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ABSTRACT

In this paper, we present a real-time equalizer to control a

volume balance of harmonic and percussive components in

music signals without a priori knowledge of scores or in-

cluded instruments. The harmonic and percussive compo-

nents of music signals have much different structures in the

power spectrogram domain, the former is horizontal, while

the latter is vertical. Exploiting the anisotropy, our methods

separate input music signals into them based on theMAP es-

timation framework. We derive two kind of algorithm based

on a I-divergence-based mixing model and a hard mixing

model. Although they include iterative update equations,

we realized the real-time processing by a sliding analysis

technique. The separated harmonic and percussive com-

ponents are finally remixed in an arbitrary volume balance

and played. We show the prototype system implemented on

Windows environment.

1 INTRODUCTION

A graphic equalizer is one of the most popular tools on an

audio player, which allows an user to control the volume

balance between frequency bands as its preference by sep-

arating an input audio signal by several band-pass filters

and remixing them with different gains. Recently, based

on other kinds of separation, more advanced audio equal-

izations have been discussed and developed [1, 2, 3], which

increase the variety of modifying audio sounds and enrich

functions of audio players.

In this paper, focusing on two different components in-

cluded in music signals: harmonic and percussive ones, we

present a technique to equalize them in real-time without a

priori knowledge of the scores or the included instruments.

Not only as an extended audio equalizer, the technique should

yield the useful pre-processing for various tasks related to

music information retrieval from audio signals [4]. It can

suppress percussive tones, which often interfere multipitch

analysis, while, suppression of harmonic component will fa-

cilitate drum detection or rhythm analysis. We have cur-

rently applied this technique to automatic chord detection

based on emphasized chroma features [5], rhythm pattern

extraction and rhythm structure analysis [6], and melody ex-

traction.

For independently equalizing the harmonic and percus-

sive components, it is required to separate them. This kind

of separation problem has been widely discussed in the lit-

erature. Uhle et al. applied Independent Component Anal-

ysis (ICA) to the magnitude spectrogram, and classified the

extracted independent components into a harmonic and a

percussive groups based on the several features like percus-

siveness, noise-likeness, etc [7]. Helen et al. utilized Non-

negative Matrix Factorization (NMF) for decomposing the

spectrogram into elementary patterns and classified them by

pre-trained Support Vector Machine (SVM) [8]. Through

modeling harmonic and inharmonic tones on spectrogram,

Itoyama et al. aimed to an instrument equalizer and pro-

posed separation of an audio signal to each track based on

theMIDI information synchronized to the input audio signal

[1].

The contribution of this paper is to derive a simple and

real-time algorithm specifically for the harmonic/percussive

separation without any pre-learning or a priori knowledge

of score or included instruments of the input audio signals.

We present the formulation of the separation in Maximum

A Priori (MAP) estimation framework, derive the fast iter-

ative solution to it by auxiliary function approach, imple-

ment it with sliding update technique for real-time process-

ing, and examine the performance by experiments to popu-

lar and jazz music songs.

2 FORMULATION OF HARMONIC/PERCUSSIVE

SEPARATION

2.1 MAP Estimation Approach

Let Fω,τ be a Short Time Fourier Transform (STFT) of a

monaural audio signal f(t), and Wω,τ = |Fω,τ |2 be a short
time power spectrum, where ω and τ represent frequency
and time bins. Let Hω,τ and Pω,τ be a harmonic and a per-

cussive component ofWω,τ , respectively. The variablesW ,

H , and P denote a set of Wω,τ , Hω,τ , and Pω,τ , respec-

tively.
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The separation of W into H and P is a kind of under-

determined blind source separation problem. One way to

mathematically formulate this kind of problems is putting

it on MAP (Maximum A Posteriori) estimation framework

through representing desired source properties as a priori

probabilities. Assuming that H and P are independent, the

objective function of MAP estimation in our problem can be

written as

J(H , P )

= log p(H, P |W )

= log p(W |H , P ) + log p(H, P ) + C

= log p(W |H , P ) + log p(H) + log p(P ) + C, (1)

where the first term represents the log-likelihood, the second

and the third terms represent the prior probabilities, and C
is a constant term not includingH and P , hereafter, we will
omit it since it is not used for MAP estimation.

A harmonic component on the spectrogram usually has a

stable pitch and form parallel ridges with smooth temporal

envelopes, while the energy of a percussive tone is concen-

trated in a short time frame, which forms a vertical ridge

with wideband spectral envelopes. Then typically, the ver-

tical and horizontal structure emerges in the spectrogram of

audio signals shown in the top of Fig. 3.

