissible space over the

curve CA→B given by:

tP (s) = tPA
+ s · nC (13)

where

nC =
tPB

− tPA
∥

∥tPB
− tPA

∥

∥

(14)

Fig. 10 Shortened collision-free

path (in red) from point

P0 = [−4, −2, 0.7]T to point

Pf = [−3, 1, 1]T of the

admissible space
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Fig. 11 Shortened collision-free

path from the initial position of

the robot to the goal

tf
W
R = [−3, 1, 1]T in the work

space

and for a �s = si − si−1:

�t = �s · nC (15)

and therefore, sampling the s interval, the cost of moving

between points A and B, is calculated by:

c (A, B) ≅

smax
∑

si=0

√

�s2 + (p (tP (si)) − p (tP (si−1)))
2

(16)

The number of sampling points of the s interval, nsi , is

calculated taken into account that the �s has to be smaller

than the smallest dimension of all the obstacles, and hence,

at least a sampling point will fall inside the obstacle if it is

crossed.

4.5 Graph Search Algorithm

Whenever the planner receives a planning query, it uses a

simple but efficient widely used A⋆ algorithm, [7], to find

the minimum cost path that connects the initial (current),

P0, and desired state, Pf , in the probabilistic graph. This

informed search algorithm searches among all possible

paths to the solution for the one that incurs in the smallest

cost, and among these paths, it first considers the ones that

appear to lead most quickly to the solution. At each iteration

of its main loop, it needs to determine which of its partial

Fig. 12 V-REP simulation environment. Static objects are colored as

silver, while moving objects are colored as red (aerial) and yellow (ground)
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Fig. 13 Simulation experiment at t = 0 s. The aerial robot is represented with a purple cylinder, the static objects are depicted in gray, and the

moving objects in turquoise. The planned collision-free path is represented by a dashed red line, whereas the followed path is a solid blue line

path to expand into one or more longer paths. It selects the

path that minimizes:

f (Pi) = g(P0, Pi) + h(Pi, Pf ) (17)

where Pi is the working node of the graph on the current

iteration, g(P0, Pi) is the smallest cost of the path from node

P0 to node Pi in the probabilistic graph, and h(Pi, Pf ) is an

heuristic that estimates the cheapest path from node Pi to

node Pf in a straight line in the admissible space.

To guide the A⋆ algorithm during the search task,

and to incorporate the knowledge of the obstacles of the

environment, the cost function defined in Section 4.4 based

on the potential field map, is used.

The cost g(P0, Pi) is given by the sum of the cost needed

to move between node P0 and node Pi in the probabilistic

graph:

g(P0, Pi) =

Pj+1=Pi
∑

Pj =P0

c
(

Pj , Pj+1

)

(18)

where the cost function c
(

Pj , Pj+1

)

incorporates the contri

bution to the potential field map of the query and the obstacles.

The heuristic cost h(Pi, Pf ) is given by the cost needed

to move from node Pi to node Pf in a straight line in the

admissible space:

h(Pi, Pf ) = c
(

Pi, Pf

)

(19)

where the cost function c
(

Pi, Pf

)

only incorporates the

contribution to the potential field map of the query (but not

the obstacles).

After the exploration of the graph, the path, tr , (also

called plan) has to be created by revisiting the explored

nodes. The raw collision-free path computed by the A⋆

algorithm in the previous example can be seen in Fig. 9.

4.6 Path Shortening

Once a collision-free path, tr , has been found by the A⋆

algorithm, a post-processing is applied to shorten it to ts .

Fig. 14 Simulation experiment at t = 4.85 s. For a detailed figure description, please refer to Fig. 13
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Fig. 15 Simulation experiment at t = 9.7 s. For a detailed figure description, please refer to Fig. 13

Figure 10 shows the shortened path of the previous

example in the admissible space, whereas Fig. 11 shows the

shortened path in the work space.

The initial node, P0, and the final node, Pf , are always

the beginning and ending points of the shortened path. The

middle points of the shortened path are calculated following

Algorithm 1. In this algorithm, the path is shortened taking

only into account the contribution to the potential field map

of the obstacles of the environment (but not the query).

