A Real-Time Compressed Sensing-Based Personal
Electrocardiogram Monitoring System

Karim Kanoun, Hossein Mamaghanian, Nadia Khaled and David Atienza
School of Engineering (STI)
Ecole Polytechnique Fédérale de Lausanne (EPFL)
CH-1015 Lausanne, Switzerland; E-mail: {name.surname}@epfl.ch

Abstract—Wireless body sensor networks (WBSN) hold
the promise to enable next-generation patient-centric mobile-
cardiology systems. A WBSN-enabled electrocardiogram (ECG)
monitor consists of wearable, miniaturized and wireless sensors
able to measure and wirelessly report cardiac signals to a
WBSN coordinator, which is responsible for reporting them to
the tele-health provider. However, state-of-the-art WBSN-enabled
ECG monitors still fall short of the required functionality,
miniaturization and energy efficiency. Among others, energy
efficiency can be significantly improved through embedded ECG
compression, which reduces airtime over energy-hungry wireless
links. In this paper, we propose a novel real-time energy-aware
ECG monitoring system based on the emerging compressed
sensing (CS) signal acquisition/compression paradigm for WBSN
applications. For the first time, CS is demonstrated as an
advantageous real-time and energy-efficient ECG compression
technique, with a computationally light ECG encoder on the
state-of-the-art Shimmer™ wearable sensor node and a real-
time decoder running on an iPhone (acting as a WBSN coordi-
nator). Interestingly, our results show an average CPU usage of
less than 5% on the node, and of less than 30% on the iPhone.

I. INTRODUCTION

According to the World Health Organization, cardiovascu-
lar diseases are the number one cause of death worldwide,
responsible for an estimated 17.1 million deaths in 2004
(i.e., 29% of all deaths worldwide) and economic fallout in
billions [1]. These increasingly prevalent cardiac diseases are
requiring escalating levels of supervision and medical manage-
ment, which are contributing to skyrocketing health care costs
and, more importantly, are unsustainable for traditional health
care infrastructures. Wireless body sensor networks (WBSN)
promise to allow inexpensive, continuous and remote health
monitoring for next-generation of ambulatory personal tele-
cardiology or e-cardiology systems. Outfitting patients with
wearable, miniaturized and wireless sensors able to measure
and wirelessly report cardiac signals to tele-health providers
would enable the required personalized, real-time and long-
term ambulatory monitoring of chronic patients, its seamless
integration with the patient’s medical record and its coordina-
tion with nursing/medical support.

While the resting electrocardiogram (ECG) monitoring is
standard practice in hospitals, its ambulatory counterpart is

This research has been partially funded by the Nano-Tera.ch NTF Project
BioCS-Node, which is financed by the Swiss Confederation. 978-3-9810801-
7-9/DATEI11/ ©2011 EDAA

still facing many technical challenges. For instance, the 3-
lead ECG is still nowadays recorded on data-logging (Holter)
devices during 1 to 5 days of normal daily activities of
a patient. These systems, currently commercialized by GE
health care, Sorin Group, Mortara and Philips health care,
suffer from important limitations: limited autonomy, bulki-
ness and no or limited wireless connectivity. Recently, the
realization of wireless-enabled ultra-low-power ECG monitors
for ambulatory use has been receiving significant industrial
and academic interest [2], [3], [4]. Yet, these state-of-the-art
ECG monitors fall short in terms of either clinical relevance
and/or autonomy figure, primarily because they transmit un-
compressed ECG data over power-hungry wireless links. It
is today widely acknowledged that the achievement of truly
WBSN-enabled personal ECG monitoring systems requires
more breakthroughs not only in terms of ultra-low-power read-
out electronics and radios, but also and increasingly so, in
terms of embedded ECG compression and feature extraction
algorithms, and assorted ultra-low-power dedicated digital
processors.

ECG compression relies on the sparse (and thus compress-
ible) nature of the ECG, as it can be approximated by a
compact representation in the wavelet domain [5]. Capitalizing
on this sparsity, we propose to apply the emerging compressed
sensing (CS) approach [6], [7] for a low-complexity, real-
time and energy-aware ECG signal compression on WBSN
motes. This is motivated by the observation that this new
signal acquisition and compression paradigm is well suited
for low-power implementations since it dramatically reduces
the need for resource-intensive (both processing and storage)
DSP operations on the encoder side.