Focusing on the horizontal and vertical smoothed enve-

lope of Hω,τ and Pω,τ , we model their a priori distribution

as functions of spectrogram gradients as:

p(H)∝
∏

ω,τ

1√
2πσH

exp

(

−
(Hγ

ω,τ−1 − Hγ
ω,τ )2

2σ2
H

)

, (2)

p(P )∝
∏

ω,τ

1√
2πσP

exp

(

−
(P γ

ω−1,τ − P γ
ω,τ )2

2σ2
P

)

, (3)

where σ2
H and σ2

P are the variance of the spectrogram gradi-

ents, probably depending on the frame length or frame shift

of STFT, and γ represents a range-compression factor such
that (0 < γ ≤ 1), which we introduced for increasing the
degree of freedom of our model with holding the assumption

of the Gaussian distribution.

2.2 Method 1: I-divergence-based mixing model

AlthoughHω,τ and Pω,τ are the power spectrograms the ad-

ditivity of them is not rigorously hold, Hω,τ + Pω,τ should

be close to the observationWω,τ . In several power-spectrogram-

based signal processing methods NMF [9, 10, 11], the dis-

tance between power spectrograms Aω,τ and Bω,τ can be

measured by I-divergence:

I(A, B) =
∑

ω,τ

(

Aω,τ log
Aω,τ

Bω,τ

− Aω,τ + Bω,τ

)

, (4)

which is almost equivalent to the assumption that p(W |H , P )
is Poisson distribution [11]. Assuming that observation at

each time-frequency is independent, the log-likelihood term

can be written as

log p(W |H, P ) − C (5)

= −
∑

ω,τ

{

Wω,τ log
Wω,τ

Hω,τ + Pω,τ

− Wω,τ + Hω,τ + Pω,τ

}

,

where C is a constant term for normalization.

In the MAP estimation, the balance between a log-likelihood

term and a prior distribution term is significant. Specifically

in our problem, the relationship between them should be in-

variant for scaling. The property is satisfied by setting the

range-compression factor as γ = 0.5. Then, the objective
function can be written as

J1(H, P )

= −
∑

ω,τ

{

Wω,τ log
Wω,τ

Hω,τ + Pω,τ

− Wω,τ + Hω,τ + Pω,τ

}

− 1

σ2
H

(
√

Hω,τ−1 −
√

Hω,τ )2

− 1

σ2
P

(
√

Pω−1,τ −
√

Pω,τ )2
)

. (6)

Note that, when Hω,τ , Pω,τ , and Wω,τ are multiplied by a

scale parameter A, the objective function is also just multi-
plied by A and the function form is invariant.

2.3 Method 2: hard mixing model

Since the intersection of the horizontal and vertical ridges

is small, we can make a more strong assumption that they

are approximately disjoint. In the case, Wω,τ = Hω,τ or

Wω,τ = Pω,τ are exclusively satisfied at each (ω, τ ). How-
ever, the sparse mixing model leads us to a large number of

combination problem. For avoiding it and obtaining an ap-

proximative solution, we cast it to a hard mixing model on

the range-compressed power spectrum as

Ŵω,τ = Ĥω,τ + P̂ω,τ , (7)

where

Ŵω,τ = W γ
ω,τ , Ĥω,τ = Hγ

ω,τ , P̂ω,τ = P γ
ω,τ . (8)

Eq. (7) is hold if Hω,τ and Pω,τ are actually disjoint. Al-

though the model is rough, this assumption leads us to sim-

ple formulation and solution. Since the deterministic mixing

model of eq. (7) vanishes the log-likelihood term, the objec-

tive function is given by

J2(Ĥ, P̂ ) = − 1

2σ2
H

∑

ω,τ

(Ĥω,τ−1 − Ĥω,τ )2

− 1

2σ2
P

∑

ω,τ

(P̂ω−1,τ − P̂ω,τ )2, (9)

under the constraint of eq. (7).
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3 DERIVATION OF UPDATE EQUATIONS

THROUGH AUXILIARY FUNCTION

3.1 Method 1

Maximizing eq. (6) is a nonlinear optimization problem. In

order to derive an effective iterative algorithm, we introduce

an auxiliary function approach, which has been recently uti-

lized in several signal processing techniques such as NMF

[9] and HTC (Harmonic Temporal Clustering) [10].

