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Abstract

Device-free localization (DFL) with wireless sensor networks (WSN) is an emerging technology for target localization,

which has received much attention in the area of Internet of Things. Received signal strength (RSS) measurements are

the key to realize DFL and mainly affects the localization performance. Most existing approaches need to measure the

RSS of all the wireless links in WSN, which take much time on measurement process and localization algorithm due to

the large amounts of RSS data, thus they are inefficient, especially in the case of target tracking. In this paper, by

making full use of the consecutiveness of motion, we present an efficient measurement strategy based on a small set

of correlated wireless links. Furthermore, a lightweight compressed maximummatching select (CMMS) algorithm is

proposed to localize target, which only needs a small-scale matrix-vector product operating for one estimation. The

proposed approach can significantly reduce the number of RSS measurements and improve the real-time capability

of the DFL system. Experimental results demonstrate the superior performance of the proposed method in the

context of target localization and tracking.

Keywords: Internet of Things; Wireless sensor networks; Device-free localization; Compressed maximummatching

select; Efficient measurement

1 Introduction
Internet of Things (IoT) concerns about the seamless

interaction of objects, sensors, and computing devices [1].

With the integration of wireless sensor networks (WSN)

and the Internet, the IoT is fast becoming a reality. IoT

is applicable to various areas, including business logis-

tics, home automation, and healthcare [2]. Tracking is an

important aspect of the healthcare domain [3]. Device-

free localization (DFL) [4] is an emerging method for

localizing and tracking target with WSN, which does not

need equipping the target with any wireless device. Hence,

the DFL technology would not inconvenience the target

or make it uncomfortable. The DFL also can be used

in other applications such as intrusion detection, night-

time security monitoring, and emergency rescue, where

the traditional localization scheme that target needs to

equip with a wireless device to transmit or receive wire-

less signals will become invalid. The location information

is extremely useful in these applications, as it may provide
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life-saving benefits for the emergency responders. There-

fore, the study on realizing efficient real-time DFL with

WSN is necessary and significative.

There are lots of wireless links within the deployment

area of the WSN. When an object moves into the area,

it may shadow some of the links and reflect, absorb,

diffract, or scatter some of the transmitted power, which

will change the received signal strength (RSS) of the shad-

owed links. The object locating at a different location

will shadow different links, so we can realize DFL based

on RSS measurements. Since there are too many wire-

less links in a WSN, the measurements of all the wireless

links will cause some disadvantages in resources con-

sumption, system latency, and estimation processing. This

article focuses on using efficient measurement strategy

and lightweight algorithm to realize real-time DFL.

Wilson and Patwari [4-7] formulated the DFL as a radio

tomography imaging (RTI) problem and utilized regu-

larization method to solve it. Moussa and Youssef [8,9]

modeled the DFL as a machine learning problem and

adopted fingerprint-matching method to solve the prob-

lem. Zhang et al. [10-14] proposed a signal dynamic

model and used the geometric method and probabilistic
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cover algorithm based on dynamic clustering to local-

ize targets. All these works require sufficient RSS mea-

surements of wireless links, which are inefficient, have

high-resource consumption, and sometimes are not even

possible. In this paper, based on the consecutiveness of

motion, we propose an efficient measurement strategy

that only needs to measure a few wireless links. Further-

more, we consider the information of target locations

as a sparse signal and reconstruct it via compressive

sensing (CS) method. CS has been applied to realize

DFL in [15]; however, the convex optimization approach

was adopted to reconstruct the sparse signal, which is

computationally expensive. Meanwhile, the reconstruc-

tion is based on a randomly selected set of links, and

this leads to inefficiency and low consistency. Wang

et al. [16] presented a novel Bayesian greedy matching

pursuit (BGMP) algorithm to solve the DFL problem

based on the enumeration region built on prior infor-

mation. However, the algorithm is still computationally

expensive.

