
A Real-Time Computer Vision System for Vehicle Tracking

and Traffic Surveillance

Benjamin Coifman (   corresponding author   )

(zephyr@eecs.berkeley.edu)

Institute of Transportation Studies

University of California

Berkeley, California, 94720

http://www.cs.berkeley.edu/~zephyr

voice: (510) 848-5121

Fax: (510) 642-1246

David Beymer1, (Beymer@ai.sri.com)

Philip McLauchlan2, (P.McLauchlan@ee.surrey.ac.uk)

and Jitendra Malik, (Malik@cs.berkeley.edu)

Dept. of Electrical Engineering and Computer Sciences

University of California

Berkeley, California, 94720-1776

http://www.cs.berkeley.edu/~pm/RoadWatch

    Submitted for publication in Transportation Research-C

Revised December 1, 1998

                                                
1  D. Beymer is now with SRI International, 333 Ravenswood Ave, Menlo Park, CA 94025
2  P. McLauchlan is now with the University of Surrey, School of EE, IT and Math., Guildford, Surrey GU2 5XH,
UK



Coifman, Beymer, McLauchlan, Malik 1

ABSTRACT:

Increasing congestion on freeways and problems associated with existing detectors have spawned

an interest in new vehicle detection technologies such as video image processing.  Existing

commercial image processing systems work well in free-flowing traffic, but the systems have

difficulties with congestion, shadows and lighting transitions.  These problems stem from vehicles

partially occluding one another and the fact that vehicles appear differently under various lighting

conditions.

We are developing a feature-based tracking system for detecting vehicles under these

challenging conditions.  Instead of tracking entire vehicles, vehicle features are tracked to make the

system robust to partial occlusion.  The system is fully functional under changing lighting

conditions because the most salient features at the given moment are tracked.  After the features exit

the tracking region, they are grouped into discrete vehicles using a common motion constraint.

The groups represent individual vehicle trajectories which can be used to measure traditional traffic

parameters as well as new metrics suitable for improved automated surveillance.  This paper

describes the issues associated with feature based tracking, presents the real-time implementation

of a prototype system, and the performance of the system on a large data set.

KEY WORDS:

Traffic Surveillance, Wide-Area Detection, Vehicle Tracking, Video Image Processing, Machine

Vision
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INTRODUCTION

In recent years, traffic congestion has become a significant problem.  Early solutions attempted to

lay more pavement to avoid congestion, but adding more lanes is becoming less and less feasible.

Contemporary solutions emphasize better information and control to use the existing infrastructure

more efficiently.

The quest for better traffic information, and thus, an increasing reliance on traffic

surveillance, has resulted in a need for better vehicle detection such as wide-area detectors; while

the high costs and safety risks associated with lane closures has directed the search towards non-

invasive detectors mounted beyond the edge of pavement.  One promising approach is vehicle

tracking via video image processing, which can yield traditional traffic parameters such as flow and

velocity, as well as new parameters such as lane changes and vehicle trajectories.

Because the vehicle tracks, or trajectories, are measured over a length of roadway, rather

than at a single point, it is possible to measure true density instead of simply recording detector

occupancy.  In fact, by averaging trajectories over space and time, the traditional traffic parameters

are more stable than corresponding measurements from point detectors, which can only average

over time.  The additional information from the vehicle trajectories could lead to improved incident

detection, both by detecting stopped vehicles within the camera's field of view and by identifying

lane change maneuvers or acceleration/deceleration patterns that are indicative of incidents beyond

the camera's field of view.  The trajectory data could also be used to automate previously labor

intensive traffic studies, such as examining vehicle maneuvers in weaving sections or bottlenecks.

The vehicle tracking system can produce individual vehicle data (e.g., spacing, headway, velocity,

acceleration), which could lead to better traffic flow modeling and an improved understanding of

driver behavior.  Finally, our group has demonstrated that the system can extract vehicle signatures

and match observations of the same vehicle at multiple detector stations (Huang and Russell,

1998).  This signature matching can be used to measure true link travel time and thus, quantify
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conditions between widely spaced detectors rather than assuming that local conditions are

representative of the entire link.

To be an effective traffic surveillance tool, whether by mimicking loop detectors or actually

tracking vehicles, a video image processing system (VIPS) should meet several stringent

requirements:

1) Automatic segmentation of each vehicle from the background and from other vehicles so

that all vehicles are detected.