Algorithm 1 Path shortening algorithm

Initialization: ts = {}, Pi = P0, Pj = Pi+1

Loop:

while Pj 
= Pf , ∀Pj ∈ tr do

if c
(

Pi, Pj

)

≥
∑Pk+1=Pj

Pk=Pi
c (Pk, Pk+1) then

ts = {ts, Pj }, Pi ← Pj

end if

Pj ← Pj+1

end while

ts = {ts, Pf }

Note: The cost function c
(

Pi, Pj

)

incorporates only the

contribution to the potential field map of the obstacles.

5 Path Planner Additional Functionalities

Besides the collision-free path generation service (described

in Section 4), the path planner component presented in

Section 3, provides two key additional functionalities

described along this section: the collision-free path check

action (Section 5.1), and the better collision-free path

generation service (Section 5.2).

5.1 Collision-Free Path Check

The planned collision-free path, ts , has to be checked

whenever the environment changes to determine if it is still

collision-free. The cost of the already planned collision-free

path ts is calculated by:

c(P0, Pf ) =

Pj+1=Pf
∑

Pj =P0

c
(

Pj , Pj+1

)

(20)

where the cost function c
(

Pj , Pj+1

)

corresponds to the

potential field map, incorporating only the contribution of

the obstacles. The path is considered to be collision-free, if

its cost is lower than a threshold. Otherwise, it needs to be

replanned.

5.2 Better Collision-Free Path Generation

As the environment is constantly changing, the previously

planned collision-free path, ts , despite being collision-free,

might not be the most optimal in terms of cost.

To overcome this fact, the better collision-free path

generation service has been developed. This service,

executes the collision-free path generation service as

described in Section 4, but keeping the previously planned

path. Then, using Eq. 20, the cost of both candidate

collision-free paths is computed. If the new collision-free

path has a strictly lower cost than the previous path, it

is returned as a better collision-free path, otherwise, the

previous path is considered as the most optimum one.

6 Evaluation and Results

This section presents the methodology and evaluation of the

proposed path planning solution.
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Fig. 16 Simulation experiment at t = 11.8 s. For a detailed figure description, please refer to Fig. 13

6.1 Methodology

The proposed path planning solution is implemented in C++

using the Robot Operative System (ROS), [28], as middleware.

The path planning solution has been integrated into dif-

ferent fully autonomous multi-rotor aerial robotic systems

with the aim to evaluate its performance within a com-

plete system. To achieve a fully autonomous operation, a

large number of additional components, which are out of

the scope of this paper, have been used. These additional

components are: perception and state estimation, Sanchez-

Lopez et al. [35], Bavle et al. [4]; control, Pestana et al.

[24], Olivares-Mendez et al. [23]; mission plan specifica-

tion, Molina et al. [19, 20]; multi-robot mission planning,

Sampedro et al. [31]; and human-machine interfaces, Suárez

Fernández et al. [40], among others.

Moreover, the path planning solution has also been

integrated in the open-source framework for aerial robotics

Aerostack, Sanchez-Lopez et al. [33, 36], although only the

2D version has been released as open-source code.

Nevertheless, having a working situation awareness

system for a dynamic 3D environment, is still an open

problem that the scientific community is currently tackling,

which limits the validation scope of the proposed path

planning solution.

Simulations of fully autonomous multi-rotor aerial robots

performing in highly challenging dynamic environments are

presented in Section 6.2. In these simulations, scenes are

formed by a complex static environment in combination

with a large number of moving objects. Dynamic models

of different multi-rotor aerial robots have been included

in these scenes. Using the above-mentioned different

components, the simulated multi-rotor aerial robots are

required to navigate in these scenes fully autonomously. At

the end of this section, the simulation results are evaluated.

To complement the simulations, Section 6.3 presents

the previous usages of the 2D version of the proposed

path planning solution in a fully autonomous aerial robotic

system, and discusses the difficulty found on the validation

of the presented 3D version.

