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Abstract

Approximate processing is an approach to real-time AI problem solving in domains in
which compromise is possible between the resources required to generate a solution and
the quality of that solution. It is a satisficing approach in which the goal is to produce
acceptable solutions within the available time and computational resource constraints.
Previous work has shown how to integrate approximate processing knowledge sources
within the blackboard architecture[17]. However, in order to solve real-time problems
with hard deadlines using a blackboard system, we need to have: (1) a predictable
blackboard execution loop, (2) a representation of the set of current and future tasks
and their estimated durations, and (3) a model of how to modify those tasks when
their deadlines are projected to be missed, and how the modifications will affect the task
durations and results.

This paper describes four components for achieving this goal in an approximate
processing blackboard system. A parameterized low-level control loop allows predictable
knowledge source execution, multiple execution channels allow dynamic control over the
computation involved in each task, a meta-controller allows a representation of the set
of current and future tasks and their estimated durations and results, and a real-time
blackboard scheduler monitors and modifies tasks during execution so that deadlines are
met.

An example is given that illustrates how these components work together to construct
a satisficing solution to a time-constrained problem in the Distributed Vehicle Monitoring
Testbed (DVMT).
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ONR contract N00014-89-J-1877. The content of the information does not necessarily reflect the position or
the policy of the Government, and no official endorsement should be inferred.
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1 Introduction

For the last several years we have been working on incorporating hard real-time deadlines into
blackboard systems[8, 17]. This is a difficult problem because, in general, it is difficult to
predict:

� exactly which knowledge sources will be executed in any particular run of the system

� what the duration of each of those knowledge sources will be

� what the contribution of each knowledge source will be to the solution generated by the
system

Even if you can adequately predict these outcomes, it is still a difficult problem to sched-
ule knowledge source executions so as to maximize system performance in time-constrained
situations.

The basic approach we have taken to these problems is to extend our blackboard framework
to improve predictability and to increase schedulability. We have improved predictability by:

� parameterizing the low-level blackboard control loop to control opportunism and allow
tight management of domain knowledge source instance (KSI) execution

� defining separate channels for each part of the problem, to allow different parts to be
controlled in different ways. We call these parts of a problem that may need to be
separately controlled tasks. Tasks consist of a number of KSIs.

We have increased schedulability by:

� whenever possible defining multiple approximations (also known as methods) for each
task. These approximations make tradeoffs between the time required to generate
a solution and the quality of that solution in terms of completeness, precision, and
certainty.

� defining a meta-controller that builds a plan/goal hierarchy that explicitly describes the
goals the system is working to achieve

� adding a set of control knowledge sources that implement a real-time scheduler that
makes decisions about which approximations to use to meet the current goals of the
system given the current time constraints

The approach of having multiple approximations for a problem is known as approximate
processing. We call the problem of deciding which methods to use and when to execute
them design-to-time scheduling. The focus of this paper is on the extensions to the blackboard
framework that we made to support approximate processing. The design of predictable, useful
approximations is discussed later in this section, and in detail in Decker, et al[8]. Design-to-time
scheduling is described in detail in Garvey and Lesser[12].

An alternative to the approximate processing approach to real-time AI problems is the class
of algorithms called anytime algorithms[4]. Anytime algorithms are a subclass of approximate
processing algorithms that can be terminated anytime and produce answers that improve
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monotonically as the given time increases. In contrast, approximate processing algorithms
produce an answer anytime after a given deadline. That is, approximate processing systems
take advantage of all the time available to them to generate a solution, rather than always having
one at hand. Approximate processing works best in domains where deadlines can be accurately
estimated and where the system has sufficient advanced notice when either a deadline will be
earlier than expected, or priorities or resource constraints have changed (probably because of an
increased workload) making the deadline unachievable under the current configuration. When
these criteria are not met, approximate processing may not generate any solution.

Approximate processing requires the problem solver to be very flexible in its ability to
represent and efficiently implement a variety of processing strategies. With minimal overhead,
the problem solver should dynamically respond to the current situation by altering its operators
and state space abstraction to produce a range of acceptable answers[8, 17]. For example, it
might be more important in a given situation to pinpoint the exact location of some object
than to determine the type of that object, even though in the optimal solution both pieces of
information are desireable (and, in fact, the type of an object might constrain its location).
Approximate processing requires that the problem solver must be able to represent and reason
with uncertain, imprecise, and incomplete information—data, domain, and control knowledge
are all affected. For example, it is not sufficient to represent only individual pieces of data—it
must be possible to represent groups of data and to reason collectively about those groups.
An integrated representation is necessary because the problem solver may develop a partial
solution using one method (perhaps an extremely precise solution) only to realize (by its own
computation or by a change in the current situation) that a change in approach is needed to
meet some deadline. The problem solver should be able to exploit existing partial results, rather
than throw results away and start from scratch in some new representation.