2) Correctly detect all types of road vehicles - motorcycles, passenger cars, buses,

construction equipment, trucks, etc.

3) Function under a wide range of traffic conditions - light traffic, congestion, varying

speeds in different lanes.

4) Function under a wide variety of lighting conditions - sunny, overcast, twilight, night,

rainy, etc.

5) Operate in real-time.

Even though a number of commercial VIPS for monitoring traffic have been introduced to the

market, many of these criteria still cannot be met.

State of the Practice

Most of the commercial VIPS available today are tripwire systems which mimic the operation of

loop detectors, but they do not track vehicles.  That is, they do not identify individual vehicles as

unique targets and follow their movements in time distinct from other vehicles.  The following

detectors are examples of commercial tripwire systems: AUTOSCOPE, CCATS, TAS, IMPACTS

and TraffiCam (Hockaday, 1991, Chatziioanou, et al, 1994, Klein & Kelley, 1996, MNDOT,

1997, and Hoose, 1992).  The systems typically allow a user to specify several detection regions
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in the video image and then the given system looks for image intensity changes in the detection

regions to indicate vehicle presence/passage.  The comparisons are not computationally intensive

and can be implemented on Intel 386 based PC's.  The primary advantage of these systems is the

ease of placing/replacing detector zones and the fact that there is no need to cut the pavement.

Some of these systems use a large number of detection zones to follow successive detector

actuations through the image, (e.g., IMPACTS), but they do not track vehicles.

Some commercial systems do track vehicles, the so-called "third generation" VIPS, e.g.,

CMS Mobilizer, Eliop EVA, PEEK VideoTrak, Nestor TrafficVision, and Sumitomo IDET

(Chatziioanou, et al, 1994, Klein & Kelley, 1996, MNDOT, 1997, and Nihan, et al, 1995).

Generally, these systems use region based tracking, i.e., vehicles are segmented based on

movement.  Unfortunately, if one moving target (including its shadow) occludes another, the two

targets may become merged together by the tracking software.

Recent evaluations of commercial VIPS found the systems had problems with congestion,

high flow, occlusion, camera vibration due to wind, lighting transitions between night/day and

day/night, and long shadows linking vehicles together (Hockaday, 1991, Chatziioanou, et al,

1994, Klein & Kelley, 1996, MNDOT, 1997, and Nihan, et al, 1995).  The need for traffic

surveillance under ALL conditions has led to research in more advanced video-based vehicle

detection.  For example, Chao, et al, (1996) have developed an algorithm to differentiate vehicles

from shadows.  On a larger scale, the FHWA has sponsored a major research effort administered

by the Jet Propulsion Laboratory (JPL) to advance wide-area traffic detector technology (JPL,

1997; Condos, 1996).  Five VIPS were funded by the JPL project, of which, three were existing

commercial products (AUTOSCOPE, CMS Mobilizer, and Nestor TrafficVision).  The two

remaining systems were produced in university laboratories: Autocolor (Chachich, et al, 1996;

Zeng & Crisman, 1996), which uses color features to identify vehicles, segment them from the

background image and track them through the camera's field of view; and Roadwatch, the subject

of this report.
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For some years, our group has been developing a vision-based vehicle tracking system:

Koller, et al, (1994a); Koller, et al, (1994b); Beymer, et al, (1997).  The system uses video from

wayside cameras and processes it curbside, then, the data is transmitted in summary form to a

central location such as a Traffic Management Center (TMC) for collation and computation of

multi-site parameters (e.g., link travel time).  Processing occurs in three stages:

1) Segmentation of the scene into individual vehicles and tracking each vehicle inside a

tracking zone to refine and update its position and velocity in 3D world coordinates.

The time track of these position estimates yield a vehicle trajectory.

2) Processing the trajectory data to compute local traffic parameters (e.g., flow and lane

change frequency).  These parameters, together with vehicle signature information (e.g.,

time stamp, vehicle type, color, shape, position), are communicated to the TMC at

regular intervals.

3) At the TMC, local traffic parameters from each site are collated and signature

information from neighboring camera sites are processed to compute section parameters

such as link travel time and origin-destination counts.  The data is then passed on to

automated and operator assisted applications.

