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Base scale entropy analysis (BSEA) is a nonlinear method to analyze heart rate variability (HRV) signal. However, the time
consumption of BSEA is too long, and it is unknown whether the BSEA is suitable for analyzing pulse rate variability (PRV)
signal. Therefore, we proposed a method named sliding window iterative base scale entropy analysis (SWIBSEA) by combining
BSEA and sliding window iterative theory. The blood pressure signals of healthy young and old subjects are chosen from the
authoritative international database MIT/PhysioNet/Fantasia to generate PRV signals as the experimental data. Then, the BSEA
and the SWIBSEA are used to analyze the experimental data; the results show that the SWIBSEA reduces the time consumption
and the buffer cache space while it gets the same entropy as BSEA. Meanwhile, the changes of base scale entropy (BSE) for
healthy young and old subjects are the same as that of HRV signal. Therefore, the SWIBSEA can be used for deriving some
information from long-term and short-term PRV signals in real time, which has the potential for dynamic PRV signal analysis
in some portable and wearable medical devices.

1. Introduction

Electrocardiogram (ECG) signal has been used for many
diseases to assist in diagnosis in a clinic. The subtle changes
of heart beat periods are called heart rate variability (HRV).
The continuous heart rate or continuous RR wave intervals
extracted from ECG signal are denoted as heart rate variabil-
ity (HRV) signal [1]. An increasing number of studies have
shown that HRV is a useful quantitative indicator for asses-
sing the balance between the cardiac sympathetic nervous
system and the parasympathetic nervous system and can be
engaged in the diagnosis and prevention of some cardiovas-
cular diseases such as sudden cardiac death and arrhythmia
[2–4]. Pulse signal or continuous blood pressure signal
generated by the systolic and diastolic of heart contains
abundant physiological and pathological information of the
cardiovascular system [5, 6]. The subtle change of vessel
pulse periods is denoted as pulse rate variability (PRV). The
continuous pulse rate or continuous PP wave intervals
extracted from pulse signal or continuous blood pressure

signal are defined as PRV signal [7]. Because a heartbeat
produces a vessel pulse, many studies show that PRV is a sub-
stitute for HRV to present the physiological and pathological
changes of the cardiovascular system when the subjects are
sleeping or testing, as well as in some nonstationary states
[8–10]. In addition, due to the wide distribution of human
vessels, the acquisition of a pulse signal is easier than that
of an ECG signal. Therefore, the pulse signal is employed in
many wearable and portable medical devices such as smart
watches, wristbands, and smart glasses but not ECG signal
[11, 12], and PRV signal has more practical values than
HRV signal.

Because PRV signal has similar characteristics with HRV
signal, the analysis methods of HRV signal are often
employed to analyze PRV signal. These methods are divided
into time domain methods, frequency domain methods,
time-frequency domain methods, and nonlinear methods
[13]. HRV signal and PRV signal generated by heartbeat
are neither stochastic nor periodic; they are the results of
many independent factors and have nonlinear properties.
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Thus, the nonlinear methods are more useful for analyzing
HRV signal and PRV signal, and there are many nonlinear
methods such as recurrence quantification analysis,
detrended fluctuation analysis, the Lyapunov exponent, and
information entropy analysis [14, 15]. Among them, the
information entropy analysis is an effective tool to present
the complexity of the nonlinear signal. The sample entropy
(SampEn), the approximate entropy (ApEn), the sign series
entropy analysis (SSEA), the base scale entropy analysis
(BSEA), and so on are been used for analyzing HRV signal
[13, 16–18]. However, because of the long time consumption
of these methods, they are not suitable for the PRV signal in
real time. The BSEA, proposed by Li and Ning, can effectively
detect the complexity dissimilarity of short-term HRV signal
(about 5 minutes) in different physiological or pathological
states [17], while it is unknown whether the BSEA is suitable
for analyzing pulse rate variability (PRV) signal, so far. In
addition, the 5 minutes of HRV signal analysis is too long
for some acute cardiovascular disease (ACVD), and its time
consumption still needs to be improved.

Therefore, this study proposed an improved basic scale
entropy on the basis of BSEA with the theory of sliding win-
dow iterative; we denote it as sliding window iterative basic
scale entropy analysis (SWIBSEA). The BSEA and SWIBSEA
are engaged in analyzing the measured PRV signals, and by
the results of the experiments, the accuracy and time con-
sumption are compared between BSEA and SWIBSEA. In
addition, the structure of this paper is as follows: in Section
2, the theories of BSEA and SWIBSEA are presented and then
the experimental data are introduced. The results are shown
in Section 3. Then, the results are discussed in Section 4. The
conclusion is given in the last section.