The three general classes of approximation that a problem solver can use are search ap-
proximation, data approximation, and knowledge approximation [8]. Examples of search
approximation include eliminating the processing of corroborating support of existing partial
results, and eliminating inferior competing alternatives. Data approximations aggregate data
into abstract units that are then processed as a whole. This leads to lower precision because data
attributes are ignored, and lower certainty because ambiguities may be introduced. Finally,
knowledge approximations simplify or eliminate problem solving constraints. For example,
multiple levels of reasoning may be combined into one (called “level hopping”), or some po-
tentially constraining data can be skipped (“actively ignored”). More detailed examples of these
last two approximations, used in this paper, appear in Section 3.2.

To effectively implement approximations in a blackboard system requires three key modi-
fications. First, the opportunism inherent in the blackboard system must be balanced by the
need for predictability. Hard deadlines requirebounded, predictable task times and may require
opportunistic responses to be tightly controlled to meet the deadlines. However, opportunistic
behavior is desirable and should be encouraged in those situations when the time available
allows it. The second modification involves the explicit representation of multiple reasoning
activities, modes of response, and resource utilization. While the traditional blackboard model
of independent knowledge sources is still useful, careful records must be kept of how the instan-
tiated knowledge sources (the lowest level schedulable task unit) relate to the problem solving
goals, what types of approximations are required, and what resources (primarily computational
resources) will be required. Finally, when a deadline cannot be met using the current schedule,
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the schedule must be rearranged, using a combination of techniques including postponing
tasks and forcing them to use faster approximations. The system must keep track of the new
schedule, task durations, and the effect of the new schedule on the results of problem-solving�.

The entire real-time problem-solving architecture is shown in Figure 1. In order to provide
for more predictable execution of tasks we use a parameterized low-level control loop. This
extension of the traditional blackboard control loop allows the system to dynamically control
how much opportunism is permitted within each task. This is accomplished by controlling
the characteristics of the data that will be processed, the type of knowledge that will be applied
to this data, and the granularity of the processing. Tightly constrained tasks (in terms of their
inputs, outputs, and processing algorithm) are as predictable as possible without modification
of the underlying operating system. Timing models, based on these constraints, allow the
real-time scheduler to make accurate duration estimations.

The ability to dynamically modify the low-level control loop is an extension of ideas
developed originally in BB1 for dynamically specifying the predicates used to evaluate activities
on the agenda in order to impose different high-level strategies[13]. We extend the ideas
in BB1 by allowing a richer set of parameters (filters, mappings, and mergings, as well as
heuristics) to be dynamically adjusted. Recent work by B. Hayes-Roth[1, 14] has also gone to
a more complex low-level control loop that has additional parameters. The idea of dynamically
adapting filters on input data for real-time systems has also been discussed in [18]; we tie this
filtering into the problem of balancing predictability and opportunism. The low-level control
loop is discussed in detail in Section 3.1.

The second component of our architecture is channels, which allow different processing
strategies to be used simultaneously. A channel is a replication of the low-level control loop
for a concurrent task. Having multiple channels allows multiple processing strategies to
occur simultaneously, and potentially asynchronously or in parallel[5], while still providing
predictable execution. The RT-1 real-time blackboard architecture[9] used a fixed set of
priority channels to partition problem-solving by event priority; in contrast, we dynamically
create task channels to partition problem-solving by task. This allows us to clearly decide
which problem-solving resources to devote to each task�. Section 3.2 describes channels in
more detail.

With these low-level architectural concerns satisfied, the next problem is the smooth
operation of the system. Control in blackboard architectures that integrate multiple reasoning
methods has traditionally been accomplished through the implicit or explicit construction of an
agenda rating function that allows the scheduler to choose the “best” knowledge source instance
(KSI) to execute [2, 13, 15]. A significant amount of work has been published advocating
the use of explicit (non-procedural) control because it is conceptually clearer and more easily
modified, as well as easier to explain [10, 11, 13]. We modified the traditional BB1-style
meta-controller to operate using hierarchically organized, explicit control goals that describe the
current and predicted future behaviors of the system. Unlike BB1, future control goals are
expanded to create future control plan elements, which predict future tasks. Associated with

�There is another major requirement, not completely addressed in our work to date, which is that the overhead
of these control mechanisms must be tightly controlled and predictable. We discuss this in our detailed discussion
of the architecture in Section 3.