In this article, for realizing efficient real-time DFL

system with wireless network, we first provide the radio

tomography imaging model for relating the variances of

RSS measurements of wireless links to the spatial loca-

tions of the targets. Based on the RTI model, we formulate

the DFL issue as a sparse signal reconstruction problem.

Then we propose a novel and efficient measurement strat-

egy based on the correlated links which are determined

with possible region built on the previous reconstruction.

We also propose a compressed maximummatching select

(CMMS) algorithm for fast reconstruction of the signal.

It only utilizes RSS measurements of the correlated links

and reconstructs the signal within a restricted subspace.

Hence, the running time of the algorithm is reduced and

the reconstruction performance is improved simultane-

ously, which completely meet the need for real-time DFL

applications.

The remainder of this paper is organized as follows.

In the next section, we will discuss some related works.

Section 3 introduces the RTI model and formulates the

DFL issue as a compressed RTI (CRTI) problem with

CS theory. Section 4 presents the efficient measurement

strategy and the CMMS algorithm. The experiments and

results are showed in Section 5. Finally, we conclude the

paper in Section 6.

2 Related works
Localization of targets based on received signal strength

in WSN is a promising technique which has received

extensive attention [17-21]. However, little attention has

been given to the real-time CS-based DFL and efficient

measurement method. In this section, we briefly sum-

marize the most relevant research on the DFL and the

CS-based DFL.

Device-free localization was first introduced by Zhang

et al. [10] and Youssef et al. [9]. Zhang et al. [10-13] pre-

sented a dynamic model to describe the relation between

the RSS variance and the target location, then utilized geo-

metric method and the dynamic cluster-based probabilis-

tic cover algorithm to solve the DFL problem. They also

proposed a real-time DFL system [14]. They divided the

tracking area into distinct sub-regions, with each region

assigned with a separate radio channel, and used the sup-

port vector regression model to locate the target in each

sub-region. Youssef et al. [8,9] adopted the fingerprint-

matchingmethod to realize DFL. The target’s location was

estimated by comparing the current RSS measurements

with the trained database. Although the above methods

achieve reasonable performance, they need to build a sep-

arate training measurement database before realizing the

DFL. Training measurements increase exponentially with

the increase of the number of wireless links and targets.

Moreover, the database will be unavailable when the envi-

ronment changed. Wilson and Patwari [5,6,22,23] firstly

modeled the DFL as a RTI problem, then they carried out

in-depth research on relating the temporal link signature

with the target’s location. They utilized the regulariza-

tion method to solve the ill-posed inverse problem in

the reconstruction of the radio tomographic image. Their

studies laid the foundation for future research on the radio

tomographic imaging and encouraged other researchers

to start to work in this direction. Chen et al. [24] adopted

an auxiliary particle filter to realize tracking of device-

free target based on the RSS measurements. These works

require that there should be sufficient number of wire-

less links be measured to guarantee the reconstruction

performance, otherwise, the reconstruction performance

will drop significantly. On the basis of these works, we

formulate the DFL as a CRTI problem and propose an effi-

cient measurement strategy and a lightweight algorithm

to realize real-time tracking.

To the best of our knowledge, Kanso and Rabbat [15]

adopted convex optimization algorithm to reconstruct

the sparse image, which is the first work that adopts CS

theory to solve the DFL problem. However, the computa-

tion complexity of the ℓ1 minimization algorithm is too

high and not suitable for wireless network. Wang et al.

[16] also utilized the CS theory to solve the DFL prob-

lem. They limited the region where the target may be

located with prior information of last reconstruction, then

used the proposed BGMP algorithm to solve the simpli-

fied DFL problem. The BGMP algorithm iteratively seeks

the contribution of each pixel in the restricted region

and finally locates the target on the pixel which has the

biggest contribution value. BGMP essentially is a fusion

of the orthogonal matching pursuit (OMP) [25] algorithm

and back-projection algorithm. However, the algorithm

is also computationally expensive and not very suitable
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for real-time localization and tracking of targets. Fur-

thermore, the above works choose a set of wireless links

to reconstruct the sparse signal and they still need to

measure all of the wireless links.