Fig. 17 Simulation experiment at t = 16.1 s. For a detailed figure description, please refer to Fig. 13
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Fig. 18 Simulation experiment at t = 20.45 s. For a detailed figure description, please refer to Fig. 13

6.2 Simulations in Dynamic Environments

The proposed path planner has been evaluated by means of

realistic simulations. The simulations were carried out using

the V-REP simulator, [30], with different scenes as the one

shown in Fig. 12.

For the sake of brevity, only one simulation is presented

in this paper, but a complimentary set of simulations can be

found online.1

The presented simulation is carried out in an environment

of 15 × 15 × 4 = 900 m3, using a DJI M100 like aerial

robot platform (approx. 40 cm of radius and a height of

40 cm). The used scene, shown in Fig. 12, incorporates

multiple static objects, colored as silver, some of them

forming a house with a door-like aperture, and two Velux-

like roof openings. The scene incorporates four ground

moving objects (colored as yellow) as well with cylindrical

and prism shape, and six cylinder-shaped aerial moving

objects (colored as red). The apertures of the house are

occasionally blocked by the moving objects. The aerial

moving objects have been incorporated to increase the

complexity of the navigation, as the ground moving objects

can be easily avoided by flying above them. The complete

information of the situation, both of the robot and the

objects of the environment, is received directly from the

simulator.

The aerial robot takes off behind two walls outside the

house at initial position P0 = [−5.525, −6.625, 1]T , and it

is requested to reach goal position Pf = [5.0, 5.0, 0.7]T ,

which is located inside the house.

The configuration parameters of the path planning

solution are the following:

1Complimentary set of simulations: (i.e. https://youtu.be/4zMjwlbD2P8)

– Admissible space: threshold distance to ignore the

moving objects, dO = 5.0 (m in the admissible space).

– Probabilistic graph: number of nodes, n = 5500, with a

6-neighborhood (6.11 nodes / m3).

– Potential field map of the planning query: kr1y
= 1.0,

kr1y
= 3.0, k0 = 1.0 · 106, and kf = 0.0.

– Potential field map of the obstacles: k1 = 1.0 · 106, and

k2 = 2.5.

– Path check: distance of loosing the path, dt = 0.6.

– Better path generation: period on requesting a better

path, Tbetter = 1.0 · tplanning (s), where tplanning is the

time (in seconds) that the path planner needed to plan

the previously planned collision-free path.

The simulation starts at t = 0 s, once the aerial robot is

hovering in the air, and the goal is sent to the path planning

system. As shown in Fig. 13, the planned collision-free path

climbs up the walls that are outside the house and enters the

house through the right roof opening.

As soon as the aerial robot advances following the path,

some of the mobile obstacles are located within the distance

range dO of the robot, therefore, they are considered in the

admissible space. The collision-free path is subsequently

adapted, as can be seen in Fig. 14.

In Fig. 15, the moving obstacle entered in the previously

planned collision-free path, which forced the planner to

generate a new collision-free path by flying over the moving

obstacle.

Figure 16 shows a new better collision-free path that

the planner has found while it is moving toward the

goal, adapting the path to the changes of the dynamic

environment.

In Fig. 17, the aerial robot is passing by a moving object.

Figure 18 shows the exact time instant where the aerial

robot is targeting the roof opening and is ready to descend

to enter the house.

https://youtu.be/4zMjwlbD2P8
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Fig. 19 Simulation experiment at t = 23.35 s. For a detailed figure description, please refer to Fig. 13

The aerial robot crosses the roof opening at t = 23.35 s,

as shown in Fig. 19.

Finally, in Fig. 20, the aerial robot safely reached the

goal inside the house after having avoided all the possible

collisions and adapted its behaviors with respect to the

dynamic obstacles presence in the environment.

Despite the high complexity of the simulations, incor-

porating complex static obstacles, and multiple dynamic

objects, the proposed path planner is capable of performing

in real-time within a fully autonomous system, and generat-

ing collision-free paths to reach complex goals (this could

never have been reached using only a reactive approach),

adapting them to the changes in the environment due to

dynamic obstacles.

6.3 Real Flights in Dynamic Environments

Validation of the proposed path planning solution requires

not only simulations but also real flights of the fully

autonomous aerial robotic system.