�A fixed set of priority channels could be built on our task channels by combining preallocated channels (one
for each priority) with heuristics that rated KSIs on their channel appropriately.
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Figure 1: The real-time blackboard architecture. Each part of this architecture is explained in detail
in Section 3. At the lowest level it consists of a parameterized low-level blackboard loop, guided by a
BB1-style control plan and by control goals. Multiple copies of this loop (each known as a channel) are
created to control each aspect of problem-solving that might require separate control. A meta-controller
executes a control KSI loop that constructs the control plan and goals, and modifies the parameters of the
low-level loop. A real-time scheduler ensures real-time performance by monitoring problem-solving at
the channel-task level and fixing schedules that go over time. The scheduler constructs future schedules
based on projected channel tasks and fills in those channel tasks with domain KSIs as they appear on
the agenda. The dashed lines between modules indicate points of interaction.
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the lowest level of control goals are BB1 foci that hold the channels mentioned earlier. The
meta-controller is presented in Section 3.3.

Finally, a real-time scheduler augments the traditional blackboard agenda mechanism. Its
job is to monitor and modify tasks during execution so that deadlines are met. It schedules
groups of KSIs associated with a task (called channel tasks) across all active channels in fixed
time slices. The real-time scheduler can reduce the time allocated to a task, forcing it to use
a different approximation, or delay (non-critical) tasks to allow critical tasks to be completed.
Much of the real-time scheduler is itself implemented using independent blackboard control
knowledge sources that detect potential problems and present alternate solutions to them.
Section 3.4 describes the real-time scheduler.

The next section of this paper describes an example real-time problem from our application
domain. Section 3 discusses each component of the architecture in detail. Section 4 shows
how the components of the architecture work together to solve the example problem. Finally,
Section 5 summarizes the work and describes future directions.

2 An Example Problem

The application driving this work is the Distributed Vehicle Monitoring Testbed (DVMT)[16].
The DVMT simulates a network of vehicle monitoring nodes, where each node is a problem
solver that analyzes acoustically sensed data in an attempt to identify, locate, and track patterns
of vehicles moving through a two-dimensional space. Each problem solver has a blackboard
architecture with blackboard levels and domain knowledge sources appropriate for vehicle
monitoring. Domain knowledge sources perform the basic problem solving tasks of extending
and refining partial solutions, or hypotheses. New classes of domain knowledge sources were
added for performing different approximation algorithms, such as “level-hopping” (skipping
some of the blackboard levels, see Section 3.2)[8]. To solve a problem, the system must
choose from among several different general strategies and fine tune them, including the choice
of different strategies for different kinds of data and different strategies at different stages of
processing.

This section describes an example problem in the domain of the DVMT. The particular
DVMT environment we will work with is shown in Figure 2. (This is a single agent version of
the DVMT. In the future we plan to extend this work to multiple distributed agents[7].) This
environment contains three objects: one fish, one duck, and one pigeon. The large dots along
the lines represent the location of the object at the sensor time given by the adjoining number.
The two large squares labelled Sensor 1 and Sensor 2 represent the ranges of the two fixed sensors
associated with this DVMT node. Sensor 2 is known to be noisy, meaning that more domain
processing is required to interpret the data from that sensor. The system knows about two
kinds of patterns among its objects: a duck attacking a fish, and a pigeon meandering.

Associated with this environment is a system goal. This goal is a complex object encoding
several pieces of information. Some of the information encoded in the system goal includes:

� Ducks attacking fish are more important than pigeons meandering.

� There is a deadline that fish must be warned that they are part of a duck attacking fish
pattern within at most 6 sensor-cycles from when the later of the two vehicles comes
within sensor range.

5



Sensor 1 Sensor 2

D1

F1

P1•

••
•

1
2

3
4

•

•

•
• • •

•
• • • • • •

2

3

4
5 6

7

0 1
2 3 4 5 6

Pigeon
Duck
Fish

Figure 2: Real-time example environment.

� Once a fish has been warned it may be actively ignored. Ducks must continue to be
tracked, because they can become involved in other duck attacking fish patterns.

� By default, every object should be tracked as precisely as possible.

Also part of the system goal are the heuristics that determine which approximations to use.
Another experimental variable available in the system is the sensor cycle length. This

defines the amount of time available to process data between sensor readings — the ratio
between simulated ‘real-world’ time in the outside environment and KSI execution time at the
node. Reducing the sensor cycle length forces the real-time scheduler to use more and more
approximations and/or postponements of tasks to meet the timing constraints.

3 Architecture

The architecture can be divided into two parts: the multi-channel, parameterized low-level
control loop that executes, stores the results of, triggers, and evaluates the preconditions of
domain KSIs; and a meta-controller that creates channels, sets parameters for the low-level
control loop associated with each channel, models the set of current and future tasks, and
schedules their execution. One should assume that the low-level control mechanism does
not relinquish control to the meta-controller but runs asynchronously with respect to the
meta-controller.