2. Methods and Materials

2.1. Basic Scale Entropy Analysis. The process of BSEA is as
follows [16]: (1) a series of vectors are constructed from
PRV signal, and for each vector, we compute their basic scale
(BS). (2) The vectors are symbolized and classified according
to BS, each of these categories is a heart or pulse beat mode.
(3) Computing the probability of each beat mode, and getting
entropy of their probabilities, the entropy is denoted as BSE.

For a PRV signal with the length of N , PP
PP i 1 ≤ i ≤N , i ∈N∗ , the m consecutive data points are
used to construct a vector:

X i = PP i , PP i +1 ,…, PP i +m− 1 1

Thus, we will get N −m+1 vectors which are denoted as
temporal sequence vectors (TSVs). m is the length of TSV;
the larger the value ofm, the more complex of the beat mode
that TSV expresses. For each TSV, the BS is defined by the
root mean square (RMS) of the difference for two adjacent
data points:

BS i =
〠m−1

j=1
PP i + j − PP i + j − 1 2

m− 1
,

2

where BS i is the BS of the ith TSV.

Then, the BS is multiplied by a constant α; the
result is as the standard for the vector symbolization.
The N −m+1 ×mTSVs X i are symbolized, and the
results are named symbol sequence vectors (SSVs) and
denoted as Si j , Si j 1 ≤ i ≤N−m +1, 0 ≤ j ≤m−1, i∈
N∗, j ∈N . The symbolization process is as follows:

Si j =

0, μi < PPi j ≤ μi + α × BS i

1, PPi j > μi + α × BS i

2, μi − α × BS i < PPi j ≤ μi

3, PPi j ≤ μi − α × BS i

, 3

where μi is the mean of the ith TSV. PPi j is the (i+ j)th data
points of PP i or is the (j+1)th datum in the ith TSV. The
symbols 0, 1, 2, and 3 are the labels of different scopes for
PRV amplitude and are employed for probability calculation;
their values are of no practical significance. Si j is the
(j+1)th datum in the ith SSV. α is used to control the value
of BS and to adjust the division range of PRV amplitude,
the way to choose the value of α is as [19].

After getting the SSVs, we compute the probability of
each vector. There are 4 symbols, 0, 1, 2, and 3, to express
the vector, so we can get 4m kinds of different SSVs, denoted
by π. Each SSV is a heart or pulse beat mode. Then, we com-
pute the probability of each beat mode in N −m+1 SSVs:

p π =
# t PPG t ,…, PPG t +m− 1 has typeπ

N −m + 1
,

4

where 1 ≤ t ≤ 4, t∈N∗, and # is the number of π. The beat
state with probability 0 is denoted as “disabled mode.”

Therefore, we define BSE as

BSE m = −〠p π log2p π 5

The BSE can be used to describe the change of heartbeat
mode. Obviously, 0 ≤ BSE m ≤ log24

m. When there is only
one pulsemode, BSE m = 0.When there are 4m pulsemodes,
and each mode has equal probability, BSE m = log24

m is the
maximum.The larger the entropyvalue, themore complicated
the heartbeatmode, whereas the smaller the entropy value, the
simpler the heartbeat mode.

2.2. Sliding Window Iterative Basic Scale Entropy Analysis.
We improve the BSEA with the theory of sliding window
iterative, and define the improved method as sliding window
iterative base scale entropy analysis. The process is shown in
Figure 1.

In Figure 1, a data buffer with the length of Nw is set to
store PRV data points which are extracted from dynamic
pulse signal. The process of SWIBSEA contains data updat-
ing and iterative. The PRV datum will be updated by the
sliding window theory, and the BSE will be calculated with
the iterative theory.

During data updating, we set 1 byte in buffer to store the
latest PRV datum and denote it as PP Nw+1 . Then, we
delete the oldest PRV datum PP 1 , and the data in higher
addresses move to lower addresses, PP i = PP i+1 . If we
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image the PRV signal as fixed, the buffer is like sliding
forward in the data. This is the process of sliding window.