In this paper, we proposed a novel efficient measure-

ment strategy, which only needs to measure a small set

of correlated links so it is efficient and energy saving. To

our best knowledge, this is the first work which realizes

efficient measurement in real-time DFL system. We also

proposed a lightweight CMMS algorithm to localize tar-

get, which only needs a small-scale matrix-vector product

and a sorting operation. Hence it runs fast and is suitable

for real-time system.

3 Model and problem formulation
In this section, we provide a RTI model for relating the

variance of the measured RSS value of each wireless links

to the location of the target, and then we introduce the CS

theory and formulate the DFL problem as a compressive

RTI question.

3.1 Systemmodel

In aWSN, if the number of nodes is K, then the number of

the unique two-way wireless links isM = (K2 −K)/2. For

simplicity, we illustrate a WSN in Figure 1 with all the 20

wireless nodes uniformly distributed in a square perime-

ter. When wireless nodes communicate, the RSS yi(t) of a

particular link i at time t is denoted as

yi(t) = Pi − Si(t) − Fi(t) − Li − vi(t), (1)

where

• Pi is the transmitted power in decibel,
• Si(t) is the shadowing loss in decibel caused by the

targets which attenuate the signal,
• Fi(t) is the fading loss in decibel due to constructive

and destructive interference of narrow-band signals

in multi-path communication,
• Li is the static loss in decibel due to antenna patterns,

distance, and device inconsistencies,
• vi(t) is the measurement noise.

For two time instants ta and tb, the change of the RSS

measurement △yi is

△yi = yi(tb) − yi(ta)

= Si(tb) − Si(ta) + Fi(tb) − Fi(ta) + vi(tb) − vi(ta)

(2)

which can be rewritten as

△yi = △Si + ni, (3)

where the noise is the grouping of fading and

measurements

ni = Fi(tb) − Fi(ta) + vi(tb) − vi(ta). (4)

Figure 1 An illustration of an RTI network with 20 nodes.

As described in (3), we can see that △yi is primar-

ily determined by the shadowing loss difference of the

two time instants. We examined the shadowing effect

of the target on single link measurement. As seen in

Figure 2, a target was located in the WSN, and we took

the links l1, l2, and l3 for comparison. Figure 2b shows

the values of RSS measurement when a human stood

in the position as showed in Figure 2a and when with-

out any human in the deployment WSN area. We can

see that if a wireless link is shadowed by a target, its

RSS value will significantly change from when it is not

shadowed. Hence we can use the shadowing model to

realize DFL.

In the shadowing model, which is the most widely

adopted model, the noise ni is caused by time-varying

measurements miscalibration of the receiver, by the con-

tribution of thermal noise, and by the variations in the

multipath channels. The statistics of the noise ni has been

examined in [5], which is constant with time. Hence, the

calibration (when no moving targets existed in the wire-

less network field) could be able to establish it as the base-

line. Then one can use the changes of RSS measurements

to realize DFL.

Now we provide the RTI model. The monitoring area

of the WSN is divided into N square cells which can be

seen as pixels, as indicated in Figure 3. We use the word

pixel to represent the cell in the following sections, and

the location of each pixel is represented by the center

point of the corresponding cell. The shadowing loss △yi
of link i can be approximated as a sum of attenuation that

occurs in each pixel. Since the contribution of each pixel

to the attenuation of each link is different, a weighting is
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(a) (b)

Figure 2 A comparison of the shadowing effect of target in WSN. In one case the network is empty from target. In the other case, there is one

target that passed through by two links (6,14) and (10,20) in the network. (a)Measurement setup. (b) RSS values.

applied. Mathematically, this is described for single link i

as

△yi = △Si + ni =
N

∑

j=1

wijxj + ni (5)

where xj is the attenuation occurring in pixel j, wij is the

weighting of pixel j for link i, and N is the total number

of pixels. The weighting wij can be calculated with ellipse

model mathematically described as

wij =
1

√
d

×
{

1, if dij(1) + dij(2) ≤ d + λ,

0, otherwise,
(6)

where d is the distance between the two nodes of the link

i, dij(1) and dij(2) are the distance from the center of pixel

j to the two nodes, and λ is a tunable parameter describ-

ing the width of the ellipse. The width parameter λ is

typically set very low in RTI, such that it is essentially the

same as using the line-of-sight (LOS) model, as depicted

in Figure 3.

