
Technological University Dublin Technological University Dublin

ARROW@TU Dublin ARROW@TU Dublin

Conference papers Audio Research Group

2008-06-01

A Real-time Framework for Video Time and Pitch Scale A Real-time Framework for Video Time and Pitch Scale

Modification Modification

Ivan Damnjanovic
Queen Mary University London

Dan Barry
Technological University Dublin, dan.barry@tudublin.ie

David Dorran
Technological University Dublin

See next page for additional authors

Follow this and additional works at: https://arrow.tudublin.ie/argcon

 Part of the Signal Processing Commons

Recommended Citation Recommended Citation
Damnjanovic, I. et al. (2008) A Real-Time Framework for Video Time and Pitch Scale Modification. Proc.
of the 11th International. Conference on Digital Audio Effects (DAFx-08), Espoo, Finland, September 1-4,
2008.

This Conference Paper is brought to you for free and
open access by the Audio Research Group at
ARROW@TU Dublin. It has been accepted for inclusion in
Conference papers by an authorized administrator of
ARROW@TU Dublin. For more information, please
contact arrow.admin@tudublin.ie,
aisling.coyne@tudublin.ie.

This work is licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 4.0 License
Funder: European Community

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/argcon
https://arrow.tudublin.ie/arg
https://arrow.tudublin.ie/argcon?utm_source=arrow.tudublin.ie%2Fargcon%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/275?utm_source=arrow.tudublin.ie%2Fargcon%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

Authors Authors
Ivan Damnjanovic, Dan Barry, David Dorran, and Josh Reiss

This conference paper is available at ARROW@TU Dublin: https://arrow.tudublin.ie/argcon/47

https://arrow.tudublin.ie/argcon/47

MM-002816.R2 1

Abstract- A framework is presented which addresses the issues

related to the real-time implementation of synchronised video
and audio time-scale and pitch-scale modification algorithms. It
allows for seamless real-time transition between continually
varying, independent time-scale and pitch-scale parameters
arising as a result of manual or automatic intervention. We
illuminate the problems which arise in a real-time context as well
as provide novel solutions to prevent artefacts, minimise latency,
and improve synchronisation. The time and pitch scaling
approach is based on a modified phase vocoder with optional
phase locking and an integrated transient detector which enables
high quality transient preservation in real-time. A novel method
for audio/visual synchronisation was implemented in order to
ensure no perceptible latency between audio and video while
real-time time scaling and pitch shifting is applied. Evaluation
results are reported which demonstrate both high audio quality
and minimal synchronisation error.

Index Terms—Time scale modification, Audio/visual
synchronisation, adaptive video refresh rate

I. INTRODUCTION
Synchronised audio and video time stretching is often used in
video editing and production whenever video content needs to
be sped up or slowed down either as a creative effect or to fit
certain time slots within a programme schedule, as is the case
in television advertisements.

Time-scale modification (TSM) is typically used to change
the tempo of musical content or the playback rate of speech
without affecting pitch content. Conversely, pitch-scale
modification (PSM) algorithms enable pitch shifting without
affecting the playback rate of the audio content. A significant
amount of research has been dedicated to both TSM and PSM
yielding a variety of time and frequency domain algorithms.
Despite this abundance of literature and readily available

Copyright (c) 2008 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org

Manuscript received June 11, 2009. This work was supported in part by the
European Community under the Information Society Technologies (IST)
programme of the 6th FP for RTD - project EASAIER contract IST-033902.

I. Damnjanovic is with Queen Mary U. of London, London, E14NS, UK
(telephone: +44-2078827880, e-mail: ivan.damnjanovic@elec.qmul.ac.uk).

Dan Barry. Author is with the Audio Research Group in the Dublin
Institute of Technology, Kevin Street, Dublin 8, Ireland (telephone: +353 1
4022862, e-mail: dan.barry@dit.ie).

David Dorran. is with the Audio Research Group in the Dublin Institute of
Technology, Kevin Street, Dublin 8, Ireland (telephone: +353 1 4024873, e-
mail: david.dorran@dit.ie).

Josh Reiss is with Queen Mary University of London, London, E14NS,
UK (telephone: +44-2078827982, e-mail: josh.reiss@elec.qmul.ac.uk).

commercial applications, there is still a lack of information,
understanding and consideration for real-time implementations
of TSM and PSM algorithms. Here we illuminate some of the
problems which arise in a real-time context as well as provide
novel solutions to these issues. A real-time software based
framework is presented, which allows time stretching of audio
content within digital video streams whilst maintaining
synchronisation with the video content. Time-scale changes
can be made in real-time with almost unperceivable latency
and no transitional artefacts. In addition, the approach also
supports real-time pitch shifting of the audio content
independent of time-scale changes. The approach is based on a
modified phase vocoder with optional phase locking and an
integrated transient detector which enables high quality
transient preservation in real-time.

Within this article, emphasis is given to audio/visual
synchronisation issues which arise in such a framework.
Despite the growth in algorithms for independent audio time
or pitch modification, there are relatively few applications
which address combined time stretching of video and audio. In
[1], a method for adjusting video playback rate to compensate
for network delay is presented. Similarly, [2] presents an
adaptive method for video playback, intended to address
issues concerning packet loss and random delays in streaming
applications. Their method uses audio time scaling when the
streamed video playback speed is modified, as suggested for
packet loss in voice communication [3].

Synchronised audio and video time scaling is typically used
in video editing and production whenever video content needs
to be sped up or slowed down either as a creative effect or to
fit certain time slots within a programme schedule. For
example, TSM can be used to alter the duration of an
advertisement whilst preserving the pitch and timbre of speech
and other audio content. Experiments have shown that
increasing the information rate in commercials is more
engaging and more favourable to viewers. In [4], it was
suggested that an increase in the rate of information of up to
130 percent of the typical speech rate can significantly
increase the impact of advertisements.