CS is a new sensing and processing paradigm, which
challenges the traditional analog-to-digital (ADC) conversion
based on the Shannon sampling theorem. The latter theorem
states that, given a signal of bandwidth (2, it is sufficient
to sample it at 2€2 samples per second (i.e., the Nyquist
rate) to ensure faithful representation and reconstruction. For
sparse signals such as the ECG, (above) Nyquist-rate sampling
produces a large amount of redundant digital samples, which
are costly to wirelessly transmit and require to be further
compressed using non-linear digital techniques. If one sets
course to design energy-aware embedded ECG sensors, it is
desirable to reduce the number of acquired ECG samples by

taking advantage of the sparsity, or the reduced “information
rate” of the ECG signal. CS is a methodology recently
proposed to address this problem. The main idea behind CS
is relatively simple. Suppose the considered signal has a (po-
tentially large) bandwidth €2 but has a sparse approximation,
i.e., it can be represented by a linear superposition of K
elements of a dictionary, with K << €. CS states that you
only need to collect roughly K samples (<< Nyquist rate)
using simple measurement waveforms, thus sensing/sampling
and compressing at the same time. The price to pay for these
advantages is a more complex decoder, which recovers the
original signal by solving a convex optimization problem.
Many algorithms were introduced to solve the CS reconstruc-
tion problem, e.g., interior-point algorithms [8], gradient pro-
jection [9], iterative thresholding [10], and greedy approaches
such as orthogonal matching pursuit (OMP) [11]. In general,
reconstruction algorithms for solving the inverse problem are
computationally expensive and involve large and dense matrix
operations, which prevents the real-time implementation on
embedded platforms.

In this paper, we use the fast iterative shrinkage-thresholding
algorithm (FISTA) [12], a popular method for CS recovery.
The main contributions of this work are: (1) a novel CS ap-
proach that precludes large and dense matrix operations both at
compression and recovery, and (2) several platform-dependent
optimizations and parallelization techniques to achieve real-
time CS recovery. To the best of our knowledge, this work
is the first to demonstrate CS as an advantageous real-
time and energy-efficient ECG compression technique, with
a computationally light and energy-efficient ECG encoder on
the state-of-the-art Shimmer™ wearable sensor node and a
real-time decoder running on an iPhone (acting as a WBSN
coordinator).

The rest of this paper is organized as follows. Section II
introduces our proposed ECG compression and reconstruction
scheme. Section III details the performance metrics and ECG
database used for its evaluation. Section IV details our embed-
ded implementations. Then, Section V presents a discussion
of our results and main conclusions.

Notation: In all the following, normal letters designate
scalar quantities, boldface lower-case letters indicate column
vectors, and boldface capitals represent matrices. Moreover,
m; and M, ; are the i" entry of vector m and the (i, j)*" entry
of matrix M, respectively. Finally, (.)* and ||.|| , denote the
conjugate transpose, and the /,-norm of a vector, respectively.

II. METHODS

This work presents a complete real-time implementation of,
on the one hand, a CS-based ECG compression/encoding on
the embedded Shimmer™ wireless mote, and on the other
hand, the corresponding ECG reconstruction on an iPhone.
On the encoder side, the compression algorithm consists of
the three processing stages depicted in Figure 1: a linear
transformation is first applied to the original ECG signal,
followed by an inter-packet “redundancy removal” stage, and
an entropy encoding algorithm (i.e., Huffiman Coding) is finally

x d Y | Redundancy| % Scalar Z Entropy c
Removal Quantization Coding
¢ Entropy z Decoding & y Reonstruction X
Decoding Packet Reconstruction 1, norm minimization

Fig. 1. Block diagram of the ECG compression scheme on the Shimmer™
wireless mote (top) and the reconstruction scheme on the iPhone (bottom)

applied which outputs the compressed signal to be wirelessly
transmitted. Correspondingly, the decoder consists of three
stages as seen in Figure 1: the input codes are decoded
using the same codebook used in the encoder side, followed
by a packet reconstruction stage which re-inserts the inter-
packet redundancy removed during the encoding, and finally
the FISTA CS reconstruction algorithm is applied to find the
best estimation of the original ECG.