3.1 Parameterized Low-level Control Loop

Figure 3 illustrates the steps in the parameterized low-level control loop. Within each channel,
the following three classes of mechanisms are used in the low-level control loop to control
opportunism in that channel: Filters limit the amount of data being considered to reduce
overhead or distraction. Data blocked by a filter can be stored so that when the filter changes
the blocked data may be efficiently refiltered if desired. Filters block a channel from “oppor-
tunistically” working on a task in another channel, or even working on less important parts
of a single task if the system is under severe time pressure. For example, in the environment
shown in Figure 2 we are able to have one channel work on the fish and another channel work
on the duck by filtering the sensor data so that only data that could be associated with an
object goes to that object’s channel. This is accomplished by using the spatial characteristics
of the data and the expected course of the vehicle, as well as the type of the signal. Of course,
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there might be some overlap if vehicles are spatially close to one another or if the signal is
ambiguous (that is, could be associated with more than one vehicle type), but filtering greatly
reduces the load on each channel. Mappings control the general character of problem solving.
For example, a hypothesis-to-domain-goal mapping indicates what potential work a hypothesis
represents. A domain-goal-to-KS mapping represents the triggering of knowledge sources, or
what methods should be considered in attempting to achieve a domain goal�. Obviously, one-
to-one mappings provide much more predictability than one-to-many. As an example, when
we want to change a channel from complete processing of data to level-hopping on that data
we simply update the domain-goal-to-KS mapping for that channel to map to level-hopping
KSs rather than complete processing KSs. Mergings control the granularity or specificity of
problem solving activity. Hypotheses, domain goals, and KSIs are grouped and merged into
larger units to avoid duplication of effort or to reduce the amount of data being considered.
This process is invoked after each mapping. Merging can increase predictability and decrease
opportunism by reducing the number of items that are considered during problem solving. An
example of merging occurs after the hypothesis-to-goal mapping of signal hypotheses. This
mapping generates one group-level goal for each signal level hypothesis; merging combines
equivalent group-level goals into a single goal.

Each of these mechanisms is placed between each major data structure (the hypothesis
blackboard, the domain goal blackboard, and the KSI agenda). This low-level control loop
can be characterized as evaluating the blackboard to decide first what information to exclude
from any further processing (hypothesis filtering), then what potential work can be done
(hypothesis-to-goal mapping). The domain goals that result from this mapping are called
data-directed goals. The next step is relating potential work to existing domain goals (goal
merging and subgoaling). Two types of domain goals are merged: data-directed goals from the
hypothesis-to-goal mapping and goal-directed goals from subgoaling. Then the low-level loop
determines what domain goals are important to achieve (goal filtering), and finally decides how
to go about achieving them (goal-to-KS mapping and KS instantiation). This produces a set of
triggered KSs that may accomplish a given goal. The preconditions of the KSs are run, which
results in a set of costs (such as estimated time) and benefits (such as an estimated output set)

�Domain goals, historically often called just ‘goals’ in DVMT literature, are a complex language with which
to trigger KSs and limit their inputs and outputs. They should not be confused with the control goals in the
meta-controller that specify what the system is trying to achieve, and when, how, and why.
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for each triggered KS. KSs are chosen based on this data and their instantiations are merged
into the runnable KSI queue. A single queue holds runnable KSIs from every active channel.
We are investigating alternatives to this architectural decision, including maintaining a separate
queue for every channel and either associating a processor with each queue or multiplexing
among the queues[3, 9], giving each channel a percentage of the total resources. Note that
these alternatives may also help us to more easily bound control overhead by associating control
with channels. That is, we could decide on a channel by channel basis not only how much
domain processing to perform, but also how much control processing to perform. In our
current configuration the amount of time spent in control processing is not tightly controlled.
Choosing which one of these potential activities to execute (managing the agenda) is managed
by the real-time scheduler (Section 3.4).

In this work we have not concerned ourselves with making the low-level control loop
predictable. This has been the focus of recent work by B. Hayes-Roth. Her work has extended
the BB1 architecture to use a satisficing control loop that replaces the previous exhaustive control
loop[1, 14]. The satisficing loop considers a limited number of events in best-first order and
for each event attempts to trigger a limited set of operation types again in best-first order. This
ordered consideration of possibilities can be interrupted at any time – either by internal criteria
or by external deadlines – and will return the best action found so far. At this time our low-level
control loop does not support this kind of pumping of the highest priority data completely
through the loop before lower priority data is even considered. However, using similar ideas,
we are able to effectively place an upper bound on the amount of processing for each step of
the loop, thus bounding the entire control loop. We can do this by prioritizing the outputs of
each step of the loop, and only processing the priority-ordered inputs from the previous stage
until the available time is used. Note that this is an approximate processing approach to the
problem, rather than an anytime algorithm approach. We plan to take advantage of all the
time available to us, rather than always having an answer ready.

3.2 Multiple Execution Channels

The parameterized control loop allows explicit, detailed control over a task. Multiple execution
channels allow this kind of predictable control over each task separately, where a task is a unit
of work that might at some point need to have some aspect of its behavior controlled separately
from other units of work. Each channel can (and often does) have a completely different set of
filters, mappings and merge criteria from other channels, as well as different control strategies
controlling its KSI execution choices.