Note that the following auxiliary function:

Q1(H, P , mP , mH)

= −
∑

ω,τ

mP ω,τWω,τ log

(

mP ω,τ Wω,τ

Pω,τ

)

−
∑

ω,τ

mHω,τWω,τ log

(

mHω,τWω,τ

Hω,τ

)

− 1

σ2
H

(
√

Hω,τ−1 −
√

Hω,τ )2

− 1

σ2
P

(
√

Pω−1,τ −
√

Pω,τ )2
)

(10)

holds

J1(H , P ) ≥ Q1(H, P , mP , mH), (11)

for any H , P ,mP , andmH under the condition that

mP ω,τ + mHω,τ = 1, (12)

where mP ω,τ and mHω,τ are auxiliary variables and mP

and mH are sets of mP ω,τ and mHω,τ , respectively. The

equality of eq. (10) is satisfied for

mXω,τ =
Xω,τ

Hω,τ + Pω,τ

, (13)

forX = H orX = P . Then, updatingmH andmP by eq.

(13) increases the auxiliary functionQ1 and it achieves to J .
After that, updating H and P by solving ∂Q1/∂Pω,τ = 0
and ∂Q1/∂Hω,τ = 0 increases Q1 again and J1 increases

together because of the inequality of eq. (10). Hence, the

iterations increases J1 monotonically.

From ∂Q1/∂Pω,τ = 0, ∂Q1/∂Hω,τ = 0, and eq. (13),
we have the following update equations:

Hω,τ ←

⎛

⎝

bHω,τ +
√

bH
2

ω,τ + 4aHω,τ cHω,τ

2aHω,τ

⎞

⎠

2

(14)

Pω,τ ←

⎛

⎝

bP ω,τ +
√

bP
2

ω,τ + 4aP ω,τcP ω,τ

2aP ω,τ

⎞

⎠

2

(15)

mHω,τ ← Hω,τ

Hω,τ + Pω,τ

(16)

mP ω,τ ← Pω,τ

Hω,τ + Pω,τ

(17)

where

aHω,τ =
2

σ2
H

+ 2, cHω,τ = 2mHω,τ Wω,τ , (18)

bHω,τ =
(
√

Hω,τ−1 +
√

Hω,τ+1)

σ2
H

, (19)

aP ω,τ =
2

σ2
P

+ 2, cP ω,τ = 2mP ω,τWω,τ , (20)

bP ω,τ =
(
√

Pω−1,τ +
√

Pω+1,τ)

σ2
P

. (21)

3.2 Method 2

Since eq. (9) is a quadrature form of Hω,τ and Pω,τ with a

linear constraint, the optimalH and P , m can be obtained

by solving a simultaneous equation but it includes a large

number of variables equal to the number of time-frequency

bins. To avoid it and derive a simple iterative solution, we

derived the following auxiliary function:

Q2(H, P , U , V )

= − 1

σ2
H

∑

ω,τ

{

(Ĥω,τ−1 − Uω,τ )2 + (Ĥω,τ − Uω,τ )2
}

− 1

σ2
P

∑

ω,τ

{

(P̂ω−1,τ − Vω,τ )2 + (P̂ω,τ − Vω,τ )2
}

(22)

satisfies

J2(H, P ) ≥ Q2(H , P , U , V ), (23)

where Uω,τ and Vω,τ are auxiliary variables and U and V

are sets of Uω,τ and Vω,τ , respectively. The equality of

eq. (10) is satisfied for Uω,τ = (Ĥω,τ−1 + Ĥω,τ )/2 and

Vω,τ = (P̂ω−1,τ + P̂ω,τ )/2. By taking the constraint of eq.
(7) into consideration and organizing variables, we have the

following update rules, which guarantees to monotonically

increase the objective function J2. The detailed derivation

is presented in [12].

∆ω,τ ← α

(

Ĥω,τ−1 − 2Ĥω,τ + Ĥω,τ+1

4

)

−(1 − α)

(

P̂ω−1,τ − 2P̂ω,τ + P̂ω+1,τ

4

)

,(24)

Ĥω,τ ← min(Ŵω,τ , max(Ĥω,τ + ∆ω,τ , 0)), (25)

P̂ω,τ ← Ŵω,τ − Ĥω,τ , (26)

where

α =
σ2

P

σ2
H + σ2

P

. (27)

In method 2, any γ is allowable. According to our experi-
ments, setting γ to be about 0.3 gives a good performance.
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Figure 1. The process of the sliding block analysis

4 REAL-TIME PROCESSING BY SLIDING BLOCK

ANALYSIS

Although the objective functions eq. (6) and eq. (9) should

include all time-frequency bins, the iterative updates for the

whole bins are much time-consuming. In order to obtain

an approximate solution in real-time, we propose a sliding

update algorithm. Based on the assumption that the separa-

tion of a certain time-frequency bin is weakly affected by far

bins, we limit the processed frames to n ≤ τ ≤ n + B − 1,
where B is the size of the analysis block, and slide n itera-
tively. The real-time version of the Method 1 is summarized

as follows.

1. Set the new frame as Hω,n+B−1 = Pω,n+B−1 =
Wω,n+B−1/2.

2. Update variables by eq. (14), eq. (15), eq. (16), and

eq. (17) for n ≤ τ ≤ n + B − 1.