A. CS-Based ECG Compression Algorithm

As aforementioned, the original ECG signal x has a sparse
approximation, i.e., it can be represented by a linear su-
perposition of S elements of an orthonormal wavelet basis
U = [1hy]1),] - |¢0y], as follows x = Wag, where ag
represents the N-dimensional coefficient vector with only
S non-zero entries (S < N). Accordingly, CS shows that
it is sufficient to collect roughly S samples using simple
analog measurement waveforms, thus sensing/sampling and
compressing at the same time. Moreover, by merging the
sampling and compression steps, CS removes a large part of
the digital architecture. This so-called analog CS”, where the
compression occurs in the analog sensor read-out electronics
prior to ADC conversion is our ultimate goal. Its demon-
stration still requires extensive work on the analog sensor
read-out electronics. Consequently, in the present work, we
propose to approach it through “digital CS”, where the linear
CS compression is applied after the ADC.

Accordingly, as depicted in Figure 1 (top), we collect M
samples using simple measurement vectors {¢; }1<i<am as
Yi = q.’)f{x, i = 1,---, M. Consequently, the CS linearly
compressed data vector y € RM is described by: y = ®x,
where ® denotes the M x N measurement or sensing matrix
with the vectors ¢{{ R qﬁfl as rows. Notice that the sensing
matrix ® does not depend on the signal. To guarantee robust
and efficient recovery of the S-sparse signal g, the sensing
matrix ® must obey the key restricted isometry property
(RIP) [13], [14]:

(1 =ds)[lll, < [[@], < (1+s)[lell,, (D)

for all S-sparse vectors «. dg is the isometry constant of
matrix ®, which must be not too close to one. A universal
good choice for the sensing matrix ® are random matrices,
such as random matrices with independent identically dis-
tributed (i.i.d.) entries formed by sampling (1) a Gaussian
distribution A/ (0, 1/N); (2) a symmetric Bernoulli distribution
(P(®; ; = +1/V/N) = 1/2). As we show later on, many effi-
cient sensing matrices can be constructed with simple pseudo-
random design that can be implemented using a surprisingly
small amount of on-board memory and computation.

B. CS Reconstruction Algorithm

If the RIP holds, then accurate reconstruction can be ac-
complished in the presence of measurement noise by solving
the following convex optimization problem:

min_[|&; |e¥a —yll, <o, (2)

subject to
&aeRrRN
where ||&||; stands for the sum of the absolute values of
the components of &, and o bounds the amount of noise
corrupting the data. The /; norm is used to induce the sparsity
in the optimal solution. The problem in (2) can alternatively
be cast as the following non-smooth convex optimization
problem:
min {F(&) = ||@Pa -yl + A&} G)
&ERN —_—— ~——

f(&)
where f(.) and g(.) are convex functions, and g¢(.) is
non-smooth. In most applications, this problem is large scale
and involves dense matrices, which often precludes the use
of the sophisticated interior point methods. This motivated
the search for simpler gradient-based algorithms to solve (3),
using relatively cheap matrix-vector multiplication. One of
the most popular methods for solving the reconstruction
problem (3) belongs to the class of iterative shrinkage-
thresholding algorithms (ISTA), where each iteration involves
a matrix-vector multiplication followed by a shrinkage/
soft-thresholding step [10]. ISTA is however notoriously
slow. Therefore, different accelerations of ISTA have been
proposed [15], [12]. Among these accelerations, we herein
use the FISTA algorithm developed in [12]:

g(&)

FISTA with constant step size

Input : L = L(f) — a Lipschitz constant of V f
Step0 :Take y; = &g € R",¢; = 1.
Stepk :(k > 1) Compute

&1 = prox,, (9)(ve — 7 VI () @

14 /1 + 482
2

1

th1

tet1 =)

t

Yit1 = &g + (V(&g — ap—1) (6)

The two general steps of FISTA are (4) and (6), and
the simplicity of the algorithm depends on the ability to
compute the “prox” operation. Since g(x) = A|[x]||;, the
’prox” operation is the same as a simple soft thresholding [15].
Therefore, while the convergence of the original ISTA to the
solution is in the order of ~ O(1/k), k being the iteration
number, FISTA converges faster at rate O(1/k?) [12].