The driving force for the work presented here on real-time
synchronised audio/video time-stretching comes from user
requirements and user feedback in music education research
[5, 6], which indicated that time-scaled video would be
desirable in applications related to aural learning, music
transcription and musical technique analysis. The effects of
audio/video time-compression and expansion on the learning

A Real-time Framework for Video Time and
Pitch Scale Modification

Ivan Damnjanovic, Dan Barry, David Dorran, and Joshua D. Reiss

MM-002816.R2 2

process have been thoroughly studied [4-8]. Besides time
efficiency benefits, it was shown that learning from
accelerated material can be at least equally as effective as the
normal speed of presentation. There were further findings that
students watching accelerated material stay more focused. At
normal speech rates they “become bored and their attention
begins to wander” [7], and learning processes benefit from
acceleration of presentation as long as intelligibility can be
maintained [8]. For entertainment applications, internet video
streaming, digital video players and set-top devices can benefit
greatly from an audio/video time stretching tool. Studies of
digital video browsing [9] noted that one of the highest rated
enhanced features was watching time compressed video.

II. AUDIO TIME-SCALE MODIFICATION
Time-scale modification can be achieved in a number of

ways in both the time and frequency domain. However, time
domain approaches are typically not considered ideally suited
to mixed audio content, which may include speech,
polyphonic music and ambient noise. As such, the real-time
time-scale modification technique proposed here is based on a
set of modifications to the phase vocoder [10], a popular
frequency domain approach to time-scaling. A comprehensive
tutorial outlining the theory of the traditional phase vocoder is
presented in [11] and a brief description is provided here.

The Fourier transform interpretation of the phase vocoder is
mathematically equivalent to a short time Fourier transform
(STFT) [12] which segments the analysed signal into
overlapping frames which are separated by a certain ‘hop
size’. Within phase vocoder implementations, TSM is
achieved by varying the analysis hop size Ra with respect to
the resynthesis hopsize Rs such that the time scaling factor is
calculated as α=Rs/Ra. It follows then that Ra>Rs will result in
timescale compression (speed up), and Ra<Rs will result in
timescale expansion (slow down). Within the phase vocoder,
analysis frames are ‘remapped’ along the time axis resulting in
newly constructed synthesis frames, each with a modified
phase spectrum, to ensure that the synthesis frames maintain
phase coherence through time. Since the phase spectrum of
each frame must be modified, the windowing function will
also be affected. For this reason, a resynthesis window is
necessary and a 75% overlap is recommended to avoid
modulation at the output. This will result in the output having
a constant gain factor of approximately 1.5 which can easily
be compensated by multiplying all samples by the reciprocal
of the gain factor. An overlap of 75% corresponds to a fixed
synthesis hop size, Rs, of N/4 samples.

In order for the synthesis frames to overlap synchronously,
the frame phases must be updated such that phase continuity is
maintained between adjacent output frames. The standard
method used to calculate suitable synthesis phases involves
calculation of the instantaneous frequency of each bin in
radians per sample. Having obtained the instantaneous
frequency, it is possible to predict the expected phase of any
component for a given synthesis hop size. Given that the
frequency content of both music and speech is stationary only

over short periods, phase estimates will decrease in accuracy
as the hop sizes increase. The most accurate way to estimate
phase for each component is by first calculating the principal
argument of the heterodyned phase increment between
adjacent analysis frames as defined in [10, 11]. The
instantaneous frequency is then calculated in radians per
sample. In order to calculate the phase spectrum for the new
synthesis frame at the time scaled output, the instantaneous
frequency is multiplied by the synthesis hop size Rs, and added
to the resultant synthesis phases from the previous frame. This
is known as phase propagation or phase updating. The newly
modified phases along with the original magnitude spectrum
are then used to reconstruct the audio frame.

Although, the time scaled output is horizontally phase
coherent at this point, the timbral quality is often described as
sounding ‘phasey’ or ‘distant’ and is generally not regarded as
natural sounding. Particularly noticeable is how transients are
affected by the phase vocoder. These artifacts can be
attributed to the fact that the standard phase vocoder only
attempts to achieve an optimal phase relationship between
adjacent frames, known as horizontal phase coherence.
However, the pursuit of horizontal phase coherence has a
profoundly negative effect on vertical phase coherence, which
describes the relationship between the phases of frequency
components within a single frame. Maintaining vertical phase
coherence is an important consideration in order to achieve
natural sounding TSM.

The improved phase vocoder [13] explicitly attempts to
identify sinusoidal frequency bins in FFT frames by a peak
picking process within the magnitude spectrum. The phases of
these truly sinusoidal peak frequency bins are then updated in
the traditional manner, i.e., by maintaining horizontal phase
coherence between corresponding peak frequency bins of
successive frames. The non-sinusoidal frequency bins are then
updated by maintaining the phase difference that existed
between each bin and its closest peak/sinusoidal frequency
bin. The process is known as peak locking.

III. REAL-TIME CONSIDERATIONS FOR DYNAMIC TIME-
SCALING

When a fixed time-scale factor is applied to an entire audio
signal both Ra and Rs remain fixed. In which case, the position
in time of any analysis or synthesis frames can be defined as

u
at =uRa and u

st =uRs, respectively, where u is an incrementing
integer representing a sequence of frames as in [10]. For real-
time implementations, where the time-scale factor, α, may be
varying dynamically due to user intervention, this definition
will introduce distortions into the time-scaled output since the
analysis hop is no longer fixed. The solution is to redefine

u
a at uR= as 1u u

a a st t Rα−= + . This ensures that the current

analysis frame position u
at , is always updated correctly. The

position in time of the current analysis frame is always related
to both the previous analysis frame and the current time
scaling factor, α.