In this paper, we focus on the first two stages: vehicle segmentation and tracking, and the

computation of traffic parameters from the tracking data.  First, we present different vehicle

tracking strategies from the computer vision literature.  Then we focus on feature based tracking as

a means to improve detector performance in congestion and difficult lighting conditions.  The true

wide-area detection yields vehicle trajectories and facilitates new and improved traffic parameters.

The remainder of the paper presents the testing results from a real-time prototype on 44 lane-hours

of data.
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VEHICLE TRACKING STRATEGIES

Multi-object tracking and data association have received considerable attention in the computer

vision field and much of the background work has been in non-transportation applications.  From

the computer vision literature, the different tracking approaches for video data can be classified as

follows:

3D Model Based Tracking

Three-dimensional model-based vehicle tracking systems have previously been investigated by

several research groups, the most prominent being the groups at Karlsruhe (Koller, et al, 1993)

and at the University of Reading (Baker and Sullivan, 1992; Sullivan, 1992).  The emphasis is on

recovering trajectories and models with high accuracy for a small number of vehicles.  The most

serious weakness of this approach is the reliance on detailed geometric object models.  It is

unrealistic to expect to be able to have detailed models for all vehicles that could be found on the

roadway.

Region Based Tracking

In this approach, the VIPS identifies a connected region in the image, a 'blob', associated with

each vehicle and then tracks it over time using a cross-correlation measure.  Typically, the process

is initialized by the background subtraction technique.  A Kalman filter-based adaptive background

model (Karmann and Brandt, 1990; Kilger, 1992) allows the background estimate to evolve as the

weather and time of day affect lighting conditions.  Foreground objects (vehicles) are detected by

subtracting the incoming image from the current background estimate, looking for pixels where

this difference image is above some threshold and then finding connected components.

This approach works fairly well in free-flowing traffic.  However, under congested traffic

conditions, vehicles partially occlude one another instead of being spatially isolated, which makes
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the task of segmenting individual vehicles difficult.  Such vehicles will become grouped together as

one large blob in the foreground image.  Figure 1A illustrates this phenomena on a hypothetical

one dimensional roadway (i.e., no width) viewed from the camera's perspective, henceforth

referred to as the image plane.  The vehicles have finite length, hence the trajectories are shown as

'thick' bands in the time space plane.  By time t3, vehicle 2 partially occludes vehicle 1.  Region

based tracking would erroneously merge the two 'blobs' together at this point.

Active Contour Based Tracking

A dual to the region based approach is tracking based on active contour models, or snakes.  The

basic idea is to have a representation of the bounding contour of the object and keep dynamically

updating it.  The previous system for vehicle tracking developed in our group, Koller, et al,

(1994a); Koller, et al, (1994b), was based on this approach.  The advantage of having a contour

based representation instead of a region based representation is reduced computational complexity.

However, the inability to segment vehicles that are partially occluded remains.  If one could

initialize a separate contour for each vehicle, then one could track even in the presence of partial

occlusion (Koller, et al, 1994a).  However, initialization is the difficult part of the problem!

Consider the example in Figure 1A: if the vehicles enter the detection region partially occluded, the

system will group two vehicles into a single object and this will result in significant measurement

errors.

Feature Based Tracking

An alternative approach to tracking abandons the idea of tracking objects as a whole and instead,

tracks sub-features such as distinguishable points or lines on the object.  The advantage of this

approach is that even in the presence of partial occlusion, some of the features of the moving object

remain visible.  Furthermore, the same algorithm can be used for tracking in daylight, twilight or
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night-time conditions; it is self-regulating because it selects the most salient features under the

given conditions1.

Figure 1B shows feature tracking for the same two vehicles in the earlier example.

Individual features are highlighted at three instants in time and the lines indicate their respective

tracks2.  For illustration, the features from different vehicles are shown with different symbols,

but, in practice, the features would be indistinguishable at the tracking level.  By t3, some of the

features from the first vehicle are occluded and lost, however, other features from this vehicle

remain and continue to be tracked.

While detecting and tracking vehicle features makes the system more robust to partial

occlusion, a vehicle will have multiple features.  This introduces a new problem of grouping, i.e.,

what set of features belong to the same vehicle?  To address this problem we use a common motion

constraint; features that are seen rigidly moving together are grouped together.