Channels, with their associated filters, mappings and merge criteria, are created and modi-
fied by the meta-controller (see Section 3.3) as needed to adequately control domain problem-
solving. Channels are created to respond to dynamically created control goals. For example, in
the DVMT a channel exists that is always looking for new vehicles to appear. The appearance
of a new vehicle will cause the creation of a control goal to identify and then track that vehicle,
which in turn will lead to the creation of a channel to work to satisfy the control goal. Chan-
nels are modified to use various approximations by the real-time scheduler as required to meet
timing constraints. A channel is made to use a particular approximate processing technique
through the modification of its filters, mappings and merge criteria.

In the DVMT application each type of channel has various search, data, and knowledge
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Figure 4: Example of a Grammar and the Effects of Approximate Search

approximation techniques available to it. These techniques make tradeoffs in performance,
certainty, precision, and completeness. By default all channels use complete search, data, and
knowledge, examining all possibilities completely. This technique takes the longest amount of
time to finish processing, but maximizes certainty, precision, and completeness. Synthesis is the
portion of DVMT processing were raw sensor data is moved, level-by-level, up the blackboard
to become vehicle hypotheses. What sensor data a particular vehicle may generate in an
environment is specified by a grammar represented as a modified AND-OR-XOR tree. Each
arc in the tree also contains a number that represents the degree to which the subtree defined by
that arc is necessary for the existance of that subtree’s parent (see Figure 4). Synthesis knowledge
sources, using data or hypotheses at a lower level, create new hypotheses at the next higher level.
Track extension knowledge sources connect individual vehicle hypotheses at different times and
locations into vehicle track hypotheses, using constraints on vehicle speed and acceleration.

One approxmation available to most channels is a level-hopping knowledge approximation.
Constraints that would normally span two levels of the blackboard, and would thus require
the application of two synthesis knowlege sources, can be simplified and compressed to allow
synthesis of events at a level of the blackboard two levels higher than the input level (see
Figure 5). In general, ignoring grammatical constraints does not reduce the precision of a
synthesized result. This is because the characteristics of the synthesized result are taken from
the hypothesis that triggered the knowledge source, and the use of approximate knowledge does
not alter these characteristics. However, the use of approximate knowledge does result in the
generation of inconsistent results that would not have been generated by a knowledge source
using a complete set of constraints. Thus by jumping several levels of abstraction at once,
rather than advancing step by step, level-hopping has significantly improved performance, but
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reduces certainty.
Another approximation available is the ability to actively ignore data. In this case the channel

merely gathers and records the data that it would normally process. This reduces runtime to
near zero, but has disastrous effects on certainty and precision. Usually this technique is used
only when we intend to work on the data in more detail during a future sensor cycle. Other
techniques are described in [8]. Consistent representations of approximate data allow the
system to switch processing strategies without losing any partial results previously obtained[8].

One example of the usefulness of channels is that they allow different vehicles to be tracked
using different approximate processing techniques concurrently. For example, we might have
two vehicles in our domain that have different degrees of threat or another measure of differing
priority. If we do not have enought time to track both vehicles completely, we may decide to
track only the high priority one carefully and to use level-hopping on the lower priority vehicle.
A separate channel for each vehicle allows us to completely control the tracking of each vehicle
without interference.

3.3 The Meta-Controller

The meta-controller is a collection of BB1-style control blackboards and knowledge sources
that are used to control the domain problem-solving going on in each channel. Unlike BB1, the
meta-controller blackboard execution cycle is separate from the domain blackboard execution
cycle. In the current single processor DVMT the meta-controller cycle is run to quiescence
after each domain KSI execution�.

Along with the traditional BB1 control-plan blackboard that contains strategies, foci, and
heuristics, there is a control-goal blackboard that contains the goals the control-plan objects
are working to solve. These goals specify domain tasks to be performed, as well as the level of

�The BB1 execution cycle is more general, in that it allows control and domain KSI executions to be
interspersed, however, to our knowledge, no one has ever defined heuristics to balance control and domain
processing. In all BB1 applications that we are aware of executable control KSIs are always processed before
domain KSIs.
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certainty, precision and completeness that is required.
Part of the definition of a problem given to the DVMT is a system goal. This is the top-level

control-goal the system is working to satisfy. Encoded in the system goal is information about
priorities among domain problem-solving actions.

A strategy is chosen to work to satisfy the goal. This strategy in turn posts control-goals.
This form of problem decomposition continues until an initial plan/goal hierarchy has been
created. An example of such a hierarchy is given in Figure 6. At the leaves of this hierarchy
are the individual foci that actually control the problem-solving for each channel through the
use of heuristics. These heuristics can take the form of agenda rating functions (as in normal
BB1-style heuristics), as well as modification of any of the low-level control loop parameters.