Although it is favourable to vary the analysis hop Ra and fix
the synthesis hop Rs to achieve TSM, it can result in inaccurate

MM-002816.R2 3

frequency estimation for time-scaling factors α < 1. When the
signal is being sped up, the distance between analysis frames
exceeds N/4. It becomes impossible to accurately predict the
amount of phase unwrapping to be applied during the
frequency estimation stage of the horizontal phase update
procedure described in [10, 11], resulting in inaccurate
synthesis phase estimates. In addition to this, when α is varied
over time, the accuracy of the instantaneous frequency
estimates also varies. This leads to momentary artefacts
whenever the time scale factor, α, is changed. Effectively, the
transitions between frames with different TSM factors are not
perceptually smooth despite the windowed overlapping
scheme. The solution to both of these problems is to ensure
that the instantaneous frequency estimates are always derived
using the phase differences between the current analysis frame
and a frame one synthesis hop back from the position of the
current analysis frame, (),u

a s kX t R∠ − Ω . Although, an extra

FFT and an extra buffer is required to obtain the phases of this
frame, it guarantees that phase unwrapping errors will not be
present and that the instantaneous frequency estimates will be
consistent regardless of variation in α. The phase update
equation [10, 11] is now redefined in (1).

1(,) (,) (,) (,)u u u u
s k s k a k a s kY t Y t X t X t R−∠ Ω =∠ Ω +∠ Ω −∠ − Ω (1)

When vertical phase coherence is to be maintained, peak
locking can be used, and only the sinusoidal or peak frequency
bins are updated using (1), with all other bins updated as in
[10, 11]. This method of phase updating removes the need to
estimate the instantaneous frequency. However, for the case
where pitch scale modification is required, calculation of
instantaneous frequency is still necessary. Nonetheless, the
‘hop-back’ method described above is used to avoid phase
unwrapping errors and to maintain smooth pitch and time
scale transitions. This will be discussed in the next section.

A similar phase update procedure was proposed in [14] in
which time-scale modification is achieved through the
insertion and deletion of entire frames. Since the approach we
propose here uses a variable analysis hop size, it has the
advantage of maintaining better estimates of the magnitude
spectrum, thereby greatly reducing the possibility of removing
or repeating perceptually salient characteristics within the
time-scaled signal.

IV. REAL-TIME PITCH SHIFTING
The simplest method to shift the apparent pitch of a signal

is by interpolating or decimating the time domain signal. The
resulting signal, although pitch shifted, is also shortened or
lengthened by the reciprocal of the interpolation/decimation
factor β. A common technique used to shift the pitch and
maintain duration is to pitch scale the signal using
interpolation/decimation, and apply complimentary time scale
modification to restore the original length of the signal. This is
easily achieved in the offline context but becomes difficult to
implement in a real-time context. If both pitch shifting and
time scaling are required simultaneously, the problem
becomes more difficult since time scaling is required for 2

alternate operations (pitch and time scaling) within the same
frame. When the signal is both time scaled and interpolated for
any time scaling factor α and pitch shifting factor β, the
required compensatory time scale factor such that the resultant
signal is both the required pitch and length [15], is simply αβ.

In a real-time context the pitch and time scaling must be
carried out within a single frame interval (in this
implementation 23ms). Two issues arise. First, the
computational requirements are directly related to the product
of α and β, since each frame must now be time-scaled
internally to compensate for pitch shifting. This makes real-
time operation unfeasible for large products αβ. Second, the
length of the resultant frame is no longer fixed. An additional
buffer must be used in order to handle the overflow if the
resultant frame exceeds N (analysis frame size) samples. If
αβ<1, the resultant frame will be smaller than the required N
samples. In this case, more input frames need to be processed
until there are sufficient samples to generate an output frame.
These issues can make the output unpredictable, added to
which the solutions are computationally intensive.

Here we present a novel method for real-time pitch shifting
which resolves the problematic issues raised above. The
computational requirements are not dependent on α and β and
the method guarantees that a fixed frame length can be
generated independent of the time and pitch scale factors used.
No inter-frame time scaling and no additional buffers are
required. The pitch shifting is performed using linear re-
sampling in the time domain, and phase vocoder theory is then
applied using a modified phase update equation which
incorporates the pitch scaling factor β. In order to generate a
pitch shifted frame of known length, we interpolate or
decimate the input time domain signal over the range u

at to
u
at Nβ+ , where N is a fixed analysis frame size chosen to

ensure adequate frequency resolution. This results in a time
domain frame of length N which has been generated by
interpolating or decimating Nβ samples by the pitch scaling
factor β. Figure 1 illustrates this procedure. This frame now
constitutes an analysis frame which can have arbitrary time
scaling applied using the phase update equations presented
below.

Figure 1. The real-time re-sampling method used for obtaining fixed
length pitch shifted frames. A illustrates no pitch change, B pitching
down and C pitching up.

MM-002816.R2 4

The goal is to estimate the phase propagation required to
allow successive interpolated frames to be updated such that
the pitch shifted and time scaled output is horizontally phase
coherent. Recall (1), which was introduced as a preferred
method to ensure reliably wrapped phase difference estimates.
This was achieved by using an extra FFT to estimate the
phases of the frame exactly one synthesis hop back from the
current analysis frame, thereby allowing the phase differences
to be estimated over a known fixed interval equal to Rs. The
‘apparent’ analysis hop is now equal to the synthesis hop, but
the actual value of Ra is still variable. In order to estimate
suitable synthesis phases for pitch shifted frames, the
instantaneous frequency must be calculated as follows. A new
method to calculate the heterodyned phase increment for pitch
shifted frames is given by (2), where the interpolation factor,
β, is now included in the equation.