Supposing that M links are adopted to realize RTI, the

changes of RSS measurements can be expressed in matrix

form as

y = Wx + n (7)

where the vector y =[△y1,△y2, . . . ,△yM]T is a M × 1

vector that represents the changes of the RSS measure-

ments, W = {wij, i = 1, 2, . . . ,M, j = 1, 2, . . . ,N} is

the M×N weighting matrix, x = [x1, x2, . . . , xN ]
T is the

unknown N × 1 pixel vector to be reconstructed, and

n = [n1, n2, . . . , nM]T is theM × 1 noise vector.

The weighting matrix can be calculated with (6). With

sufficient link RSS measurements, we can reconstruct

an image vector by solving the inverse problem in (7).

The image vector describes the amount of radio power

attenuation occurring due to the targets within the pix-

els of the WSN region. Since the pixel locations are

known, RTI allows us to know where the attenuations in

a WSN are occurring and, therefore, where the targets are

located.

Figure 3 Illustration of the RTI elliptical weight model.
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3.2 Formulation as CRTI problem

CS is an emerging theory for reconstructing sparse signals

from a much lower sampling rate than Shannon/Nyquist

theorem. In the deployment area of a RTI system, when

a target moves into a pixel j, the pixel value xj will be

non-zero, otherwise, xj will be zero. Note that after suf-

ficient dense gridding, each target can be guaranteed to

have a unique location in 1 pixel. In general DFL appli-

cation, the number of targets K is considerably less than

the number of pixels N. Hence, the image vector x will

be a sparse signal, and it will be possible to reconstruct

the x from a few measurements. This motivates us to

utilize the CS theory to reconstruct the sparse signal

based on (7). We will present a lightweight algorithm to

solve the sparse signal reconstruction problem in the next

section.

4 Efficient measurement strategy and CMMS
algorithm

In this section, we describe the detailed implementation

of the proposed real-time DFL system, including the effi-

cient measurement strategy, the lightweight reconstruc-

tion algorithm CMMS, and the system scheme.

In a RTI system, if one directly use (7) to find the pixel

where the target is located, almost all the links should be

measured, which is time and power consuming, especially

whenN is large. As we know, theWSN generally is power-

limited. To solve this problem, we propose utilizing prior

information of last reconstruction to restrict the range of

the pixels where the target may locate and to guide the

next measurements. Once we know which links need to

be measured, the radio of the other nodes which does not

need to participate in the measurement can be turned off,

hence, we can both reduce the latency of the system and

save the power of the nodes.

As moving is consecutive, the target’s current location

must be around the last location. As illustrated in Figure 4,

supposing that the target is located on xj at time instant

t − 1, then at the next time instant t, the target must

be located in a adjacent pixel of xj (the shaded pixels in

Figure 4), which is called as possible region in this paper.

If the distance dij between pixel i and pixel j is less than

the threshold l, then the pixel i is in the possible region.

The parameter l should be set as l = Vmax × tint, where

Vmax is the maximum speed of the target, and tint is the

time interval between two successive running of the esti-

mation algorithm. The wireless links that pass through

the possible region are called as correlated links. We can

only use the correlated links to localize the target in the

possible region. Hence, we only need to measure the cor-

related links in the DFL system. Algorithm 1 presents

the construction process of the possible region R and the

correlated links of set L.