Control Goals Control Plan

System Goal

Goal Directed Strategy

Find New
Vehicles
Goal

Identify
Possible
Pattern
Goal

Track
Vehicle
Goal

Find New
Vehicles Focus

Identify Possible
Pattern Focus

Channel 1 Channel 2

Figure 6: An example of a plan/goal hierarchy from the DVMT. The rectangles represent
control goals and the ellipses represent strategies and foci. A dashed line rectangle represents a
future control goal.

Channels provide one mechanism for dividing up a problem. Another dimension along
which a problem can be divided is time. In the DVMT the most natural time slice is the sensor
cycle, the time between two readings of sensor data. We call the work for a particular channel
on the data from a particular time slice a channel task�. Analogous to the definition of channels
(tasks that may be controlled in different ways) channel tasks are the smallest unit of work that
may have different scheduling criteria (e.g., earliest start time, deadline, � � � ). Another way
of defining a channel task is that it comprises a particular set of domain KSIs for a particular
channel. However, the real-time scheduler schedules future channel tasks (channel tasks for
future sensor cycles) before the actual domain KSIs trigger or become executable.

Optionally associated with a channel task is a deadline. This is a sensor cycle by which the
work in that channel task (or some important subpart of it) must be completed. A deadline
defines a time by which a channel task must have satisfied a control goal. A control goal is
satisfied if the work it requires is completed with an appropriate level of certainty, precision
and completeness. Deadlines are generated dynamically at runtime using criteria specified in
the system goal. In the DVMT example given in Section 2 there is a deadline indicating that

�Note that the choice of a sensor cycle as the unit for scheduling is somewhat arbitrary. It was chosen because
it is a convenient amount of time to schedule; it is easier to build schedules around intermediate sized chunks of
time. In fact, the real-time scheduler is constantly monitoring domain problem-solving activity watching for any
changes that might affect scheduling decisions. The real-time scheduler can change channel tasks at any point
during problem-solving including after they have partially executed.
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fish must be warned about attacking ducks within 6 sensor cycles. Instances of this deadline
will be created and dynamically reacted to every time a duck attacking fish pattern is detected.

3.4 The Real-Time Scheduler

The real-time scheduler is the part of the meta-controller that schedules the execution of
channel tasks to ensure that all deadlines are met and efficient use is made of all available time
and resources. This real-time scheduler does not replace the BB1-style agenda mechanism,
rather it schedules at a different level of abstraction. The real-time scheduler chooses the set of
channel tasks to execute during each sensor cycle and what approximations to use in each of
those channel tasks. This defines a set of executable domain KSIs (because each channel task is
just a grouping of domain KSIs), which are then ordered by the BB1-style agenda mechanism
for immediate execution. The BB1-style agenda mechanism may decide to interleave the
execution of KSIs from different channel tasks, or it may decide to do all the work associated
with a higher priority channel task before doing any work on a lower priority channel task.
Note also that the real-time scheduler is devising tentative schedules for future sensor cycles,
as well as the current one, while the BB1-style agenda mechanism only schedules KSIs for
immediate execution.

The real-time scheduler is implemented as BB1-style control KSs. These KSs are con-
stantly monitoring the domain and control blackboards watching for situations that require
rescheduling, such as the creation of a new channel or a change in the workload of an existing
channel. When the real-time scheduler determines that a particular sensor cycle is overloaded
it has to decide how to adjust the schedule to meet the timing constraints. Two techniques are
available for repairing schedules that are estimated to exceed their time limit. These techniques
are illustrated in Figure 7.

Task 1 Task 2 Task 3 Task 4

Initial 
Task Set

Task 1 Task 2 Task 3 Task 4

Approximate
Tasks 1 and 3

Task 1 Task 2 Task 4 Task 3

Move Task 3 to
next sensor cycle

Sensor Cycle

Figure 7: The real-time scheduler fixing overtime schedules.

One technique is to change the problem-solving method of a channel task to use a faster
approximation. This approach is used in the second line of the figure where Tasks 1 and 3 have
their runtime reduced through the use of an approximate processing technique. This reduces
the total runtime of the task set to below the amount of time available during the sensor cycle.
A disadvantage of this approach is that it reduces the certainty, precision and/or completeness
of the result which may impact on the satisfaction of the control goal. In particular, channel
tasks with close deadlines will normally only use approximations that do not compromise their
ability to meet the deadline.
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The other schedule repairing technique is to postpone channel tasks until future sensor
cycles. This approach is illustrated in the third line of the figure where Task 3 is postponed
until the next sensor cycle (where presumably more free time is available). To do this, a vestigial
channel task with minimal overhead must remain in each cycle to gather the data that will be
processed when the main channel task is actually executed�. This approach has the advantage
of reducing the time required for the moved channel task in the overtime sensor cycle to near
zero, but the disadvantage of increasing the workload in a future sensor cycle.