III. ECG DATABASE AND PERFORMANCE METRICS

To validate the performance of the considered compression
schemes, we use the MIT-BIH Arrhythmia Database [16], [17]
that is the most commonly used database for the comparative
study of ECG compression algorithms. This database contains
48 half-hour excerpts of two-channel ambulatory ECG record-
ings, obtained from 47 subjects studied by the BIH Arrhythmia

Laboratory. The recordings were digitized at 360 samples per
second per channel with 11-bit resolution over a 10 mV range.
Moreover, to quantify the compression performance while
assessing the diagnostic quality of the compressed ECG
records, we employ the two most widely used performance
metrics, namely the compression ratio (C'R) and percentage
root-mean-square difference (PRD). C'R is defined as:
borig — beomp x 100, (7

borig

CR=

where byig and b, represent the number of bits required

for the original and compressed signals, respectively. The

PRD, and associated signal-to-noise ratio (SN R), quantifies

the percent error between the original signal vector x and the

reconstructed X:

prD = X=Xl 00,
[IxIl

IV. OUR REAL-TIME PERSONAL ECG MONITOR

SNR = —201log,, (0.01PRD).

In this section we describe the used embedded platforms,
and report the platform-dependent optimizations we perform
on the two algorithms of Section II to achieve real-time
execution and optimized memory footprint.

A. Real-Time CS-Based ECG Compression on Shimmer™

1) The Shimmer™" embedded platform: Our target platform
is the Shimmer wireless sensor mote [3]. From the hardware
viewpoint, the Shimmer™ mainboard includes the low-power
Texas Instrument 16-bit MSP430F1611 microcontroller and
a Bluetooth module. The MSP430 microcontroller runs at
8 MHz, has 10 kB of RAM, 48 kB of Flash and includes
a fast hardware multiplier, but does not include a floating-
point unit. The mainboard also includes a Micro SD slot
supporting up to 2 GB of Flash memory for data storage, and
is powered by a rechargeable Li-polymer battery. Since our
aim is to comparatively study the two compression algorithms
on the standard MIT-BIH arrhythmia database, we used the
Shimmer™ serial port to read in the database records re-
sampled at 256 Hz, and to readout the encoded ECG data.
From the software viewpoint, we used the open-source GCC
3.2.3 tool chain for the MSP430 [18] to generate the binaries.

2) Real-time CS-Based ECG compression: The implemen-
tation of Gaussian random sensing with matrix & € RM*N,
requires the implementation of a Gaussian-distributed random
number generator on the embedded platform and the compu-
tation of a large matrix multiplication. This is too complex,
time consuming, and not real-time for both the encoder and
decoder. Thus, we explored three different approaches to the
implementation of the random sensing matrix ®: (1) We
implemented an 8-bit quantized version of a normal random
number generator to form @®; the normal random number
generator on-board still made this approach not real-time.
(2) We also circumvented the on-board generation of the
normal random numbers by storing them on the platform;
the large dense matrix multiplication still remained a main
bottleneck. (3) We introduced an innovative approach to CS

implementation using a sparse binary sensing matrix ®, i.e.,
sparse binary sensing.

In a sparse binary matrix ®, each column has exactly d
nonzero entries equal to 1/+/d, with d < N. The positions of
the d non-zero elements are randomly chosen to keep the inco-
herence between the columns of the sensing matrix. Obviously,
the choice of the number of non-zero elements depends on the
sparsity of the signal. For this sensing matrix, the RIP property
of (1) is not valid. However, such a sensing matrix satisfies
a different form of this property, so-called RIP, property
[19], which was shown to be sufficient to guarantee a good
sparse approximation recovery by a linear program. Since
sparse sensing matrices are amenable to very fast and efficient
implementation of the large matrix multiplication required by
the CS, we herein explore the use of sparse sensing matrices
to decrease execution time. Figure 2 shows the average output
SNR vs. CR for sparse binary sensing with d = 12 on
the MSP430 and the optimal Gaussian sensing on Matlab.
The results obtained validate that there is no meaningful
performance difference between the two approaches. d = 12
was identified as the minimum value that the optimal trade-off
between execution time (a 2-second vector is now CS-sampled
in 82 ms) and (signal) recovery/reconstruction error.