Returning to the simple example once more, applying a common motion constraint to the

features in Figure 1B and collecting the feature tracks into discrete vehicles yields Figure 1C.  The

open circles in this figure denote features that were lost to occlusion at some point in their track,

and thus, not included in the final grouping.

FEATURE BASED TRACKING ALGORITHM

This section presents our vehicle tracking system, which includes: camera calibration, feature

detection, feature tracking, and feature grouping modules.  First, the camera calibration is

conducted once, off-line, for a given location and then, the other modules are run continuously on-

line in real-time.

                                                
1  E.g., window corners, bumper edges, etc. during the day and tail lights at night.
2  To avoid confusion, "trajectory" will be used when referring to entire vehicles and "track" will be used when
referring to vehicle features.
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Off-Line Camera Definition

Before running the tracking and grouping system, the user specifies camera-specific parameters

off-line.  These parameters include:

1) line correspondences for a projective mapping, or homography, as explained below,

2) a detection region near the image bottom and an exit region near the image top, and

3) multiple fiducial points for camera stabilization.

Since most road surfaces are flat, the grouper exploits an assumption that vehicle motion is

parallel to the road plane.  To describe the road plane, the user simply specifies four or more line or

point correspondences between the video image of the road (i.e., the image plane) and a separate

'world' road plane, as shown in Figure 2.  In other words, the user must know the relative

distance in world coordinates between four points visible in the image plane.  Ideally, this step

involves a field survey; however, it is possible to approximate the calculations using a video tape

recorder, known lane widths and one or more vehicles traveling at a constant velocity.  The vehicle

velocity can be used to measure relative distance along the road at different times and the lane

widths yield relative distance between two points on the edge of the road, coincident with the

vehicle's position.

Based on this off-line step, our system computes a projective transform, or homography,

H, between the image coordinates (x,y) and world coordinates (X,Y), (Figure 2).  This

transformation is necessary for two reasons.  First, features are tracked in world coordinates to

exploit known physical constraints on vehicle motion (e.g., finite acceleration).  Second, the

transformation is used to calculate distance based measures such as position, velocity and density.

Once the homography has been computed, the user can specify the detection region, exit region

and fiducial points in the image plane.
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On-Line Tracking and Grouping

A block diagram for our vehicle tracking and grouping system is shown in Figure 3.  First, the raw

camera video is stabilized by tracking manually chosen fiducial points to subpixel accuracy and

subtracting their motion from the entire image.  Second, the stabilized video is sent to a detection

module, which locates corner features in a detection zone at the bottom of the image.  In our

detection module, "corner" features are defined as regions in the gray level intensity image where

brightness varies in more than one direction.  This detection is operationalized by looking for

points in the image, I , where the rank of the windowed second moment matrix, ∇ ⋅ ∇I IT , is two

(see Beymer, et al, 1997).  Figure 4A shows some example corners detected by the system.

Next, these corner features are tracked over time in the tracking module.  The tracking

module uses Kalman filtering (Gelb, 1974) to predict a given corner's location and velocity in the

next frame, X Y X Y, , ˙ , ˙( ) , using world coordinates.  Normalized correlation3 is used to search a

small region of the image around the estimate for the corner location.  If the corner is found, the

state of the Kalman filter is updated; otherwise, the feature track is dropped.  Figure 4B shows the

temporal progression of several corner features in the image plane.

Vehicle corner features will eventually reach a user defined exit region that crosses the

entire road near the top of the image (or multiple exit regions if there is an off ramp).  Once corner

features reach the exit region, they are grouped into vehicle hypotheses by the grouping module,

e.g., Figure 4C.  The grouper uses a common motion constraint to collect features into a vehicle:

corner features that are seen as moving rigidly together probably belong to the same object.  In

other words, features from the same vehicle will follow similar tracks and two such features will

be offset by the same spatial translation in every frame.  Two features from different vehicles, on

the other hand, will have distinctly different tracks and their spatial offset will change from frame

to frame.  A slight acceleration or lane drift is sufficient to differentiate features between most

vehicles; note that both lateral and longitudinal motion are used to segment vehicles.  Thus, in

                                                
3  For normalized correlation, a 9x9 template of each corner is extracted when the corner is first detected.
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order to fool the grouper, two vehicles would have to have identical motions during the entire time

they were being tracked.  Typically, the tracking region is on the order of 100 m along the road.  In

congested traffic, vehicles are constantly changing their velocity to adjust to nearby traffic and

remain in the field of view for a long period of time, giving the grouper the information it needs to

perform the segmentation.  In free flowing traffic, vehicles are more likely to maintain constant

spatial headways, or spacings, over the short period of observation, making the common motion

constraint less effective.  Fortunately, under free flow conditions, drivers take larger spacings (in

excess of 30 m), so a spatial proximity cue is added to aid the grouping/segmentation process.