4 A Solution to the Example Problem

This section describes in detail how the components of the architecture work together to solve
the example problem given in Section 2 as the sensor cycle length decreases. We first describe
how the system works when enough time is available for complete processing of all data, then
describe how the system modifies its behavior as the available time decreases. Figure 8 shows
how the control plan develops as problem-solving progresses.

Sensor Cycle 0 Sensor Cycle 1 Sensor Cycle 2 Sensor Cycle 5

. . .

Find New 
Vehicles

Find New 
Vehicles

Find New 
Vehicles

Find New 
Vehicles

Identify 
Possible 
Patterns 
[fish]

Identify 
Possible 
Patterns 
[fish]

Identify 
Possible 
Patterns 
[fish]

Identify 
Possible 
Patterns 
[pigeon]

Identify 
Possible 
Patterns 
[duck]

Identify 
Possible 
Patterns 
[pigeon]

Track 
Fish

Track 
Pigeon

Track 
Duck

Warn 
Fish: 
Duck 
Attacking

(deadline: cycle 7)

Figure 8: The status of the control plan for each sensor cycle.

Before problem solving actually begins control knowledge sources post the system goal,
which triggers the posting of a top-level strategy for meeting that goal. In this example a goal-
directed top-level strategy� will be posted. Additional control knowledge sources will elaborate
this strategy into default heuristics for controlling the execution of control knowledge sources
and an initial control goal of finding any new vehicles that appear. This will lead to the creation
of a find-new-vehicles channel that is constantly looking for new vehicles that are not already

�This is true both because of the limited size of the sensor buffers, which means that data must be read before
the buffers overflow, and because, if the data is not claimed by an existing channel, the channel for finding new
vehicles will attribute the data to the appearance of a new vehicle.

�Although we have not yet implemented them, other approximate processing strategies could be used in this
example including clustering of noisy data and the skipping of data from every other sensor cycle.

13



being worked on by an existing channel. The filters of this channel will be set up to capture
any data that is filtered out by all the other channels. At the beginning of problem solving this
channel will accept all data, because it is the only active channel.

In the example environment of Figure 2 three objects appear: a fish at sensor time 0,
a pigeon at sensor time 1, and a duck at sensor time 2. At sensor time 0 the find-new-
vehicles channel receives the signal level hypotheses associated with the fish. Hypothesis-to-goal
mapping maps these hypotheses to group-level goals. Equivalent group-level goals are merged
together and the remaining group-level goals are checked against the trigger conditions of KSs
in goal-to-KSI mapping. This will lead to a set of domain KSIs appearing on the domain KSI
queue. Together these KSIs (and the KSIs that they will trigger to continue processing the
data from sensor cycle 0 up to the track level) make up a channel task (i.e., the KSIs associated
with the find-new-vehicles channel for sensor cycle 0). The projected change in the workload
of the find-new-vehicles channel causes control KSs from the real-time scheduler to trigger,
estimate the total time required for the find-new-vehicles channel task (by a combination of
analysis of the available data and cached information about previous find-new-vehicle execution
times), compare this estimate against the total time available, and, because enough time is
available, schedule this channel task for the current sensor cycle. This causes KSIs associated
with this channel task to trigger and appear on the domain agenda. At this point the BB1-style
agenda management of the meta-controller will begin scheduling domain KSIs for immediate
execution.

When the domain KSIs have processed the data up to the track level, this satisfies the
control goal of the find-new-vehicles channel (which is to recognize when new vehicles appear
and process their data for one sensor cycle). Generic Control KSs notice when control goals
are satisfied by regularly monitoring each active control goal’s satisfaction function. Control
KSs associated with the top-level goal-directed strategy then post the next part of the control
plan, which is a control goal to identify any possible patterns the new vehicle might be involved
in. The posting of this control goal triggers a control KS which creates a new identify-possible-
patterns channel to identify any possible patterns the fish might be involved in. The filters for
this channel are configured to accept data that is of signal types associated with the object (in
this case data that could be associated with a fish) and that is spatially within the projected
course of the object (using information about the maximum velocity and turning quickness of
the object). At this point the processing of data from sensor cycle 0 is complete.