——+—— Sparse sensing
20 —<—— Gaussian sensing

N
N

Output SNR (averaged over all Data)

o

4
50 55 60 65 70 75 80

Compression Ratio (CR)

Fig. 2. Performance benchmarking of sparse binary CS

The use of a fixed binary sensing matrix, combined with the
quasi-periodic nature of the ECG signal, yields to very similar
consecutive measurement vectors y. So, a large inter-packet
redundancy exists, which must be removed prior to encoding
and wirelessly transmit. Hence, the redundancy removal mod-
ule computes the difference between consecutive vectors, and
only this difference is further processed. At the end, a state-of-
the-art entropy coding module is used for further compression.
Since the range of the difference signal just before encoding
is between [—256 : 255], a complete Huffman codebook of
size 512 is needed with a maximum codeword length of 16
bits, for a given compression ratio. The storage of the offline-
generated codebook requires 1 kB for the codebook itself and
512 B for its corresponding codeword lengths. The complete
CS implementation requires 6.5 kB of RAM and 7.5 kB of
Flash, 1.5 kB of which are for Huffman codebook storage.

B. Real-Time ECG reconstruction optimization on the iPhone

Our target platform is the iPhone 3GS mobile phone, which
includes an ARM Cortex™-A8 processor [20]. This archi-
tecture supports multi-thread execution and single instruction

multiple data (SIMD) instructions, which we exploit to achieve
real-time operation of the CS-based ECG reconstruction.

1) High-Level Application Partitioning: We have devel-
oped a multi-thread application using the producer-consumer
paradigm to display and decode the ECG. The first thread man-
ages the Bluetooth connection using BTStack [21], decodes
the data and stores 2 sec. of ECG (i.e., 512 sampled values)
into a shared buffer. The second thread reads data from the
shared buffer and draws it on the screen. Then, to avoid the
decoder to be paused, the second thread is called each 15 ms
to draw 4 new pixels. Finally, the buffer needs to store 6 sec.
of ECG: 2 sec. for reading, 2 sec. for writing and 2 additional
sec. due to the delay on the iPhone drawing hardware.

2) Low-Level Optimization of the CS Reconstruction Algo-
rithm: The techniques used to optimize the CS reconstruction
algorithm are based on exploiting code vectorization and
SIMD extensions, typical of a large set of embedded micropro-
cessors nowadays. In the case of the ARM Cortex-AS8 of the
iPhone 3GS, the SIMD support is implemented using intrinsics
in a general-purpose SIMD engine called NEON [20]. These
intrinsics provide similar functionality to in-line assembly and
appear as function calls in C' that are replaced at compile-time
by a sequence of low-level instructions specific to the Cortex-
A8. Vectorizing the CS reconstruction algorithm involves
operating on vectors of data lengths between 2 and L elements,
according to the underlying SIMD hardware support, where L
is the maximum allowed float elements per vector. Regarding
our iPhone implementation, we vectorized the reconstruction
algorithm to operate on vectors of 4 float data, as this is
the largest value of L supported on the iPhone 3GS. These
vectors are processed inside loops, which are defined by the
matrices of the CS reconstruction process. Thus, the loops size
of the CS reconstruction algorithm is the only hard limitation
on the vectorization process. Hence, we perform two different
optimizations related to array padding, loop unrolling and loop
peeling [22] in the hierarchy of loops to achieve real-time
operation, namely:

a) Single-loop optimization: When the number of itera-
tion in a loop is a multiple of L, it can be then vectorized
into vectors of L elements. Each iteration is then independent
from all previous ones and all vectorization pointers can
operate on L successive addresses. However, if the iteration
is not processing L successive addresses, then the vectors
need to be loaded lane by lane. The following example shows
an implementation of a simple multiply-accumulate in the
code of the CS reconstruction algorithm. In particular, in the
iPhone the Vector Floating Point (VFP) implementation takes
18 — 21 cycles for a single-precision multiply-accumulate, but
by exploiting NEON intrinsics, we can execute two multiply-
accumulate in 1 cycle, achieving large performance saving.