(,) (,) /u u u
p k k s kk a aX t X t Rs R βΔ Φ = ∠ Ω −∠ − Ω − Ω (2)

where (,)u
kaX t∠ Ω and (,)u

kaX t Rs∠ − Ω represent the
phases of the current analysis frame and an analysis frame
exactly one synthesis hop back from the current value of u

at .
The resulting term, u

p kΔ Φ , is then the principle argument of
the heterodyned phase increment of the pitch shifted frame
such that it is in the range -π to π. Since the frames have been
interpolated or decimated (resulting in frequency shifts) they
will no longer exhibit the expected phase derivatives over a
given hop, Rs. To calculate the correct phase increment, the
hop must also be multiplied by the reciprocal of the pitch
scaling factor, β. The instantaneous frequency in radians per
sample of the pitch shifted frame is given by (3).

ˆ () /u u
k k pa k st Rω β= Ω + Δ Φ (3)

As opposed to the standard method [10, 11], we divide the
phase deviation by Rs instead of Ra, because the method used
to calculate phase difference in (3) uses two frames separated
by a fixed distance, Rs. The standard phase update equation
[10, 11] can now be used, and peak locking can be applied as
discussed previously. The advantages of using (1) for phase
updating have already been incorporated in (2) above. We
now have modified phase vocoder equations which allow real-
time pitch shifting and time stretching simultaneously. A key
advantage of using this method for pitch shifting is that
compensatory time scaling is not required. Instead, the pitch
scaling factor is incorporated in the phase update equations.
This guarantees that the computational load remains fixed and
predictable for any combination of time and pitch scaling
factors.

V. REAL-TIME TRANSIENT PRESERVATION
Although peak locking contributes to maintaining the

timbral quality of transients during TSM, transients should not
be time-scaled if a naturally sounding output is required. An
off-line solution was proposed in [16]. The approach taken
here is to identify transients automatically in real-time. Upon
detection of a transient, the time scale factor α is returned to
‘1’ (no scaling), and the analysis phases are mapped directly to

the synthesis phases (phase locking) for the duration of the
transient. When the transient has passed, the time scale factor
is automatically reset to the α value prior to the transient.
Transients represent an ideal place to lock the phases since
any discontinuities introduced to the time scaled signal will be
masked by the transient itself.

In order to identify an analysis frame as a transient [17], the
log difference of each frequency component between
consecutive frames is calculated as in (4). This measure
effectively tells us how rapidly the spectrogram is fluctuating.

10

(,)
(,) 20 log , 1 / 2

(,)

u
au

f a u
a s

X t k
X t k k N

X t R k
= ≤ ≤

−
 (4)

where (,)u
f aX t k is the log energy difference between

frames separated by Rs, and u
at is the current analysis frame

instant. In order to detect the presence of a transient we define
a measure given in (5).

() ()
()

/ 2 1

1

, 1 (,)

, 0

u u
N a f au

a u
k a

P t k if X t k T
Pe t

P t k otherwise=

⎡ = >
⎢=
⎢ =⎣

∑ (5)

where, T1 is a threshold which signifies the rise in energy,
measured in dB, which must be detected within a frequency
channel before it is deemed to belong to an onset. In order for
the frame to be declared a transient, ()u

aPe t must exceed a
second threshold T2. In practice we have found that T1=6dB
and T2=3N/8 give satisfactory results for most popular music.
Thus, a transient is detected at frame u

at , if at least 75% of the
bins in the log difference spectrogram, equation (4), exceed a
value of 6dB. Note that using this measure, the energy present
in the signal is not the defining factor of the transient. Instead,
we assign the transient probability, ()u

aPe t , using a measure
of how “broadband” or percussive the onset is [17]. This is
based on the number of bins exhibiting a positive first
derivative as described by equation (5). Figure 2 shows the
effectiveness of this approach. Despite the fact that the signal
itself has little dynamic range, the feature detector is rarely
prone to false detections which makes it ideal for transient
detection in time scaling. Furthermore, it can easily be
implemented within the current framework since the only
requirement is that the current and previous frame magnitudes
are available.

Figure 2. A highly dynamically compressed signal containing rock
music is depicted in the top plot. The bottom plot shows the output of
the percussive onset detector.

Upon detecting a transient, the time scale factor, α, is
automatically returned to ‘1’, inhibiting TSM momentarily.

MM-002816.R2 5

We term this method ‘transient hopping’. In addition the
frame phases are locked and the frame is mapped directly to
the output. This mechanism preserves the transient and
ensures that it is reproduced unaffected at the output. Since we
use 75% overlap, Rs = 1024 for analysis frame length 4096, a
short transient will exist in 4 consecutive frames. In order to
preserve the transient correctly, the TSM factor, α, must
remain at a value of ‘1’ until all overlapping frames have
passed the transient. Since the local time scale factor is
reduced, a time scale compensation factor is applied after each
transient. Eq. (6) describes this action:

1 4

4 4

T

T T
F

if u u
m

if u u N
m

otherwise

α α
α

α
α

− <

−
= ≤ − <

−

⎧
⎪⎪ +⎨
⎪
⎪⎩

 (6)

where α is the global time scale factor, Tα is the TSM
factor to be applied during the frames preceding the transient,
and where m is the maximum desired TSM factor and m must
be strictly greater than 1. The number of frames, NF, in which
the time scale compensation factor must be applied after the
transient, is dependent on the maximum timescale factor, such
that = 4 -4 FN m . Using a larger number of frames to
compensate for the transient has the advantage that smaller
TSM factors may be distributed over a longer time period,
thus reducing signal distortion due to excessive timescale
factors.

Figure 3 illustrates how the time scaling factor is varied
before and after the transient in order to both preserve the
transient and to maintain a constant global time scale factor.

Figure 3. Time scale factor as a function of transient detection

VI. BUFFER SCHEMES
One of the key issues in a real-time implementation of TSM

is the choice of buffer scheme and for completeness sake we
suggest a suitable scheme here. In offline processing, the
entire signal is overlapped and concatenated before playback.
However, in a real-time environment, a constant stream of
processed audio must be outputted and consecutive output
frames must be continuous. In order for seamless
concatenation, the boundaries of each output frame must be at
the constant gain associated with the overlap factor in order to
avoid modulation. The method presented below addresses this

concern. For reasons discussed in previous sections, a 75%
overlap is recommended. This effectively means that at any
one time instant, 4 analysis frames are actively contributing to
the current output frame.