Sensor cycle 1 contains data from two objects, the fish that has already been tentatively
identified and a newly arriving pigeon. The identify-possible-patterns channel will accept the
fish signals, because they are spatially close to the previous fish signals and because they are of
a type that can be associated with fish. However this channel will filter out the pigeon data,
which will then be picked up by the find-new-vehicles channel. Both channels will process their
respective data in the same way as in the previous cycle, with the processing of the pigeon data
resulting in a new identify-possible-patterns channel being created to identify any patterns that
the pigeon might be involved in. The real-time scheduler will schedule both channel-tasks for
immediate execution, because enough time is available to do so. It will also tentatively schedule
channel tasks for each of the objects for future sensor cycles. Projecting into the future the
real-time scheduler will predict that the pigeon will leave sensor range about sensor cycle 4,
based on its current direction and velocity. It will also predict that the time to process data for
the fish will increase during sensor cycles 4, as the fish enters the range of the noisy sensor.
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Processing during sensor cycle 2 will proceed similarly, with processing of fish and pigeon
data continuing in their respective identify-possible-pattern’s channels and the find-new-vehicles
channel noticing the appearance of the duck, leading to the creation of a third identify-possible-
patterns channel for the duck. The appearance of the duck causes a deadline to be created to
warn the fish if it is involved in a duck-attacking-fish pattern by sensor-cycle 7 (because the
system goal specifies that fish must be warned within 6 sensor cycles of both objects in the
pattern coming within sensor range.)

The system goal specifies that four sensor cycles of data are required to confirm the
involvement of vehicles in a pattern. During sensor cycle 5 enough data will have been
processed to confirm that the duck and fish are involved in a duck-attacking-fish pattern. This
will be noticed by a control KS, which will issue a warning to the fish. Processing in all channels
will continue until all available data has been processed.

As the sensor cycle length is reduced the real-time scheduler has to take action, because
not enough time is available to completely perform all tasks. The first step the real-time
scheduler will take is to modify the identify-possible-patterns channels to use the level-hopping
approximation. It does this by modifying their goal-to-KSI mapping to map directly to vehicle-
level KSIs, bypassing the group-level. This will reduce the number of domain KSIs to execute,
reducing the time estimates associated with these channel tasks. When approximating alone is
not enough to allow all channel tasks to execute immediately, the real-time scheduler will look
into postponing tasks. At this point the tentative schedules it maintains for future sensor cycles
become very important. The scheduler knows that it has a deadline to warn the fish about the
duck by sensor cycle 7, and that processing time for the fish and duck data will be increasing
because of the noisy sensor. It also recognizes that after sensor cycle 4 the pigeon will be out
of range. Combining all of this information with the criteria defined in the system goal for
making scheduling decisions, the scheduler decides to postpone work on the pigeon data until
after the fish has been warned about the duck during sensor cycle 5.

It implements this decision by creating new vestigial channel tasks for the pigeon’s identify-
possible-patterns channel tasks for sensor cycles 3, 4 and 5; and moving the regular channel tasks
for the pigeon for cycles 3, 4, and 5 to cycles 6, 7 and 8 respectively. The vestigial channel tasks
will capture the data for the pigeon for each sensor cycle, but do no processing of that data.
These vestigial channel tasks are necessary to avoid having the data identified as a new vehicle
by the find-new-vehicles channel. As a last resort if the sensor cycle length is reduced to a very
short amount of time, the real-time scheduler will turn off the find-new-vehicles channel. This
will have the effect of completely ignoring the appearance of any new vehicles, but will allow
enough time for the the deadline associated with the known vehicle data to be processed. This
rescheduling solves the real-time problem because it reduces the workload in each sensor cycle
until it can be performed in the time available, and it meets the required deadline.

5 Summary and Future Work

This paper describes extensions to a blackboard framework that allow approximate processing
techniques to be used to solve real-time problems with hard deadlines. In particular we
have shown how these extensions lead to a predictable blackboard execution loop, a useful
representation of current and future problem-solving tasks and a model of how to modify those
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tasks when deadlines are projected to be missed.
Current work is ongoing to extend these results in several ways. We have begun to look in

detail at the design-to-time scheduling problem[12] and plan to continue in this direction by
building more complex schedulers that take more of the available information into account. In
this context we are also investigating the usefulness of monitoring task execution to ensure that
tasks are performing as expected and to correct the situation when they do not. Another current
area of investigation is the bounding of control overhead. While in the DVMT application the
control overhead is acceptable, we need to address the issue of making the control overhead
bounded and predictable. Additionally we are investigating real-time scheduling issues in a
simulator[6]. In these experiments a parameterized simulation environment is used to generate
sets of tasks for a design-to-time scheduler. These experiments will help us to understand how
various aspects of the environment affect the performance of our scheduler.

In the design-to-time and simulation work we would like to investigate questions of the
form:

� How do you choose a set of solution methods?

– How many approximations are best?

– How much variance in duration and quality estimates is tolerable?

– How fast a fall back method is necessary to reduce missed deadlines to a tolerable
level?

� How frequently should you monitor task execution?

– What is the cost/accuracy tradeoff in monitoring?

– What is the effect of the amount of sharable intermediate results among solution
methods on the system performance?

� What do you do if the duration/quality variance is too high?

– How is monitoring frequency/accuracy affected by biases in estimated duration?

We believe that understanding the answers to these questions will allow the construction of
real-time applications that are better able to respond to the changes in a complex environment.
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