In addition, the loops (or the number of the iterations
of the loop) of the CS reconstruction algorithm use arrays
not multiple of L elements for the filtering functions (cf.
Section II-B). Therefore, the remaining elements of the loop
after the vectorization are processed separately, which implies
three different cases, as shown in Figure 3.

Original code
for i = 1 to n do
d[i] < a[i] + b[i] * c[i]
end for
Vectorized code
for i = 1ton/4 do
d[4 1] «— a[4 * i) + b[4 * 3] x c[4 * 4]
dAdxi+1) «—a[d*xi+ 1] +b[d*xi+ 1] xc[4dxi+ 1]
dl4*i+2] — a[d*1+4+ 2]+ b[d i+ 2] *c[d*i+ 2]
dl4*i+3] — a[d*i+ 3]+ b4 i+ 3]*c[dx*i+ 3]
end for
Vectorized code with NEON Intrinsics
for i = 1ton/4 do
initializing pointers and registers
r4d — vmlaq_f32(z4, y4, z4)
storing results and incrementing pointers
end for

This figure illustrates the vectorization of a loop operating on
an array of L x Iter + A elements with A < L, assuming
Iter =2, L = 4 and A = 3. Thus, the first Iter iterations are
vectorized without left element, but during Iter + 1 iteration,
the vector only has A elements and one of the following three
vectorization methods needs to be applied:

Combining array padding [22] techniques with loop unrolling
by Allocating larger array. More memory will be then
consumed. The new padding elements should be well initiated
in order to not affect the result of the calculation.

Combining loop peeling [22] techniques with loop unrolling
by dividing the loop into two overlapping loops. (L - A)
elements of the array will be computed twice. Overlapping
can be used only when Iter > 0 and the operation applied to
the input data does not vary with the number of times the

operation is applied. Overlapping

The third method also combines loop peeling [22] techniques I B]

with loop unrolling, but the two loops are processed without T

overlapping. The remaining 4 elements will be computed one I

by one. First loop for vectors and a second loop for single O

remaining elements. This method will double the size of the ! . 2 A3

code. Single elements
Fig. 3. Handling leftover elements (fastest approach first)

Finally, we transform the loops of the CS reconstruction
containing any ¢f statement to be correctly vectorized. Con-
sider the optimization of the following code from the CS
matrix projection:

for ¢ =1 to ndo

yli] — fabs(uli]) =T
yli] — yli] = (y[i] > 0.0f)
if w[i] > O then

yli] — yli]
else if w[i] < O then

yli] — —yld]
else

yli] <0
end if

end for

Indeed vectorizing part of this loop and keeping the i f state-
ment written in its original code implies large performance
penalties, as the processor keeps loading and storing elements
from the NEON pipeline to the ARM pipeline. Hence, this
loop can be parallelized (i.e., where Y[i] is multiplied by the
sign of Uli]) by considering two vectors of L elements, as
shown in Figure 4 with L = 4. This implementation was
inspired from a specific if-conversion technique [23], which
uses the results of the comparison operator as values.

[o]o 0 Ut [Uie2) | ugi+3)

OO D
/

‘ Sign(U[i]) ‘ Sign(U[i+1]) ‘ Sign(U[i+2]) ‘ Sign(U[i+3])