Figure 4. The relationship between input and output frames for α=1.

In Figure 4, the audio to be processed is divided into
overlapping frames of length N. In order to output a processed
frame, 4 full frames would need to be processed and
overlapped. This leads to considerable latency from the time a
parameter change is affected to the time when its effects are
audible at the output. However, given that the synthesis hop
size is fixed at Rs=N/4, we can load and process a single frame
of length N, output ¼ of the frame, and retain the rest in a
buffer to overlap with audio in successive output frames. To
do this, a buffer of length N is required in which the current
processed frame (with synthesis window applied) is placed.
Three additional buffers of length 3N/4, N/2 and N/4 will also
be required to store remaining segments from the 3 previously
processed frames. Each output frame of length N/4 is then
generated by summing samples from each of these 4 buffers.
Figure 5 shows how the buffer scheme works. On each
iteration u, a full frame, Fu, of length N is processed and
placed in buffer 1. The remaining samples from the 3 previous
frames occupy buffers 2, 3 and 4. The required output frame
of length N/4, S

u, is generated as defined in (7).

Figure 5. Real-time output buffer scheme using a 75% overlap. The
gray arrows indicate how each segment of each buffer is shifted after
the output frame has been generated.

1 2 3() () (/ 4) (/ 2) (3 / 4)
1 / 4

u u u u uS n F n F n N F n N F n N
n n N

− − −= + + + + + +
∀ ≤ ≤

 (7)

From (7), it can be seen that the output frame, Su(n), is
generated by summing the first N/4 samples form each buffer.
Once the output frame has been generated and outputted, the
first N/4 samples in each buffer can be discarded. The data in
all buffers must now be shifted in order to prepare for the next
iteration. The gray arrows in Figure 5 illustrate how each
segment of each buffer is shifted in order to accommodate a
newly processed frame in the next iteration. The order in
which the buffers are shifted is vital. Buffer 4 is filled with the
remaining N/4 samples from buffer 3, buffer 3 is then filled

MM-002816.R2 6

with the remaining N/2 samples from buffer 2, and finally
buffer 2 is filled with the remaining 3N/4 samples from buffer
1. Buffer 1 is now empty and ready to receive the next
processed frame of length N. The result of this scheme, is that
¼ of a processed frame will be outputted at time intervals of
Rs, which is equal to N/4 samples. Using the suggested frame
size of 4096 samples, the output will be updated every 1024
samples which is approximately equal to 23.2 milliseconds.
The audio will be processed with newly updated parameters
every 23.2 milliseconds, but the latency will be larger than this
and depends on the time required to access and write to
hardware buffers in the audio interface. In general however, it
is possible to achieve latencies < 40ms.

VII. SYNCHRONISATION WITH THE HOST APPLICATION
The requirement to synchronise independent time and pitch

scaling with video and screen updates adds additional
complexity. To maintain multimedia synchronisation, the time
scaling process should control the master clock within an
application. In this section, we present a real-time media
synchronisation framework which has made this possible

Previous sections have described in detail the audio
processing blocks required to achieve real-time time and pitch
scaling simultaneously. Figure 6 shows how the overall
system is configured.

Figure 6. Overview of clocking between time/pitch scale
modification and host application.

Firstly, it is important to note that, in order to allow time
scale modification to be carried out in real-time whilst
maintaining synchronisation with other media such as video or
screen updates, e.g., the audio locators, it is necessary to pass
full control of the host clock to the time scaling algorithm.
This is because time scaling by its very nature involves
manipulation of the time base of the audio. As described
previously, the time increment between frames is purely
dependent on the choice of time scale factor. Furthermore, if
we wish to continuously vary the time-scale factor, the time
line becomes non linear at transition points. Essentially, the
time scale algorithm must be able to request any audio frame,
starting at any sample point within the audio stream.

With this in mind, the first stage involves loading an audio
frame defined by the time scale algorithm itself. Immediately
following this, the first stage of pitch shifting is achieved by
interpolating or decimating the input waveform by the pitch
scaling factor. Regardless of time or pitch scale factor, one full
frame is always populated on every iteration. For example,
using a pitch scale factor of ‘2’, 2N samples will be
interpolated to produce an N sample frame where N is the
frame size. If the frame is identified as a transient, no further
processing is applied, and time scaling is suspended for 4
frames (due to 75% overlap). The frames around a transient
are reproduced at the output identical to that of the input and
the audio clock is updated as normal. If no transient has been
detected, the phases are updated according to the modified
phase update equations. Pitch shifting is only completed at this
stage since the phase update procedure needs to include the
interpolation factor. Following this, the processed audio frame
is reproduced and re-windowed. The audio clock is then
updated, and the frame incremented by a varying factor
depending on the user input (i.e., TSM factor). In order to
produce a continuous stream of audio, the buffer scheme
described above is used.

Regardless of what processing is carried out by the time-
scaling algorithm, it is solely responsible for updating the host
clock. The host then uses this information to update screen
components which depend on audio playback position. Thus,
all screen components, processes and visualisations are
synchronised with the audio clock which is controlled by the
time-scale modification algorithm.