The previous version of the here proposed path planner,

described in Sanchez-Lopez et al. [37], has been validated

thanks to its intensive usage in multiple research projects,

including three international competitions, IMAV 2013,

Pestana et al. [25, 27], IARC 2014, Sanchez-Lopez et

al. [26], and IMAV 2016; and in several applications for

search and rescue (see Fig. 21), exploration, and inspection

applications among others, Sanchez-Lopez et al. [32, 33],

Sampedro et al. [31], Sanchez-Lopez et al. [34, 36]. Its

performance has been demonstrated in applications where

multiple aerial robot agents are used as moving obstacles,

while in others human beings are employed. In all these

usages, the planner was able to calculate feasible collision-

free paths with real-time operation, generating new paths

fast enough when necessary.

Nevertheless, it is a highly challenging task to validate

the newly added 3D navigation capabilities of the proposed

path planner with a real fully autonomous aerial robotic

system. It requires not only a 3D test area available, but

also additional components for perception, control, mission

planning, etc., that are out of the scope of this paper. As

stated before, having a working situation awareness system

for a dynamic 3D environment is still an open problem that

the scientific community is currently tackling. This makes

Fig. 20 Simulation experiment at t = 28.55 s. For a detailed figure description, please refer to Fig. 13
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Fig. 21 Real flight experiment of [36], using the previous version of

the here presented path planning solution for a multi-robot search and

rescue application

the full validation of the proposed path planner with a real

flight highly challenging, and this will remain as a future

work.

7 Conclusions and FutureWork

In this paper, we have presented a real-time collision-free

path planning solution for 3D navigation of multi-rotor

aerial robots in complex dynamic environments, which is an

extension of our previous work, [37].

Our path planner represents the situation, including the

self-situation and the situation of the environment, with

high-level geometric primitives, unlike other less compact

descriptions using grid maps or octrees. The admissible

space, where the optimal solution has to be searched, is gen-

erated incorporating novel concepts imported from control

theory. It is sampled at launching time utilizing a prob-

abilistic graph. Unlike other widely known probabilistic

approaches such as PRM, this probabilistic graph does not

incorporate the information of existing objects in the envi-

ronment. Whenever a planning query is received, an A⋆

discrete search algorithm is employed to explore the prob-

abilistic graph in order to find a raw optimal collision-free

path (subsequently shortened), which therefore guarantees

the optimality of, if any exists, the obtained collision-free

path. To include the information of existing obstacles in

the environment without modifying the probabilistic graph

(what is computationally expensive), an artificial potential

field map is employed as the cost function of the discrete

search algorithm. Unlike typical implementations of arti-

ficial potential field maps, our planner always finds an

optimal path without dropping into local minima. These key

features of the proposed path planning algorithm enable its

real-time operation in complex dynamic environments.

The proposed path planning solution has been integrated

within a complete fully autonomous robotic system for

its evaluation. It has been fully evaluated by means of

realistic simulations using the V-REP simulator in complex

environments with multiple moving objects.

The evaluation results support that the proposed path

planning solution is capable of performing in real-time

within a fully autonomous system, generating collision-

free paths to reach complex goals, and adapting them

to the changes of the environment due to the dynamic

obstacles.

Our future work lines mainly include evaluation of

other discrete search algorithms which are potentially more

suitable for dynamic environments, such as the D⋆, Stentz

[39], implementation of more complex high-level geometric

primitives to represent the situation, and development of

newer shortening algorithms to obtain a smoother path.

Moreover, an important limitation of the proposed path

planner is the need of sampling admissible space at

launching time. This limitation disqualifies the planner for

exploration usage and limits its performance when the

number of nodes is insufficient. To overcome this limitation,

algorithms such as a Lazy-PRM, Bohlin and Kavraki [5],

or a C-PRM, Song et al. [38], might be used for further

improvement of the proposed solution. In addition, higher

dimensional search spaces (including, for example, heading

and velocity) should be implemented in the future work.

Finally, validation of our proposed path planning solution

by means of real flights has to be completed by developing

adequate situation awareness components.
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