During iterative, the data in PP 1 and PP Nw is only
changed in data updating, so it is only needed to compute
the entropy of SSVs corresponding to PP 1 and PP Nw ,
and then we will get the new BSE of all PRV data in buffer.

2.2.1. Construct the Temporal Sequence Vectors. According to
the theory of BSEA, we need to reconstruct the PRV data
with the length of Nw to Nw−m+1 ×m TSVs. In the pro-
cess of updating data, only the data in PP Nw+1 and
PP 1 are changed; thus, for speeding up the calculation,
we only construct the TSVs corresponding to them.

X 1 = PP 1 , PP 2 ,…, PP m , 6

X Nw −m+2 = PP Nw −m+2 ,

PP Nw −m+3 ,…, PP Nw+1 ,

7

where X 1 is the TSV of PP 1 , X Nw −m + 2 is the TSV of
PP Nw + 1 .

2.2.2. The Symbolization of Temporal Sequence Vectors
X Nw −m +2 and X 1 . For X 1 computation, by (3),

S1 j =

0, μ1 < PP j ≤ μ1 + α × BS1

1, PP j > μ1 + α × BS1

2, μ1 − α × BS1 < PP j ≤ μ1

3, PP j ≤ μ1 − α × BS1

, 8

where μ1 is the mean of X 1 . BS1 is the base scale of
X 1 , by (2):

BS1 =
〠m−1

j=1
PP j + 1 − PP j 2

m− 1

9

Similarly, X Nw−m+2 is symbolized and denoted as
SNw−m+2 j , j = 1,…,m− 1.

2.2.3. Encode the Symbol Sequence Vector. During the data
updating, only the numbers of S1 j and SNw−m+2 j are

changed; thus we only need to update their numbers. More-
over, for speeding up the calculation, we encode S1 j and
SNw−m+2 j to generate their storage addresses. If we denote

the addresses as h and k (as is shown in Figure 1), then

h = 〠
m

j=1

S1 j × 4m−j
10

and

Data buffer

Moving

�e latest PRV
datum

Out
PP(1) PP(m) PP(Nw − m + 2) PP(Nw + 1)PP(Nw)

Signifying Signifying

S1(1) S1(m)

Encoding Encoding

SNw−m+2(1) SNw−m+2(m)

 −1  +1

n(1) n(2) n(h) n(k) n(4m)

ph,k = nh,k/(Nw − m + 1)

−Σph,klog2ph,k

BSE

…

… …

…

…… …

… … …

Figure 1: The process of SWIBSEA.
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k = 〠
m

j=1

SNw−m+2 j × 4m−j
11

2.2.4. Entropy Calculation with Iterative Theory. We update
the PRV data in buffer by sliding window theory; when get-
ting a new PRV datum, the oldest PRV datum should be
deleted. Thus, when computing entropy, we should just
subtract the entropy of S1 j and add the entropy of
SNw−m+2 j from the entropy before data updating. Mean-

while, the intermediate variables are also need update by
iterative after each data updating.

As shown in Figure 1, we denote the numbers of S1 j

and SNw−m+2 j as n′ h , n′ k and n h , n k , the probabil-

ities of S1 j and SNw−m+2 j as p′ h , p′ k and

p h , p k , and the entropies of S1 j and SNw−m+2 j as

BSE′ m and BSE m before and after updating PRV data,
respectively. After data updating, n h should subtract 1 and

n k should add 1. Then, n h = n′ h − 1, n k = n′ k + 1.

The initial value of BSE′ m = 0. In the iterative process
of computing entropy, the antilogarithm of logarithm

must be over 0; according to the changes of n′ h , n′ k ,
n h , and n k , there are four kinds of iterative methods
to computing BSE as follows:

(1) n h > 0, n k > 1, which means the beat modes that
S1 j and SNw−m+2 j expressed all exist. Thus, during

computing BSE, the antilogarithm of logarithm will be over
0. By (5),

BSE′ m = − 〠
M

i=1

p′ i log2 p′ i

= − p′ 1 log2 p′ 1 ⋯− p′ h log2 p′ h ⋯

− p′ k log2 p′ k ⋯− p′ M log2 p′ M

= − p′ h log2 p′ h ⋯− p′ 1 log2 p′ 1 ⋯

− p′ M log2 p′ M ⋯− p′ k log2 p′ k ,

12

BSE m = − 〠
M

i=1

p i log2 p i

= − p 1 log2 p 1 ⋯− p h log2 p h ⋯

− p k log2 p k ⋯− p M log2 p M

= − p h log2 p h ⋯− p 1 log2 p 1 ⋯

− p M log2 p M ⋯− p k log2 p k ,

13

where M = 4m.
Because only the modes of S1 j and SNw−m+2 j are

changed, thus, −p 1 log2p 1 = − p′ 1 log2p′ 1 ,…, − p M

log2p M = − p′ M log2p′ M . With (12) and (13),

BSE m = BSE′ m − p h log2 p h − p k log2 p k

+ p′ h log2 p′ h + p′ k log2 p′ k
14

Simplify (14):