VIII. VIDEO SYNCHRONISATION
Combined audio/visual artefacts that can be introduced due

to loss of synchronisation are often the most perceptually
undesirable. Failure to keep audio and video streams
synchronised, known as ‘lip sync errors,’ result in audio
events occurring before or after the associated video frames.
When audio advances video by 20ms or when audio lags
video by 40ms, it becomes detectible. Errors of +40ms and -
160ms are “subjectively annoying” as reported by the
International Telecommunications Union (ITU) in 1993[18].
Further research reported in ITU-R BT1359-1 [19], showed
reliable detection of 45ms audio leading and 125ms audio
lagging, while the acceptability region is even wider. The ITU
recommends that the difference between audio and video
should be no less than -90ms and no more then +185ms. In
reality, this range is probably too wide for acceptable
performance. For example, in video footage of musical
instruments being played, key strokes or string plucks are
more precise than lip movement during speech, so the
synchronisation thresholds need to be reduced. In addition,
when a video has been stretched it can be easier to analyse and
therefore synchronisation errors become more perceivable.

In this section, three approaches to the preservation of
audio/video synchronisation in time scaling applications will
be presented. Insertion and deletion of frames is necessary
when the frame rate is dictated by the playback device.
Television standards such as PAL/SECAM and NTSC use

MM-002816.R2 7

standardised refresh rates and hence the output of a time
stretching module must maintain a corresponding frame rate.
However, many software implementations of video players,
including mplayer, VLC player and others, allow for change
of the video rate once the compressed video is unpacked.
Screen refresh rate of modern equipment is in the range of
100-200Hz, so variations in the frame rate can be introduced
by choosing when a particular video frame will be shown on
the display device. Hence, less noticeable artefacts and
smoother picture transition can be obtained when variable
frame rate, the second method, is applied. The third method,
Adaptive Video Refresh Rate (AVRR), relies on the precision
of the audio clock. Synchronisation is maintained by ensuring
that the video time code remains locked to the audio time code
within an allowable threshold.

Video time stretching for conventional broadcast uses
insertion and deletion of frames to maintain synchronisation.
When speeding up the video, some frames need to be dropped,
whilst when slowing down some need to be duplicated. When
frames are duplicated or dropped, maximal synchronisation
error is half of a video frame length, since we round to the
closest frame. Hence, if the frame rate is 25 fps, maximal error
will be 20 ms. This error range (-20ms to +20ms) meets ITU
recommendations for lip sync error to be undetectable.
However it may not be good enough for more demanding
applications such as time stretching of video, when precise
movements are slowed and become easier to analyse. In
addition, frame duplication can cause jerkiness to be perceived
in the video of slow steady movements.

Changing the video frame rate by the scaling factor will
generally give a smoother image since frames are equally
spaced in time. The additional advantage is that no frames are
dropped when speeding up. Ideally, timing for a new frame is
easy to calculate by advancing the previous frame time by the
new frame rate interval. However, due to the fact that timing
precision is influenced by factors such as temperature and
humidity, simply setting-up the next frame to display a given
period after the previous frame without comparing it to a
master clock can cause long term synchronisation errors.

The AVRR method refreshes the display with a new frame
when the video time code is equal to (or within a threshold of)
the original time code of the audio frame being outputted. The
refresh rate is adaptive since the period between two frames
adapts to the audio clock. Ideally, it should be equal to the
reciprocal of the scaled frame rate, but will oscillate around
that value. We define here two time-lines; one is the media
player’s actual time-line and the other is the original media
time-line. It is crucial for this method to calculate precisely the
time on the media time-line of the audio sample currently
being played. This time value is then compared with the
original time code associated with non-time scaled video
frames and the display is refreshed with this frame when the
video frame time code is smaller than or equal to the time of
the audio sample that is currently being outputted. To
minimise loss of synchronisation due to computationally
intensive processing, the decoding algorithm needs to be
efficient and implemented in a separate high priority thread.

Figure 7. Video time scaling implementation.

MM-002816.R2 8

The video-synchronised time stretching algorithm described
above was implemented as presented in Figure 7, and intended
for a demanding application requiring fast access to audio
frames while other intensive processing tasks are performed.
Here, the audio stream is first uncompressed and stored locally
in an audio input buffer. Unlike audio however, uncompressed
video would require an unacceptably large local buffer, so
video packets are accessed directly from the compressed
stream.

Since video decoding is done on-line, particular
consideration was given to its implementation. Higher time
compression rates will demand that video frames be decoded
and scaled much faster than usual. Hence, the video decoding
is carried out together with video zooming in a separate high
priority thread. The video decoding thread receives two
control inputs from the user interface. Video zoom factors,
changeable from the interface, are sent directly to the video
scaler, which scales a frame according to a zoom factor and
sends it to the video display buffer. Change of playback
position is sent to the decoder and it instructs the decoder to
seek the stream and also to erase any previously decoded
frames from video display buffer.

The time-stretching factor is sent to the audio processing
engine in order to change the analysis hop size, and the audio
output frame timestamp is calculated accordingly. However,
this timestamp is not sufficient for proper A/V
synchronisation, since it represents the time when the audio
frame is sent to the audio hardware buffer. For example, if an
audio frame is 1024 samples and the sample rate is 44100 Hz,
the time resolution will be 23.2 ms. For the normal playback
speed, this may be sufficient, but in the case of doubling the
playback speed the time span between two audio sample
points on the media timeline becomes 46.4 ms. Hence, some
measure of fullness of the audio hardware buffer needs to be
introduced for precise timing of outputted audio samples. The
fullness of the hardware audio buffer is hardware dependent
and measuring it is often a complex task, so we propose to
find approximate timing of the audio sample by measuring the
time difference (Δt) between the moment the audio frame is
sent to the hardware buffer and the current time. This value is
then added to the timestamp of the audio frame that was sent
to the audio buffer (Taudio), and is then compared with the
video frame timestamp (Tvideo). The display is refreshed with
this frame when the video frame time code is smaller than or
equal to the calculated audio time:

video audioT T t≤ + Δ (8)

Another issue is timer precision for measuring Δt. In
Windows OS, the maximal precision that can be achieved with
the standard timer is 15ms, which is hardly enough for a
synchronisation application. Hence, Δt is determined by
measuring CPU counts from the moment the frame is sent to
the hardware buffer and then dividing by the CPU count
frequency. Since Δt gives a value related to the real playback
time-line, it is transposed to the media time line by dividing it
by the time-stretching factor α:

1 cpu

cpu

CNT
t

fα
Δ = ⋅ (9)

However, both variable frame rate and adaptive video
refresh rate have the potential disadvantage that at higher time
scale factors, since more frames are displayed per second,
frames need to be decoded much faster. Synchronisation can
be lost if a frame is not decoded within a frame interval, so a
preferred solution is to combine AVRR with frame dropping
when loss of synchronisation occurs. In our implementation,
whenever the video lag exceeds 20 ms, the application
instructs the decoder not to decode the following frame, and
returns to full decoding when the lag returns to under 10 ms.