Algorithm 1 Possible region and correlated links con-

struction algorithm

Require:

Index set Rt−1 of pixels where targets located of the last

time instant,

Number of targets K,

Measurement matrixW,

The threshold l

Ensure:

The possible region R,

The correlated links set L

1: for j = 1 to N do

2: for i = 1 to K do

3: if djpt−1
i

< l then

4: Ri ← Ri ∪ {j};
5: end if

6: end for

7: end for

8: for i = 1 to K do

9: form = 1 toM do

10: if
∑

j∈Ri

wij > 0 then

11: Li ← Li ∪ {m}
12: end if

13: end for

14: end for

After calculating the set of links that needs to be mea-

sured, the host of the algorithm (generally a laptop) sends

command messages to the wireless nodes through the

base station node to tell them when to participate in

the measurement and when to go to sleep. Therefore, in

Figure 4 Illustration of the possible region and the correlated

links.
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the real-time system, the nodes have two phases: one

for measurement and the other for receiving command

messages from the host computer. In the phase of mea-

surement, the nodes are synchronized and time slots are

assigned by the following scheme. In 1 cycle of measure-

ment, the total number of slots is the same as the number

of the nodes. Each node is assigned to transmit only in

the slot in which the serial number is equal to its node ID

number; in other slots, the node either receives messages

from another node for measurement the RSS of the link or

keeps radio in sleep phase to save power. The packet trans-

mitted by a node includes the ID of the node and the RSS

values that it has already measured. In the measurement

phase, the base station node receives all the data packets

and sends them to the host computer. Hence, when the

last node has sent its data packet, the host computer has

all the RSS values of the correlated links. Then the wireless

node will turn to the second phase. All of them will keep

alive and receive command messages from the base sta-

tion node. Simultaneously, the host computer will use the

measured RSS vector to estimate the target’s location with

Algorithm 2.

Now, we only need to reconstruct the signal xR, which

contains far less elements than the source signal x. In addi-

tion, the magnitude of the measured vector yL is also far

Algorithm 2 CMMS algorithm

Require:

Measurement matrixW, Number of targets K

RSS Measurement vector yL, Possible region R

Ensure:

Index set pt of pixels where targets located of the current

time instant,

Reconstructed signal x

1: Initialization:

2: xj ← 0, ∀j ∈ {1, 2, . . . ,N};
3: for i = 1 to K do

4: WLiRi ← {wmj, ∀m ∈ Li, ∀j ∈ Ri};
5: c = WLiRi

T × yLi ;

6: pti ← argmax
j

∣

∣cj
∣

∣ , j ∈ Ri, j /∈ {pt1, p
t
2, . . . , p

t
i−1,

pti+1, . . . , p
t
K };

7: end for

8: for i = 1 to K − 1 do

9: for j = i + 1 to K do

10: if pti ∈ Rj & ptj ∈ Ri then

11: if cos(
−−−−−→
pt−2
i pt−1

i ,
−−−→
pt−1
i pti) < cos(

−−−−−→
pt−2
i pt−1

i ,
−−−→
pt−1
i ptj )

then

12: m ← pti , p
t
i ← ptj , p

t
j ← m;

13: end if

14: end if

15: end for

16: end for

17: xpti
← 1, ∀i ∈ {1, 2, . . . ,K}

less than in the source vector y. Hence, the reconstruction

problem in (7) is compressed to

yL = WLR × xR + nL. (8)

We propose the CMMS algorithm to solve the above

compressed problem. The pseudocode of the CMMS algo-

rithm is summarized in Algorithm 2. For estimating the

next location of target i, the CMMS algorithm only needs

to find out the pixel j that could maximize |WLiRi
T × yLi |,

where Ri and Li are the possible region and the correlated

links of the target i, respectively; WLiRi is a sub-matrix

of W that only includes the rows in Li and columns in

Ri; and yLi is the measured RSS values of the correlated

links Li. Since it only needs a small-scale matrix-vector

product and a sorting operation, the CMMS algorithm is

lightweight and has low complexity, which makes it meet

the requirements of real-time systems. When two targets

move too close together that it is difficult to distinguish

from each other, the algorithm will make their trajectories

as smoother as possible.