BSE m = BSE′ m −
n h

Nw −m + 1
log2

n h

Nw −m + 1

−
n k

Nw −m + 1
log2

n k

Nw −m + 1

+
n′ h

Nw −m + 1
log2

n′ h

Nw −m + 1

+
n′ k

Nw −m + 1
log2

n′ k

Nw −m + 1

= BS′ m −
n h

Nw −m + 1
log2

n h

Nw −m + 1

−
n k

Nw −m + 1
log2

n k

Nw −m + 1

+
n h + 1

Nw −m + 1
log2

n h + 1

Nw −m + 1

+
n k − 1

Nw −m + 1
log2

n k − 1

Nw −m + 1

= BS′ m +
n h

Nw −m + 1
log2 1 +

1

n h

+
1

Nw −m + 1
log2

n h + 1

n k − 1

+
n k

Nw −m + 1
log2 1−

1

n k

15

Note that when the beat mode of S1 j is the same
as that of SNw−m+2 j before and after data updating,

the number of the beat mode that S1 j expressed

should subtract 1: n h = n′ h − 1, and the number of
the beat mode that SNw−m+2 j expressed should add 1:

n k = n′ k +1 = n h +1 = n′ h . Then, (14) is

BSE m = BSE′ m +
n h + 1

Nw −m + 1
log2

n h + 1

Nw −m + 1

+
n h

Nw −m + 1
log2

n h

Nw −m + 1

−
n h

Nw −m + 1
log2

n h

Nw −m + 1

−
n h + 1

Nw −m + 1
log2

n h + 1

Nw −m + 1

= BSE′ m

16

That means the entropy is not changed when data updat-
ing. Because the beat modes of S1 j and SNw−m+2 j are

the same, the total number of beat modes remains
unchanged.

(2) n h = 0, n k > 1, which means the beat mode

S1 j disappeared after data updating, and n′ h = 1,

p h = 0, p′ h = 1/ Nw −m+1 . By (14),
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BSE m = BSE′ m +
1

Nw −m + 1
log2

1

Nw −m + 1

+
n k − 1

Nw −m + 1
log2

n k − 1

Nw −m + 1

−
n k

Nw −m + 1
log2

n k

Nw −m + 1

= BSE′ m +
n k

Nw −m + 1
log2 1−

1

n k

−
1

Nw −m + 1
log2 n k − 1

17

(3) n h > 0, n k = 1, which means the beat mode of
SNw−m+2 j appeared the first time after data updating,

and n′ h = n h +1, n k = 1, n′ k = 0, p′ k = 0, p k = 1/
Nw−m+1 . By (14),

BSE m = BSE′ m +
n h + 1

Nw −m + 1
log2

n h + 1

Nw −m + 1

−
n h

Nw −m + 1
log2

n h

Nw −m + 1

−
1

Nw −m + 1
log2

1

Nw −m + 1

= BSE′ m +
n h

Nw −m + 1
log2 1 +

1

n h

+
1

Nw −m + 1
log2 n h + 1

18

(4) n h = 0, n k = 1, which means the beat mode of
S1 j disappeared, the beat mode of SNw−m+2 j appeared

the first time after updating data, and the total number

of beat modes is unchanged. Then, n′ h = 1, n′ k = 0,

p′ k = p h = 0, p′ h = p k = 1/ Nw−m+1 . By (14),

BSE m = BSE′ m +
1

Nw −m + 1
log2

1

Nw −m + 1

−
1

Nw −m + 1
log2

1

Nw −m + 1

= BSE′ m

19

By (15), (16), (17), (18), and (19), we will obtain the BSE
of PRV signal based on sliding window and iterative theory.