IX. AUDIO QUALITY EVALUATION
Since the focus of this research is concerned with the real-

time implementation of a synchronised video/audio and
multimedia time and pitch scale modification algorithm, the
evaluation of the audio time-scale algorithm presented here is
not intended to be comprehensive. Instead, to ensure that this
real-time implementation has not resulted in a compromise to
the audio quality of the algorithm, a series of subjective
listening tests were carried out in order to ensure that the TSM
algorithm is as least as good as that described in [13]. The
transient detection has not been used in these comparison tests
since [13] does not employ transient detection.

In total, 10 subjects undertook a series of 20 tests1 each,
totalling 200 individual tests. The tests used included slowing
and speeding of audio as well as pitch shifting in both
directions by a range of factors. Both time and pitch scale
factors ranged from 0.75 to 1.5. A range of signals including
solo and ensemble music from a range of genres and male and
female speech segments sampled at 16 bit, 44.1 kHz comprise
the test suite. Each listener was presented with an unprocessed
reference signal and two alternative processed signals. The
same processing parameters and frame sizes are used in each
algorithm. The order in which the algorithms are presented
was randomised.

Figure 8. Subjective listening test results for 10 subjects. Along the
horizontal axis, 1 indicates a predominant preference for real-time
TSM whereas 5 indicates predominant preference for the improved
phase vocoder [13].

1 http://www.audioresearchgroup.com/downloads/tsmtests.zip

MM-002816.R2 9

The results are presented in Figure 8, where results for each
subject are given from 1 to 5, where 1 indicates predominant
preference for real-time TSM, 3 indicates no preference, and 5
indicates predominant preference for the improved phase
vocoder. The subjective listening tests indicate that the overall
trend is such that the algorithms are perceived to perform
equally well. The average value over all 200 tests was 2.985,
very close to no preference, with a relatively low standard
deviation of 0.94. Subjects who were predisposed to distinctly
choosing 1 algorithm over the other tended to choose each
algorithm a similar number of times indicating equivalence of
the algorithms. Many subjects reported that the algorithms
sounded very similar but felt compelled to make explicit
decisions regardless. The data is skewed slightly in favour of
the real-time TSM algorithm, but it is likely that a greater
number of test subjects would introduce greater balance in the
data. Some differences between the algorithms which may
account for this include the fact that the real-time TSM
algorithm does not perform peak locking above 10 KHz due to
the fact that peak locking is intended to maintain the phase
relationship between the peak and lobes of sinusoidal
components. Significant acoustic energy above 10 KHz is
often stochastic and attributed to transients, noise and
ambience. Peak locking above 10 KHz forces non-sinusoidal
components into a state of unnatural phase coherence which
can sound objectionable to subjects with acute hearing in the
upper frequency range.

Theoretically, the pitch shifting quality in [13] should
outperform that of the real-time algorithm but subjective tests
have shown that the differences are largely imperceptible for
moderate time scaling factors (in the region of 0.75 to 1.5)
although the real-time algorithm can become noticeably more
objectionable when opposing time and pitch scale factors are
used simultaneously (i.e. slow down and pitch up
simultaneously). This is due to the efficient pitch shifting
technique used to achieve frame synchronous pitch shifting.

X. A/V SYNCHRONISATION EVALUATION
To measure the quality of the A/V synchronisation algorithm,
we compared it with integration of our time-stretching into the
FFmpeg (v0.4, ffmpeg.org/ffplay-doc.html) platform and with
the MPlayer implementation (v1.0rc2, www.mplayerhq.hu/) in
LinuxOS. FFplay is a well known efficient open source
application for video encoding, and MPlayer is a robust, open
source video player based on ffmpeg libraries. One of the
many features of MPlayer is the possibility to change playback
speed, but without independent pitch-shifting. Nevertheless,
this feature, robust implementation and the possibility to
extract A/V synchronisation information make MPlayer useful
for evaluation and comparison with our algorithm. For A/V
synchronisation, FFplay uses duplicating and dropping video
frames whereas MPlayer uses a variable frame rate.

We compared video players on the “Casino Royale” trailer
sequence coded in MPEG1 format with video frame
dimension 640x352 at 23.97 frames per second and an audio
sample rate of 44100 Hz. The video frame lag with respect to
audio is presented for 100 video frames from the middle of the

sequence in the case of playing the video at half of the original
speed (Figure 9) and with double the original speed (Figure
10). It can be seen that our adaptive video refresh rate
algorithm clearly outperforms the other two, because of the
precise matching of the video timestamp to the audio clock.
The video lag of the AVRR time-stretching algorithm is also
well below the ITU lip sync error recommendation with
maximal video lag being 14 ms and maximal video advance
being 13 ms in the case of doubled playback speed. Moreover,
the standard deviation of video lag is 3.328 ms, showing
stability of this solution.

-30

-20

-10

0

10

20

30

Vi
de

o
La

g
(m

s)

10080604020
Frame Number

 AVRR
 Mplayer
 FFplay modified

Figure 9. Comparison of video lag for three video player
implementations when playback speed is half of original.

60

40

20

0

-20

-40

Vi
de

o
La

g
(m

s)

10080604020
Frame Number

 AVRR
 Mplayer
 FFplay modified

Figure 10. Video lag when playback speed is doubled.