The grouper considers corner features in pairs.  Initially points A and B that are less than a

prespecified distance, ro , apart will be hypothesized to belong to the same vehicle.  By monitoring

the distance, d p pt t tA B( ) = ( ) − ( ), between the points, this hypothesis can be dismissed as soon as

the points are found to move relative to each other.  The distance, d , is measured in the world

coordinates by multiplying the image distance with a depth scaling factor computed from the

homography.  More details can be found in Beymer, et al (1997).

Because features must share a common motion to be grouped into a vehicle, one feature

track from each group is selected as being representative of the vehicle trajectory.  In particular, the

grouper selects the feature point closest to the camera because it is likely to be near the ground

plane and thus, is less likely to suffer from distortions due to the viewing angle.  Finally, traffic

parameters such as flow, average speed, and density are computed from the vehicle trajectories.

REAL-TIME SYSTEM

We have implemented the vehicle tracker on a network of 13 Texas Instruments C40 digital signal

processing (DSP) chips.  The computationally heavy operations in the tracking algorithm,

convolution in the feature detector and correlation in feature tracker, are placed on the C40

network, while the grouper is run on the host PC.  Running the grouper on the PC is necessitated
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by memory requirements; the grouper needs to store feature tracks, which would quickly exhaust

the limited memory available on the C40 modules.  Keeping the grouper on the PC is also

beneficial from a load balancing perspective, as the PC is a 150 MHz Pentium and thus, equivalent

to 3 to 4 C40's.

The performance of the vehicle tracker is 7.5 Hz in uncongested traffic, dropping to 2 Hz

in congested traffic (i.e., near jam density), where many more feature tracks are in progress at any

given time.  This reduction in computational speed does not of itself lead to a reduction in

performance of the vehicle tracker.  Vehicle speeds in congested traffic are slower, and so the

required tracking rate is reduced.

MEASURING TRAFFIC PARAMETERS USING AN WIDE-AREA DETECTOR

Traditional traffic parameters such as flow, occupancy and velocity are usually defined with respect

to point detectors and they are only averaged over time.  The vehicle tracker extracts vehicle

trajectories over a significant distance and is a true wide-area detector.  Using the traditional point

based definitions would mean discarding information available from the detector.  Instead, it is

possible to measure the generalized traffic parameters over the entire tracking region and thus,

average over time and space.

Consider a region, A, in the time-space plane with m vehicle trajectories passing through it,

as shown in Figure 5.  Following Edie (1963), let d A( )  be the sum of the distance traveled by all

vehicles in region A and t A( )  be the sum of the time spent by all vehicles in region A (i.e., the

vertical and horizontal components of the trajectories within A, respectively).  Finally, let A

denote the 'area' of region A, L T× , then, the generalized flow, q(A), density, k(A), and velocity,

v(A), are defined as:
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For the real-time system, the generalized parameters are measured for each lane using the

entire tracking region, L, and user defined sample period, T.  The definitions are robust to lane

changes4, e.g., vehicle 3 leaving the lane and vehicle 5 entering the lane as shown in Figure 5.

Refining traditional metrics is only one aspect of the vehicle tracker.  The vehicle

trajectories allow for new approaches to measuring traffic and ultimately, better automated

surveillance.  Figure 6 shows the time space diagram for vehicle trajectories from a single lane as a

shock wave passes through the detection region (solid lines indicate the vehicle tracker output and

dashed lines show manually generated ground truth (Coifman, 1997)).  Note that horizontal

trajectories correspond to stopped vehicles and the tracker did not lose them; also notice that the

tracker followed almost all of the vehicles even though the traffic momentarily reached jam density

and most of the vehicles were partially occluded.  This figure only shows the longitudinal position

along the roadway, the vehicle tracker also extracts the lateral position.  Thus, it is a trivial matter

to detect lane changes within the surveillance region.