Fig. 4. Using vectors to get the sign of 4 successive elements

b) Multi-level loop optimization: In the filtering func-
tions of the reconstruction algorithm, two levels of loop nests
occur frequently and we can vectorize the inner or outer loop.
For example, in the multi-band pass filter code excerpt shown
next, the inner loop computes 2 elements: X, output of the low
pass filter, is calculated from 7'_input and HO; Y, output
of the high pass filter, is computed from 7"_input and H1.
Then, HO and H1 are constant arrays that contain the filters

coefficients:

for i = 0 to I do
for j = 0 to m do
X+ — T_input[i + j] * HO[j]
Y+ «— T_input[i + j] * H1[i]
end for
out_l[i] — X
out_h[i] — Y

end for
In this case, if I is a multiple of L, vectorizing the outer
loop implies having two vectors X and Y with L elements
each. Thus, the total number of executed multiply accumulate
(M AC) instruction is 2 % (I /L) * m. Since L < m and m is
a multiple of L in the loops of the reconstruction algorithm,
vectorizing the inner loop is also possible, but it would require
the execution of 2 % I = (L — 1) additional add instructions.
Figure 5 shows the difference between vectorizing either the
inner loop or the outer loop (I = 4, m = 8 and L = 4).
As a result, in the multi-level loops of the reconstruction

Vectorization Additional Instr.

0 =)
————— ——c—r—| For each iteration of the outer

—————| loop, the computed elements of
vector of the inner loop need to

———1—| be accumulated
Inner loop vectorized g
0 31 g2

R re ' | The output vector contains
o H HH HH HH HH HH HH already the final results

3
Outer loop vectorized

Fig. 5. Difference between inner loop and outer loop vectorization

algorithm where [is a multiple of L, we vectorize the outer
loop. However, in the implementation of /; algorithm, I is not
constant and smaller than L in several loops. Nonetheless, we
can vectorize the outer loop by considering only one vector
containing both elements X and Y together. Hence, the total
number of M AC instruction is reduced to I * m.

V. REAL-TIME PERFORMANCE RESULTS

We have implemented the proposed optimizations (cf. Sec-
tion IV) for the 16-bit CS encoder and 32-bit reconstruction

45| — ¢ — Matlab (64bit precision)
—6— iPhone (32bit precision)

Output PRD (averaged over all Data)

30 40 50 60 70 80 90
Compression Ratio (CR)

Fig. 6. Performance comparison of ECG reconstruction

algorithm. Figure 6 shows that the real-time implementation
of the CS-based ECG system for WBSNs provides the same
accuracy as the original 64-bit Matlab design. Moreover, after
applying the low-level optimizations of the CS reconstruction
algorithm (cf. Section IV-B), the algorithm runs 2.43 times
faster for a compression ratio of 50%, which guarantees an
accurate ECG reconstruction. Without these low-level op-
timizations, the maximum number of iterations of the CS
reconstruction process to respect the real-time operation of
the decoding part (i.e., 1 sec. of total time spent in ECG
reconstruction every 2 sec.) reaches 800 iterations, while the
optimized code reaches up to 2000 iterations.

900 0.46
850 lteration 0.44
——Time 7
800 0.42

c

o a

® 750 04 E

] [

~ 700 0.38
650 0.36
600 0.34

30 40 50 60 70
Compression Ratio

Fig. 7. Average execution time (in seconds) and number of iterations on the
iPhone to reconstruct 2-second ECG packet

Figure 7 shows the average number of iterations and the
average execution time per packet while testing the MIT-BIH
Arrhythmia database [17] on the iPhone for different ratios. As
Figure 8 illustrates, the optimized system accurately receives
and reconstructs in real-time the ECG signal on the iPhone
3GS (as a WBSN coordinator), only taking a 17.7% of total
CPU usage on average for a compression ratio of 50%. At the
same time, the Shimmer™ node is able to sense, compress and
transmit the ECG signal to the WBSN coordinator in real-
time, while having an average CPU usage of less than 5%.
These results translate into a 12.9% extension in the node
lifetime, with respect to streaming uncompressed data, which
suggests the energy efficiency of CS. Moreover, the processing
energy can be further reduced using a more power-efficient
microcontroller than the TI MSP430 of the Shimmer™".