3. Convert the nth frame to a waveform by the inverse-
STFT.

4. Increment n to slide the analysis block.

The real-time version of the Method 2 is in the same way.

In step 3, the original phase is used for converting the STFT

domain to the time domain. Note that the overlap of the

frame shift should actually be considered for the conversion.

Each time-frequency bin is updated only once at step 2.

Then, it is totally updated B times after passing through the

analysis block shown in Fig. 1. Although the larger block

size B shows better performance, the processing time from

step 1 to step 4 must be less than the length of the frame

shift for real-time processing.

5 IMPLEMENTATION AND EVALUATIONS

We implemented our algorithms in VC++ onMicrosoftWin-

dows environment. The GUI of the prototype system is

shown in Fig. 2. After clicked a start button, the separa-

tion process begins. The processing steps are as folllows.

1. Loading a frame-shift-length fragment of the input

audio signal from a WAV-formated file.

2. Calculating FFT for a new frame.

3. Updating stored frames as described in the previous

section.

4. Calculating inverse FFT for the oldest frame.

5. Overlap-adding the waveform and playing it.

6. Go to Step 1.

The two bar graphs shown in Fig. 2 represent the power

spectra of the separated harmonic and percussive compo-

nent. The sliding bar named “P-H Balance” enables an user

to change the volume balance between the harmonic and

percussive components on play. The examples of the sep-

arated two spectrogram sequences are shown in Fig. 3. We

can see that the input power spectrogram is sequentially sep-

arating in passing through the analysis block. In auditory

evaluation, we observed:

• The pitched instrument tracks and the percussion tracks
are well separated in both of method 1 and 2.

• Under the same analysis block size, the method 1 gives
a little better performance than method 2.

• The method 1 requires about 1.5 ∼ 2 times compu-
tational time than the method 2 because of the calcu-

lation of square root. Thus, the method 2 allows the

larger block size.

• The separation results depend on several parameters
as σH , σP , the frame length, and the frame shift. But

the dependency is not so large.

In order to quantitatively evaluate the performance of the

harmonic/percussive separation and the relationship to the

block size, we prepared each track data of two music pieces

(RWC-MDB-J-2001 No.16 and RWC-MDB-P-2001 No.18

in [13]) by MIDI-to-WAV conversion and inputed the sum-

mation of all tracks to our algorithms. As a criterion of the

performance, the energy ratio of the harmonic component

h(t) and the percussive component p(t) included in each
track was calculated as

rh =
Eh

Eh + Ep

, rp =
Ep

Eh + Ep

, (28)

where

Eh =< fi(t), h(t) >2, Ep =< fi(t), p(t) >2, (29)

and <> represents the cross correlation operation and fi(t)
represents a normalized signal of each track. The results

are shown in Fig. 4. The pitched instrument tracks and the

percussion tracks are represented by solid and dotted lines,
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Figure 2. The GUI of the harmonic/percussive equalizer

Table 1. Experimental conditions
signal length 10s

sampling rate 16kHz

frame size 512

frame shift 256

range-compression factor (method 1) γ = 0.5

range-compression factor (method 2) γ = 0.3

gradient variance σP = σH = 0.3

respectively. We can see that the separation was almost well

performed. Only the bass drum track has a tendency to be-

long to the harmonic component, which can be considered

due to the long duration. Fig. 4 also shows that a large

block size is not required and the separation performance

converges at the block size of 30 or 40 frames in this condi-
tion.

6 CONCLUSION

In this paper, we presented a real-time equalizer of harmonic

and percussive components in music signals without any a

priori knowledge of score and included instruments. In au-

ditory evaluation and experiments, we confirmed the good

performance. Based on our equalizer, applying existing au-

dio modification technique as conventional equalizing, re-

verb, pitch-shift, etc., to harmonic/percussive components

independently will yield more interesting effect. Applying

it as pre-processing for multi-pitch analysis, chord detec-

tion, rhythm pattern extraction, is another interesting future

work.
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Figure 3. The spectrograms of separated harmonic compo-

nent (left) and percussive component (right) by sliding block

analysis. The first frame of the analysis block is 0, 10, 50,
100, 150, 200, and 250 from top to bottom, respectively.
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Figure 4. The energy ratio of the separated harmonic com-

ponent in each track (rh) for different block sizes. Their re-

sults from top to bottom are obtained by method 1 for RWC-

MDB-J-2001 No.16, by method 2 for RWC-MDB-J-2001

No.16, by method 1 for RWC-MDB-P-2001 No.18, and by

method 2 for RWC-MDB-P-2001 No.18, respectively.
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