For clarity, the outline of the proposed real-time DFL

method is summarized in Figure 5.

5 Experimental results
To evaluate the performance of the real-time DFL sys-

tem, we conduct the real-time measurement and tracking

experiment. In this section, we first describe our experi-

mental setup. Then the tracking performance of moving

targets is provided. Lastly, we will give some analyses and

discussions.

5.1 Physical description of experiment

A wireless network containing 20 nodes was deployed

in a laboratory. Each node is placed 1.0 m apart

along the perimeter of 5 × 5 m2 and 1.0 m off the

ground on a tripod. A photograph of the experimen-

tal setup is shown in Figure 6. The network com-

prises MICAz wireless nodes [26] made by MEMSIC

(MEMSIC Inc., Andover, MA, USA). Each node operates

in the 2.4G frequency band and runs the IEEE 802.15.4

standard protocol for communication. A base station

node listens all network traffic then feeds the data to a lap-

top computer via a USB port for processing. It also sends

command messages to the wireless nodes from the laptop

computer.

To avoid network transmission collisions, a simple token

passing protocol is used. Each node is assigned an ID

number from 1 to 20 and programmed with a known

order of transmission. When a node transmits its packet,

the other nodes that need to measure the RSS of the link

will wake up to receive the message for acquiring the RSS

value and then put it into its send buffer. When its turn

to transmit arrives, the measured RSS values will be sent
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Figure 5 Flow diagram of the system.

out. Since the base station node always receives all the

packages after the last node transmitted its packet, the

real-time tracking program running on the laptop will get

all the needed RSS values.

When the base station node sends amessage to the wire-

less nodes, its package follows a certain format. The base

station node needs to send two kinds of messages to the

wireless nodes: the first kind of messages tells the nodes

when they need to wake up for receiving packages; we

call this kind of messages as L message. Packages of the

L message follow the format as indicated in Figure 7. The

second kind of message is a command that tells the nodes

start to measure; we call this kind of message as start mes-

sage, which is set as a simple 3 bytes packet ‘11 22 33’.

Once the nodes receive the start message, they will start

their timer and the node with ID number 1 will transmit

first. The start message can also synchronize the wireless

nodes.

Figure 6 The setup of the experiment.



Yang et al. EURASIP Journal onWireless Communications and Networking 2013, 2013:186 Page 8 of 12

http://jwcn.eurasipjournals.com/content/2013/1/186

EE ID XX XX XX EE ID XX XX EE ...

Slot number that the node needs to wake

up for receiving message

Node ID

Delimiter

Figure 7 The packet format of the L message.

In the experiment, the system is calibrated by taking

RSSmeasurements while the network is vacant frommov-

ing targets. The RSS vector is averaged over a 120-second

period, which results in approximately 1,240 samples from

each link. The calibrated RSS vector is saved in the laptop

computer and provides a baseline against which all other

RSS measurements are differenced. This process has to be

done off-line.

The default parameters are as follows: the pixel size

is 0.5 × 0.5 m, and the possible region threshold is

l = 0.75 m; hence, the possible region includes 9 pixels.

In the experiments, the parameters were set as given in

Table 1.

5.2 Tracking performance

In order to verify the proposedmethod, three experiments

were conducted: one for one target tracking, the others

for two targets tracking. Each experiment was repeated

two times: one experiment for real-time tracking with the

CMMS algorithm and one that measured the RSS of all

the wireless links for off-line processing with the other

algorithms. In the experiments, the experimenter moves

at a typical walking pace on a predefined path at a normal

walking speed of 1.2 m/s. A metronome and uniformly

placed markings on the floor help the experimenter to

take constant-sized steps at a regular time interval. The

actual location of the experimenter is interpolated using

the start and stop time and the known marker positions.