100

90

80

70

60

50

40

30

20

10

0

A
ve

ra
ge

 V
id

eo
 L

ag
 (m

s)

4.03.63.22.82.42.01.61.20.80.4
Time Scaling Factor

 AVRR
 FFplay
 Mplayer

Figure 11. Average video lag as a function of time scaling factor.

Figure 11 depicts the average video lag as a function of the

MM-002816.R2 10

time scaling factor for the three video synchronisation
techniques. FFplay was modified to ensure that it would not
decode dropped frames, otherwise its performance would be
significantly worse. However, it still shows notable
degradation in performance as the time scaling factor
increases beyond 2 and video frame decoding becomes
significantly slower than the time to process a time scaled
audio frame. MPlayer maintains suitable performance as time
scale increases, though it does not adapt the variable refresh
rate to the precise audio time codes. The AVRR method
maintains strong synchronisation over the entire range of time
scaling factors. Only at time scaling factors beyond 3.5 does
the AVRR occasionally lose synchronisation, and opts not to
decode a frame.

XI. CONCLUSIONS
A framework for real-time independent video time scaling

and pitch shifting was presented. Careful consideration was
given to the problems which arise in a real-time context and
novel solutions to these issues have been provided. It was
shown how time-scale changes can be achieved in real-time
with almost imperceptible latency and no transitional artefacts.
The approach is based on a modified phase vocoder with
optional phase locking and an integrated transient detector
which enables high quality transient preservation in real-time.

The framework presented is the basis for the developments
of applications which allow for a seamless real-time transition
between continually varying, independent video time-scale
and pitch-scale parameters. A novel solution for audio/visual
synchronisation called adaptive video refresh rate has also
been developed. Due to the fact that synchronisation errors in
the foreseen applications will be easier to detect, special focus
was given to minimizing video lags and advances, resulting in
an algorithm that significantly outperforms existing
algorithms.

REFERENCES

[1] M. C. Yuang, S. T. Liang, and Y. G. Chen, "Dynamic video playout
smoothing method for multimedia applications," Multimedia Tools and
Applications, vol. 6, pp. 47-59, 1998.
[2] M. Kalman, E. Steinbach, and B. Girod, "Adaptive Media Playout for Low
Delay Video Streaming over Error-Prone Channels," IEEE Transactions on
Circuits and Systems for Video Technology, vol. 14, pp. 841-851, 2004.
[3] Y. J. Liang, N. Färber, and B. Girod, "Adaptive playout scheduling using
time-scale modification in packet voice communication," presented at
International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), pp. 1445-1448, Salt Lake City, 2001.
[4] P. LaBarbera and J. MacLachlan, "Time-Compressed Speech in Radio
Advertising," Journal of Marketing, vol. 43, pp. 30-36, 1979.
[5] C. Landone, J. Harrop, and J. D. Reiss, "Enabling Access to Sound
Archives through Integration, Enrichment and Retrieval: The EASAIER
Project," presented at 8th International Conference on Music Information
Retrieval (ISMIR), Vienna, 2007.
[6] C. Duffy, "A case study of networked sound resources for education in
traditional music: the HOTBED project," presented at Integration of Music in
Multimedia Applications, Barcelona, Spain, 2004.
[7] J. S. Olson, "A Study of the relative effectiveness of verbal and visual
augmentation of rate-modified speech in the presentation of technical
material," in Annual Convention of the Association for Educational
Communications and Technology (AECT). Anaheim, CA, 1985.
[8] K. Harrigan, "The SPECIAL system: Searching time-compressed digital
video lectures," Journal of Research on Computing in Education, vol. 33, pp.
77-86, 2000.

[9] F. C. Li, A. Gupta, E. Sanocki, L. He, and Y. Rui, "Browsing digital
video," presented at ACM CHI, Hague, Netherlands, 2000.
[10] J. L. Flanagan, D. I. S. Meinhart, R. M. Golden, and M. M. Sondhi,
"Phase vocoder," The Journal of the Acoustical Society of America, vol. 38,
pp. 939, 1965.
[11] M. Dolson, "The phase vocoder: A tutorial " Computer Music Journal,
vol. 10, pp. 14-27, 1986.
[12] M. Portnoff, "Implementation of the digital phase vocoder using the fast
Fourier transform," IEEE Transactions on Acoustics, Speech, and Signal
Processing, vol. 24, pp. 243- 248, 1976.
[13] J. Laroche and M. Dolson, "Improved phase vocoder timescale
modification of audio," IEEE Trans. Speech and Audio Processing, vol. 7, pp.
323 -332, 1999.
[14] J. Bonada, "Automatic technique in frequency domain for near-lossless
time-scale modification of audio," presented at International Computer Music
Conference, pp. 396-399, Berlin, Germany, 2000.
[15] J. Laroche, "Autocorrelation method for high quality time/pitch
scaling," presented at IEEE WASPAA, pp. 131-134, Mohonk, NY, 1993.
[16] C. Duxbury, M. Davies, and M. Sandler, "Improved time-scaling of
musical audio using phase locking at transients," presented at 112th AES
Convention, pp. 1-5, Munich, Germany, May 10-13, 2002.
[17] D. Barry, D. FitzGerald, and E. Coyle, "Drum Source Separation using
Percussive Feature Detection and Spectral Modulation," presented at IEE Irish
Signals and Systems Conference, pp. 13-17, Dublin, Ireland, 2005.
[18] International Telecommunication Union Document 11A/47-E, 13
October 1993.
[19] "Relative Timing of Sound and Vision for Broadcasting.
Recommendation," International Telecommunication Union ITU-R BT. 1359-
1, 1998.

	A Real-time Framework for Video Time and Pitch Scale Modification
	Recommended Citation
	Authors

	Microsoft Word - double