After the tracker has extracted the vehicle trajectories, it is possible to send this data over a

low bandwidth communications link for scene reconstruction and automated surveillance at a

remote location.  It is also possible to extract a vehicle signature for vehicle reidentification at a

downstream site and measure section data such as travel time and O/D patterns (see Huang and

Russell, 1998); thus, making it possible to quantify conditions between detectors even if there are

no observable effects at the individual detector stations.

                                                
4  Note, the precise lane change location depends on which feature's track is selected to represent the vehicle
trajectory.  The important property of these measures is that at any instant, a given vehicle will only be counted in a
single lane.
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TESTING RESULTS

The tracking and grouping system has gone through two major phases of testing.  First, the system

was tested off-line, using pre-digitized video sequences, largely for development purposes.  This

testing gave us a 'microscopic' view of the system, allowing us to analyze errors such as false

detections, false negatives, and overgroupings.  For space considerations, detailed results are not

presented here, the interested reader is referred to the full report, Malik, et al (1997).  Second, the

real-time system was tested on a large data set to see if the system could accurately measure

aggregate traffic parameters.

On-Line Testing of Traffic Parameters

The second phase of testing evaluated the on-line system's ability to measure aggregate traffic

parameters.  In particular, we tested flow, average velocity and density.  These parameters are

computed separately for each lane of traffic and are sampled over a user specified sample period

(taken to be 5 minutes in the included examples).

Generating manual ground truth data is very time consuming and labor intensive.  It was

decided to use existing loop detectors to verify the vehicle tracker over a large data set.  Ground

truth data came from inductive loop speed trap data collected concurrently with the video data.

Each lane of traffic has two loops separated by 6.1 m (20 ft) and vehicle arrivals were recorded

every 1/60 seconds.  Although a paired loop speed trap is usually operated as a single point

detector, the testing methodology used the vehicle arrival data to apply Edie's method to the speed

trap data.  The vehicle tracker followed vehicles for approximately 100 m, but, to ensure that video

and loop data are compatible, traffic parameters were only measured from the video data for the 6.1

m over the speed trap.  Thus, referring to Figure 5, L=6.1 m and T=5 minutes.  It was recognized

that loop detectors can produce several errors, therefore, a random sample of data5 was manually

                                                
5  The total manual sample size was 1.75 lane-hours
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calibrated to verify the loops were in good operating condition: yielding accurate velocity

measurements without over-counting or under-counting vehicles.

The vehicle tracker was tested on approximately 44 lane-hours of video from the Florin

Road interchange along State Highway 99 in Sacramento, Calif.  (see Figures 4B-4C for sample

frames).  The test set includes all observed operating conditions: day, night, twilight, long

shadows and rain; congestion and free flow.  Lane 1, on the left, is a carpool (HOV) lane and

exhibited little if any congestion.  Lane 3, on the right, exhibited some degree of congestion for

approximately 20% of the tests.  Finally, the loops in the center lane were bad and the lane was

excluded from the final analysis.  The final test set included approximately 40,000 vehicle

observations which were distributed over 514 samples.

Comparing the two detection systems, Figure 7 shows scatter plots of the tracker output

versus concurrent loop data for velocity and flow.  Table 1 summarizes the error distribution for

velocity, flow and density.

As one would expect from a feature based tracker, the measured velocity is very accurate.

Even if the vehicle tracker overgroups or oversegments vehicles, the erroneous blobs still move at

the prevailing speed.  The errors in flow and density are primarily due to missed or oversegmented

vehicles.  Often, an error of two or three vehicles in one sample can be very significant.  For

example, one missed vehicle in a five minute sample at 1,000 veh/hr results in a 2% error.  At the

mean flow for the data, 910 veh/hr, the error per missed vehicle is slightly higher, at 2.2%.

The greatest source of error appears to be from the frame grabber adding noise to the

frames.  As a result, the vehicle tracker drops feature points because the Kalman filter loses noisy

points or the grouper oversegments vehicles because relative distance is not preserved with the

noisy feature tracks.  Off-line testing with pre-digitized sequences showed significant performance

improvements.  The next generation of the vehicle tracking system will use an improved frame

grabbing routine and should show significant improvement over these results.