2.3. Experimental Data. The experimental data we used are
from the international authority of the database: PhysioNet/
Fantasia [20]. In this database, there are 40 health subjects
which have the same proportion of men and women, 20 of
them are the elderly (65–85 years old, data name:
f2o01m~f2o20m), the remaining subjects are the young
(21–34 years old, data name: f2y01m~f2y20m). The ECG
signal, continuous blood pressure signal, and respiration
signal are recorded when the subjects under rest and watch-
ing the Fantasia movies to keep awake. However, only half
of the subjects’ blood pressure signals are recorded (data

name: f2y01m-f2y10m, f2o01m-f2o10m). The data sampling
frequency is 250Hz, and the duration is 66 minutes.

The experimental data we used are the continuous blood
pressure signals. Compared with the ECG signal, the blood
pressure signal is uncalibrated. Therefore, the dynamic
difference threshold method is used to calibrate the P waves
[21], and the accuracy of the calibration is determined
manually. Then, by making a first-order difference for the
locations of the calibrated P waves, we will obtain a set of
continuous PP intervals, which is PRV signal.

In reality, there are some singularities in PRV signal that
have a bad effect on the signal processing results. A pretreat-
ment method is employed to delete the singularities from
these short-term PRV signals. The steps are as follows [22]:

Step 1. For the first datum PP 1 of PRV signal, if

PP 1 −mean PP > 1 5 × std PP , 20

then PP 1 is a singularity and thus deleted. In (20),
mean PP , std PP are the mean and the standard deviation
of a short-term PRV signal, respectively.

Step 2. For the ith datum PP i of PRV signal, if

PP i > 1 3 × PP i− 1 or

PP i < 0 7 × PP i− 1 ,
21

then PP i is singular and deleted, where PP i− 1 is the
datum before PP i .

3. Experimental Results

For simulating the process of PRV analysis in microcontrol-
ler system, the length of buffer is set to Nw, which is the
length of sliding window. In this study, the sliding window
theory is used to data updating. When obtaining a new
PRV datum, the data in buffer are analyzed with BSEA and
SWIBSEA, and the performance of the two methods are
compared.

The experimental data are continuous blood pressure sig-
nals that are used to generate PRV signals; the results of a
young subject and an old subject are selected randomly and
shown in Figure 2. With the individual differences in heart
rate, the length of two PRV signals are different. For 66
minutes of data, the young one is 2793 points corresponding
to the mean pulse rate is 56.1 beat per minute (bpm) and the
old one is 4849 points corresponding to the mean pulse rate
is 73.8 bpm.

In this study, the performance of SSEA and SWISSEA are
quantitatively evaluated by mean square error (MSE) and
program running time.

The MSE is defined as

MSE =
1

L
〠
L

i=1

BSE i −SWIBSE i

2

, 22

where L is the length of entropy, BSE i is the BSE extracted
by BSEA, and SWIBSE i is the BSE extracted by SWIBSEA.
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For the program running time, we test the programs of
SSEA and SWISSEA in MATLAB 2016a on a PC with i7-
6700HQ CPU (2.60GHz, 16GB buffered RAM).

3.1. Comparison of BSEA and SWIBSEA. The BSEA and the
SWIBSEA are used to compute the entropy of the PRV
signals in Figure 2. The results are shown in Figure 3.

When the total number of PRV data points in buffer is
less than window width,N <Nw, for BSEA, the BSE=0 based
on its theory; for SWIBSEA, this is the initial process, and we
compute the entropy by iterative, and the value increases
with N . When Nw ≥N , the BSEA updates PRV data by
sliding window and calculates BSE, while the SWIBSEA
computes BSE by sliding window iteration; their entropies
are shown in Figure 2. From the figure, it can be seen that
their values are the same and their MSE=0. The BSE of the
young subject is 3.784± 0.050 (mean± std), and the old sub-
ject is 4.056± 0.053, except for the entropy of the initial stage.

The time consumption of BSEA and SWIBSEA are
0.132 s and 4.769 s for the young subject and 0.192 s and
8.438 s for the old subject, respectively. For the two 66
minutes PRV signals, the time BSEA cost are 36 times and
44 times for SWIBSEA, respectively. Although the blood
pressure signals of the old and the young subjects have the
same length, but because of the individual differences, their
pulse rates are different, and the PRV signal lengths are

different. Thus, the time consumptions of the young and
the old are difference. While compared with BSEA, SWIB-
SEA saves a lot of running time in computing BSE and keeps
its values unchanged.