VI. CONCLUSION

WBSN can offer cost-effective solutions to enable next-
generation patient-centric tele-cardiology or e-cardiology so-
lutions. In this regard, we have presented a novel real-time

17:03

|_Start . Pause | o)
Fig. 8. ECG on the iPhone

energy-aware ECG monitoring system based on the emerg-
ing compressed sensing (CS) signal acquisition/compression
paradigm for WBSN applications. Our system demonstrated
the feasibility of using CS in real-time for ECG compression,
by implementing a light ECG encoder on the Shimmer™
wearable sensor node and a real-time decoder running on an
iPhone 3GS, which acts as a WBSN coordinator.
REFERENCES

[1
[2

—

World Health Organization, “Cardiovascular diseases,” 2009. [Online].
Available: http://www.who.int/topics/cardiovascular_diseases/

Toumaz Technology, 2009. [Online]. Available: http://www.toumaz.
com/public/news.php?id=92

[3] Shimmer Research. [Online]. Available: http://shimmer-research.com

[4] R. E Yazicioglu and et al., “Ultra-low-power wearable biopotential
sensor nodes,” in Proc. of the IEEE EMBC’09, Sep. 2009.

[5] L. Sornmo and et al., Bioelectrical Signal Processing in Cardiac and
Neurological Applications. Elsevier Academic Press, 2005.

[6] E. Candes and et al., “Robust uncertainty principles: Exact signal
reconstruction from highly incomplete frequency information,” /EEE
Trans. on Inform. Theory, vol. 52, no. 2, pp. 489-509, Feb. 2006.

[7]1 D. L. Donoho, “Compressed sensing,” IEEE Trans. on Inform. Theory,
vol. 52, no. 4, pp. 1289-1306, Apr. 2006.

[8] S. S. Chen and et al., “Atomic decomposition by basis pursuit,” SIAM
J. Sci. Computing, vol. 20, no. 1, pp. 33-61, 1999.

[9] M. Figueiredo and et al., “Gradient projection for sparse reconstruction:
Application to compressed sensing and other inverse problems,” /IEEE
Jrl. of Selec. topics in Signal Proc., vol. 1, no. 4, pp. 586-597, 2007.

[10] I. Daubechies and et al., “An iterative thresholding algorithm for linear
inverse problems with a sparsity constraint,” Comm. Pure Appl. Math.,
vol. 57, pp. 1413-1457, 2004.

[11] J. Tropp, “Greed is good: Algorithmic results for sparse approximation,”

IEEE Trans. on Inform. Theory, vol. 50, no. 10, pp. 2231-2242, 2004.

A. Beck and et al., “A fast iterative shrinkage-thresholding algorithm

for linear inverse problems,” SIAM J. Img. Sci., vol. 2, no. 1, 2009.

[13] E.J. Candes and et al., “Decoding by linear programming,” IEEE Trans.
on Inform. Theory, vol. 51, no. 12, pp. 4203-4215, Dec. 2005.

[14] E. Candes and er al. “Stable signal recovery from incomplete and
inaccurate measurements,” Comm. on Pure and Applied Mathematics,
vol. 59, pp. 1207-1223, 2006.

[15] J. Bioucas-Dias and et al., “A new twist: Two-step iterative shrink-

age/thresholding algorithms for image restoration,” IEEE Trans. Img

Proc., vol. 16, no. 12, pp. 2992 -3004, 2007.

G. B. Moody and et al., “The impact of the MIT-BIH arrhythmia

database,” IEEE Eng. in Med. and Bio., vol. 20, no. 3, pp. 45-50, 2001.

“MIT-BIH arrhythmia database.” [Online]. Available: http://www.

physionet.org/physiobank/database/mitdb/

“GCC toolchain for the TI MSP430 MCUSs.” [Online]. Available:

http://mspgcc.sourceforge.net/

[19] R. Berinde and et al., “Combining geometry and combinatorics: A
unified approach to sparse signal recovery,” in Proc. of Allerton, 2008.

[20] “Cortex-a8 series.” [Online]. Available: http://infocenter.arm.com

[21] “Btstack.” [Online]. Available: http://code.google.com/p/btstack/

[22] D. F. Bacon and et al. “Compiler transformations for high-performance
computing,” ACMComput. Surv., vol. 26, pp. 345-420, 1994.

[23] M. Suzuki and et al. “SIMD optimization in COINS compiler

infrastructure,” in Proc. of IFGHPCS, pp. 10pp, 2005.

—

[12]

[16]
[17]

(18]