The results are promising nonetheless and the error distribution in Table 1 should be taken

in context.  The tests emphasized difficult conditions where earlier image processing systems break
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down: congestion, long shadows linking vehicles together, and the transition between night and

day (Chatziioanou, et al, 1994).  The tests consisted of 2 hour samples and half of the test

segments included a night-day (or day-night) transition.  All of the night-day transition sequences

included long shadows that spread across one or more lanes, both from vehicles and from wayside

objects.  Approximately 20 percent of the samples included rain and 20 percent of the segments

included severe camera movement due to high winds.

Performance did not show any significant changes under different conditions.  Space

constraints prevent examining all conditions here (see Malik, et al (1997) for a detailed study);

instead we will highlight the vehicle tracker performance under two of the more challenging

conditions: the night to day transition with long shadows during the daytime portion.  Consider the

two hour sequence starting at night (5:30 AM, Figure 8A), progressing through sunrise and long

shadows, and ending with daylight conditions (7:30 AM, Figure 8B).  Figure 9 shows measured

and ground truth q and v for the sequence.  There are 48 samples of 5 minutes each, with a total of

roughly 4,600 vehicles.  Note that the morning peak starts during the sequence and approximately

30 minutes of data from lane 3 are under light congestion, and thus, frequent occlusions.

CONCLUSIONS

Recent evaluations of commercial VIPS found the existing systems have problems with

congestion, occlusion, lighting transitions between night/day and day/night, camera vibration due

to wind, and long shadows linking vehicles together.  We have presented a vehicle detection and

tracking system that is designed to operate under these challenging conditions.  Instead of tracking

entire vehicles, vehicle features are tracked, which makes the system less sensitive to the problem

of partial occlusion.  The same algorithm is used for tracking in daylight, twilight and nighttime

conditions, it is self-regulating by selecting the most salient features for the given conditions.

Common motion over entire feature tracks is used to group features from individual vehicles and
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reduce the probability that long shadows will link vehicles together.  Finally, camera motion during

high wind is accounted for by tracking a small number of fiducial points.

The resulting vehicle trajectories can be used to provide traditional traffic parameters as well

as new metrics such as lane changes.  The trajectories can be used as input to more sophisticated,

automated surveillance applications, e.g., incident detection based on acceleration/deceleration and

lane change maneuvers.  The vehicle tracker is well suited both for permanent surveillance

installations and for short term traffic studies such as examining vehicle movements in weaving

sections.  The vehicle tracking system can also extract vehicle signatures to match observations

between detector stations and quantify conditions over extended links.

A real-time version of the system has been implemented using a network of DSP chips.

The system has been tested on approximately 44 lane-hours of data and has demonstrated good

performance under the challenging conditions that have limited earlier VIPS.
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FIGURE 2: A projective transform, H, or homography is used to map from image 
coordinates, (x,y), to world coordinates, (X,Y).
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FIGURE 3: Block diagram of the vehicle tracking system.  In the future, 
we plan to add a vehicle classification module, as indicated 
by the dashed lines.
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FIGURE 4: (A) Sample corner features identified by the tracker (B) Sample feature tracks from
the tracker (C) Sample feature groups from the grouper.
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FIGURE 4: continued...

C)



time

di
st

an
ce

FIGURE 5: Region, A, in the time-space plane, bounded by the length of the
detection region, L, and user defined sample duration, T.  This region
is used to measure the generalized traffic parameters for a single
lane.
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FIGURE 6: Vehicle tracker output and ground truth as a shock wave passes the 
surveillance site.
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FIGURE 7: Scatter plots comparing tracker performance to loop detector ground truth, 44 
lane-hours of data aggregated into 5 minute samples:  (A) velocity, (B) flow.
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FIGURE 8: Two frames from the start and end of a continuous two hour sequence used to test
the vehicle tracker, (A) 5:30 AM, (B) 7:30 AM.
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FIGURE 9: Time series flow and velocity for the two hour night to day transition as 
shown in Figure 8.
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TABLE 1: Error distribution for velocity, flow and density over 44 lane-hours of data.

% error % velocity % flow % density
less than samples samples samples
2.5% 86% 18% 19%
5% 95% 31% 33%
10% 100% 60% 59%
15% 100% 79% 79%
20% 100% 91% 90%
25% 100% 96% 96%
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