3.2. Comparison of BSEA and SWIBSEA under the Different
Lengths of SSV. According to the process of BSEA and
SWIBSEA, the length m of the SSV has great influence on
the running time of their program. The longer the length is,
the more the heartbeat modes are represented by the SSVs.
Therefore, keeping the width of sliding window and α

unchanged (here, they are assigned to 300 and 0.5, respec-
tively), we increase the value of m from 2 to 10, and the time
consumption of these two methods for a young subject and
an old subject are as shown in Figures 4 and 5.

Figure 4 shows the time consumption of the two method
for the 66 minutes PRV signal of a young subject; Figure 4(a)
is comparison of two method, and Figure 4(b) is the time
consumption of SWIBSEA. When m increases from 2 to 10,
the time they cost are all increased. The time consumption
of SWIBSEA are from 0.182 s to 0.218 s, and that of BSEA
are 42, 45, 45, 46, 50, 51, 62, 134, and 426 times for SWIB-
SEA. The growth rate of BSEA is 85.317 s, while that of
SWIBSEA is only 0.036 s.

Figure 5 is the time consumption of an old subject.
When m increases from 2 to 10, the time consumption of
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Figure 3: The comparison of BSEA and SWIBSEA for a young subject (a) and an old subject (b), when α = 0 5, Nw = 300, and m = 3.

6 Journal of Healthcare Engineering



SWIBSEA are from 0.115 s to 0.137 s, and that of BSEA are
40, 42, 42, 44, 46, 49, 60, 126, and 388 times for SWIBSEA.
The growth rate of BSEA is 48.524 s, while that of SWIBSE
is only 0.022 s. Although the time consumption of the two
methods are all increased, but the increase of SWIBSEA is
far less than that of BSEA, SWIBSEA will save much more
running time of a program.

The variation of m will cause some changes of the SSVs
in the window, which inevitably causes the change of the
BSE value. As is shown in Figure 6, when m increases from
2 to 10, the entropies of young subjects and old subjects
are increased. There are significant differences between
BSEA and SWIBSEA (P < 0 001, two-sample t-test), and
the increase of m does not affect the difference between the
young and the elderly.

3.3. Comparison of BSEA and SWIBSEA under Different Nw,s.
ThewidthNw of slidingwindow is corresponding to the length
of buffer in a microcontroller system, and the range of Nw is
varied from several minutes PRV data points (short-term

PRV signal) to several hours data points (long-term PRV sig-
nal), or even to 24 hours PRV data points. The short-term
PRV signal is used to derive some changes in the autonomic
nervous system within a short time, and the long-term PRV
signal is used to reflect the long time and slow changes of the
autonomic nervous system. They have potential to apply in
a clinic. However, with the increase of Nw, the time con-
sumption will increase inevitably. The results are shown in
Figures 7 and 8. The values of m and α are chosen randomly;
here, m = 3, α = 0 5. Then, the Nw increases from 100 to
1000 data points with the interval of 100. For the PRV signal
of the young subject (in Figure 7), the time SWIBSEA used
are from 0.1301 s to 0.1093 s, respectively. The time BSEA
used are 15, 30, 42, 56, 67, 80, 93, 104, 112, and 121 times for
SWIBSEA. For the PRV signal of the old subject (in
Figure 8), the time SWIBSEA used are from 0.199 s to 0.185 s,
respectively. The time BSEA used are 17, 33, 49, 63, 79, 93,
110, 124, 138, and 153 times for SWIBSEA. The increase of
BSEA from Nw = 100 to Nw = 1000 are 25.188 s, but that of
SWIBSEA decreases and the decrease is only 0.014 s. Because
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the SWIBSEA computes entropy with iterative and only
updates the related variables of PP 1 and PP Nw , the BSEA
needs to update all the variables in sliding window.

The change ofNw will have influence on BSE, as is shown
in Figure 9. WhenNw increases from 100 to 1000 data points,
the difference of BSE between the young subject and the old
subject are more and more larger.