In the first experiment, a target moved around the

square is shown in Figure 8. The figure compares the true

trace with the estimated ones obtained by CMMS, ℓ1, reg-

ularization, and BGMP. In the experiment, we assume that

the starting location of the target is known, which is rea-

sonable in target tracking. It should be pointed out that

Table 1 Relevant parameter settings

Parameter Value Description

w 0.5 Pixel width (m)

λ 0.035 Width of weighting ellipse (m)

α 4 Regularization parameter

l 0.75 Threshold for calculate possible region (m)

there were two consecutive locations estimated by the

algorithms for each pixel that the target traveled. It is obvi-

ous that the proposed CMMS algorithm could achieve

better tracking performance than the other algorithms.

The detailed statistical characters of the localization

errors of different algorithms are summarized in Table 2.

We can see that the average error of the proposed CMMS

is 0.09 m which is smaller than the errors of the regu-

larization (0.27 m) and BGMP (0.15 m) and even smaller

than the error of the ℓ1 (0.12 m). The maximum error of

the CMMS is also smaller than the ones of the other algo-

rithms. We additionally tested the average running time

of different algorithms for once estimation on a dual-core

2.6 GHz PC. The proposed CMMS algorithm consumed

about 0.06 ms, which is far less than 1 ms the regular-

ization algorithm consumed 0.3 ms; the BGMP algorithm

consumed approximately 5 ms; and ℓ1 consumed much

more about 28 ms. We can see that the CMMS needs

considerably less time than the other algorithms.

Based on the proposed efficient measurement strategy,

each node needs to receive 2.3 packets on average from

the other nodes and additional 3 packets from the base

station node for one estimation.Without utilizing the effi-

cient measurement strategy, each node needs to receive

19 packets from all the other nodes. Each node needs to

send one packet in the two situations. Therefore, one can

save nearly 88% of the RSS measurements and about 72%

of the radio communications using the proposed efficient

measurement strategy.

In experiments 2 and 3, two targets walked along the

polyline shown in Figure 9a,b. The target A moved from

A1 to A2; simultaneously, target B moved from B1 to B2.

In Figure 9a, the distance between target A and target B

was always longer than 3 pixels.We can see that the trajec-

tories estimated by the CMMS algorithm is similar to the

real ones. The average error of this experiment is 0.11 m.

In Figure 9b, target A and target B moved into two adja-

cent pixels (1.25, 2.25) and (1.25, 2.75). We can see that

the tracking performance is getting worse when two tar-

gets moved too close to each other. The average error of

this experiment increases to 0.23 m. In summary, the total

average error of the experiments of two targets is 0.17 m,

thus the experimental tracking performance is acceptable.
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Figure 8 Visualized tracking example with one target. (a) CMMS. (b) ℓ1 . (c) Regularization. (d) BGMP.

5.3 Analyses and discussions

We first analyze the latency of the system. Since the total

number of the nodes is 20, there 20 time slots in the

measurement phase. A MICAz node takes 7 ms on aver-

age to transmit a packet with 51 bytes, so we assigned

each time slot with 8 ms. The measurement phase needs

20 × 8 = 160 ms = 0.16 s. In the first experiment, the

number of links each node needs to measure on average

is 2.3, following the packet format in Figure 7; each node

needs up to 5 bytes on average in the packet of the L

message. The maximum length of the payload in TinyOS

packet is over 51 bytes, so the L message can be sent in

Table 2 Comparison of localization error and execution time

Algorithm Median (m) Average (m) Stand deviation (m) 90% (m) Max (m) CPU time (ms)

CMMS 0 0.09 0.19 0.50 0.50 0.06

ℓ1 0 0.12 0.23 0.50 0.71 28

Regularization 0 0.27 0.29 0.71 0.71 0.3

BGMP 0 0.15 0.24 0.50 0.71 5
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(a) (b)

Figure 9 Visualized tracking example with two targets. (a) The distance between the two targets was always longer than 3 pixels. (b) The two

targets moved into two adjacent pixels (1.25, 2.25) and (1.25, 2.75).

two packets. The time required by the base station node

sending L message and start message to the nodes is up to

(2+1)×7 = 21 ms. The time needed for the host running

the reconstruction algorithm is less than 1 ms. In total,

once estimation of the location of the target needs up to

160 + 21 + 1 = 182 ms ≈ 0.2 s. In summary, our system

can reach the real-time tracking with the latency of about

0.2 s, which significantly outperforms previous tracking

systems [10,11,14]. The latency will increase as enlarge-

ment of the deployment area with more nodes. Based on

the above analysis, we can see that the system latency will

increase at less than 10 ms with each additional node. In

general application, two estimation in 1 s is enough. On

this condition, the system can be extended up to 50 nodes.