4. Discussion

BSEA, as a nonlinear method, has been employed to
HRV signal analysis. Li and Ning [17] used BSEA to
analyze the short-term HRV (500 data points) extracted
from ECG signals of the PhysioNet/fantasia. When
m = 4,Nw = 500, and α = 0 2, the results of BSEA show that
the entropy increases with aging. The entropies are tested by
two-sample t-test and P < 0 05. If the BSE of healthy young
subjects represent the best physiological state of the human
body, the BSE of healthy old subjects deviated from that of
the old subjects, which indicates that normal aging can lead
to some function degradation of the body’s control system.
We use SWIBSEA to analyze the HRV signals in [17] and get
the sameresults as [17]. Similar to theHRVsignal, thePRVsig-
nal is also generated from heartbeat. When m = 4, Nw = 500,
and α = 0 2, the BSE of PRV signals are shown in Figure 10,
and the entropies in the figure are the mean of BSE which are
derived by SWIBSEA. The two-sample t-test of P = 0 008
and <0.05. We do the linear fitting of the entropies by aging,

as shown on the solid line, the entropies increase with aging,
the same as the result of short-term HRV signals analysis.

BSE has been effectively used for HRV signals analysis. In
this study, on the basis of BSEA and with the theory of sliding
window iterative, we proposed SWIBSEA for improving the
computing efficiency of BSEA. Different from BSEA, it is
not necessary to process all the data in buffer after date
updating with sliding window for SWIBSEA. For example,
when the buffer cache is 1024 bytes,m = 5. For BSEA, it needs
more than 8169 bytes of memory space to store interme-
diate variables, that is, Nw = 1024 bytes for storing PRV
data, Nw−m+1 = 1024− 5+1 = 1020 bytes for storing
BS i , Nw−m+1 ×m = 1024− 5+1 × 5 = 5100 bytes

for storing SSVs, 4m=1024 bytes for storing the number
of different SSVs, and 1 byte for storing BSE. Meanwhile,
it also needsNw−1 = 1023 times shifting operations to update
data; Nw−m+1 = 1024− 5+1 = 1020 times RMS operations
to compute BS; 1020 times loops and Nw −m + 1 ×
m × 4 = 1024− 5+1 × 5 × 4 = 20400 times comparison
operations to construct SSVs; Nw ×m = 1024 × 5 = 5120
times comparison operations to updating n j ; 1024 times
multiplications for computing p j ; 1024 times multiplica-
tions, 1024 times logarithms, and 1023 times additions for
getting BSE. However, For SWIBSEA, it only needs 2061
bytes, that is, 1024 bytes for buffering PRV data, 2 bytes for
storing BS1 and BSNw−m+2, 2∗m = 10 bytes for storing
S1 j and SNw−m+2 j , 4m=1024 bytes for storing

n j , and 1 byte for storing BSE. Meanwhile, it needs
1023 times shifting operations to update PRV signal, and 2
times RMS operations to compute BS1 and BSNw−m+2,
m∗4∗2 = 40 times comparison operations to compute
S1 j and SNw−m+2 j , at most 9 times multiplications, 3

times logarithms, and 6 times additions to compute BSE
(sometimes, it does not need to update the BSE). Since the
storing addresses of n j are generated by encoding, no
loops and comparison operations are required when update
n j . Compared with BSEA, the SWIBSEA saves 6108 bytes

buffer space. In addition, the slidingwindow iterative theory is
usedby theSWIBSEA, thus, its time consumptionare reduced,
and it can be engaged in PRV signal analysis in real time.

Moreover, the proposed method significantly reduces the
time consumption and buffer cache, and can be used for both
short-term and long-term PRV signals (in Section 3.3) by
adjusting the width of the sliding window. The length of
PRV signal only determines the initialization time; after the
initialization, the BSE can be calculated by iterative, and the
time consumption between the short-term PRV signal and
the long-term PRV signal has not significantly increased.

5. Conclusion

In this study, the sliding window iterative theory is used to
improve the BSEA, and the SWIBSEA is proposed and
employed to analyze the data of healthy young and old sub-
jects from MIT/PhysioNet/Fantasia database. The results
show that compared with BSEA, the SWIBSEA reduces the
computing time and saves the buffer cache while keeping
the BSE unchanged. Meanwhile, by adjusting the width of

20 30 40 50 60 70 80 90

Age (years)

5

5.5

6

B
SE

(4
)

Figure 10: The SSE results of young subjects and old subjects. “o” is
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fitting result of BSE changed with age. Chain dotted line is the 95%
confidential region.
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sliding window, the SWIBSEA can analyze the long-term and
short-term PRV signals in real time. The experimental results
show that the BSE increases with aging, and normal aging
leads to some functions degradation of the control system.
Therefore, the SWIBSEA could be employed in some wear-
able and portable devices for analyzing dynamic PRV signal
in real time.
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