The system can also be extended by clustering nodes into

different regions which are assigned with separate chan-

nels and share timeslots as introduced in [11]. Hence, the

system is scalable.

The width of the pixel is an important parameter in

RTI problem, which correlates highly with the resolution.

We believe that it is mainly dependent on the applica-

tion. In the experiments, we set it at 0.5 m, which can

(a () b)

Figure 10 Performance under different parameters. (a) λ. (b) l.



Yang et al. EURASIP Journal onWireless Communications and Networking 2013, 2013:186 Page 11 of 12

http://jwcn.eurasipjournals.com/content/2013/1/186

(a) (b)

Figure 11 Imaging performance. (a) Real image. (b) Image reconstructed by CMMS.

meet the requirement of general applications. In addition,

increasing or decreasing of the width of the pixel will not

significantly change the latency of the system.

To evaluate the performance of the proposed method

under different conditions, we evaluate the algorithmwith

different width of the ellipse λ and possible region thresh-

old l. The weighting parameter plays an important role

in generating accurate RTI images. If the ellipse is too

wide, the pixels of where attenuation is not occurring

may be included. If the ellipse is too narrow, pixels that

do, in fact, attenuate a link’s signal may not be captured

by the model. This may result in a loss of information

that degrades the final reconstruction quality. Figure 10a

illustrates the mean squared error (MSE) with respect to

different λ. It is obvious that the CMMS algorithm can

achieve better results when λ in the neighborhood of the

point 0.03. And the MSE with respect to different possi-

ble region threshold l is indicated in Figure 10b. We can

see that the MSE is very large (over 1.8 m) when l = 0.5

m, because the target may move out of the possible region

which only comprises 5 pixels. The MSE does not signifi-

cantly increase with the threshold l increasing, but a very

large value of l will increase both the computational com-

plexity and the system latency. Essentially, the threshold

l is determined by Vmax and tint (l ≥ Vmax × tint). If the

movement speed of the target is very slow, one can set tint
with a big value (such as 1 or 2 s) for conserving system

resources. Since once estimation of the target’s location

needs less than 0.2 s, the value of tint can down to 0.2 s. On

the precondition of l = 0.75 m and w = 0.5 m, the value

of Vmax can up to 3.75 m/s, which is much larger than

the normal walking speed. In short, one should carefully

select the value of l according to specific application for

reaching good tracking accuracy and conserving system

resources.

Essentially, our proposed real-time DFL is based on

the RTI theory, hence, the localization performance is

depending on the imaging performance. We provide an

imaging result in Figure 11. It can be seen that the CMMS

algorithm could achieve reasonable imaging performance.

6 Conclusion
In this article, we designed and implemented a real-time

DFL system, which is based on efficient measurement

strategy and lightweight reconstruction algorithm. The

measurement strategy makes use of the last localization

result to predict a possible region of the target, then finds

the wireless links which travel through the possible region

to establish the set of correlated links. The system only

needs to measure the RSS of the correlated links via coop-

erating with the bastion station node. As far as we know,

we are the first to realize real-time DFL based on mea-

surements of correlated links. Furthermore, the proposed

CMMS algorithm only needs a small-scale matrix-vector

product operation to reconstruct the signal and local-

ize the target. In summary, we realized an efficient and

energy-saving real-time DFL wireless network system.

Experimental results demonstrate the effectiveness of our

approach and confirm that the CMMS algorithm could

achieve satisfactory localization and tracking results.
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