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Abstract- A framework is presented which addresses the issues 

related to the real-time implementation of synchronised video 
and audio time-scale and pitch-scale modification algorithms. It 
allows for seamless real-time transition between continually 
varying, independent time-scale and pitch-scale parameters 
arising as a result of manual or automatic intervention. We 
illuminate the problems which arise in a real-time context as well 
as provide novel solutions to prevent artefacts, minimise latency, 
and improve synchronisation. The time and pitch scaling 
approach is based on a modified phase vocoder with optional 
phase locking and an integrated transient detector which enables 
high quality transient preservation in real-time. A novel method 
for audio/visual synchronisation was implemented in order to 
ensure no perceptible latency between audio and video while 
real-time time scaling and pitch shifting is applied. Evaluation 
results are reported which demonstrate both high audio quality 
and minimal synchronisation error. 
 

Index Terms—Time scale modification, Audio/visual 
synchronisation, adaptive video refresh rate 
 

I. INTRODUCTION 
Synchronised audio and video time stretching is often used in 
video editing and production whenever video content needs to 
be sped up or slowed down either as a creative effect or to fit 
certain time slots within a programme schedule, as is the case 
in television advertisements. 

Time-scale modification (TSM) is typically used to change 
the tempo of musical content or the playback rate of speech 
without affecting pitch content. Conversely, pitch-scale 
modification (PSM) algorithms enable pitch shifting without 
affecting the playback rate of the audio content. A significant 
amount of research has been dedicated to both TSM and PSM 
yielding a variety of time and frequency domain algorithms. 
Despite this abundance of literature and readily available 
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commercial applications, there is still a lack of information, 
understanding and consideration for real-time implementations 
of TSM and PSM algorithms. Here we illuminate some of the 
problems which arise in a real-time context as well as provide 
novel solutions to these issues. A real-time software based 
framework is presented, which allows time stretching of audio 
content within digital video streams whilst maintaining 
synchronisation with the video content. Time-scale changes 
can be made in real-time with almost unperceivable latency 
and no transitional artefacts. In addition, the approach also 
supports real-time pitch shifting of the audio content 
independent of time-scale changes. The approach is based on a 
modified phase vocoder with optional phase locking and an 
integrated transient detector which enables high quality 
transient preservation in real-time.  

Within this article, emphasis is given to audio/visual 
synchronisation issues which arise in such a framework. 
Despite the growth in algorithms for independent audio time 
or pitch modification, there are relatively few applications 
which address combined time stretching of video and audio. In 
[1], a method for adjusting video playback rate to compensate 
for network delay is presented. Similarly, [2] presents an 
adaptive method for video playback, intended to address 
issues concerning packet loss and random delays in streaming 
applications. Their method uses audio time scaling when the 
streamed video playback speed is modified, as suggested for 
packet loss in voice communication [3].  

Synchronised audio and video time scaling is typically used 
in video editing and production whenever video content needs 
to be sped up or slowed down either as a creative effect or to 
fit certain time slots within a programme schedule. For 
example, TSM can be used to alter the duration of an 
advertisement whilst preserving the pitch and timbre of speech 
and other audio content. Experiments have shown that 
increasing the information rate in commercials is more 
engaging and more favourable to viewers. In [4], it was 
suggested that an increase in the rate of information of up to 
130 percent of the typical speech rate can significantly 
increase the impact of advertisements. 

The driving force for the work presented here on real-time 
synchronised audio/video time-stretching comes from user 
requirements and user feedback in music education research 
[5, 6], which indicated that time-scaled video would be 
desirable in applications related to aural learning, music 
transcription and musical technique analysis. The effects of 
audio/video time-compression and expansion on the learning 
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process have been thoroughly studied [4-8]. Besides time 
efficiency benefits, it was shown that learning from 
accelerated material can be at least equally as effective as the 
normal speed of presentation. There were further findings that 
students watching accelerated material stay more focused. At 
normal speech rates they “become bored and their attention 
begins to wander” [7], and learning processes benefit from 
acceleration of presentation as long as intelligibility can be 
maintained [8]. For entertainment applications, internet video 
streaming, digital video players and set-top devices can benefit 
greatly from an audio/video time stretching tool. Studies of 
digital video browsing [9] noted that one of the highest rated 
enhanced features was watching time compressed video.  

II. AUDIO TIME-SCALE MODIFICATION 
Time-scale modification can be achieved in a number of 

ways in both the time and frequency domain. However, time 
domain approaches are typically not considered ideally suited 
to mixed audio content, which may include speech, 
polyphonic music and ambient noise. As such, the real-time 
time-scale modification technique proposed here is based on a 
set of modifications to the phase vocoder [10], a popular 
frequency domain approach to time-scaling. A comprehensive 
tutorial outlining the theory of the traditional phase vocoder is 
presented in [11] and a brief description is provided here.  

The Fourier transform interpretation of the phase vocoder is 
mathematically equivalent to a short time Fourier transform 
(STFT) [12] which segments the analysed signal into 
overlapping frames which are separated by a certain ‘hop 
size’. Within phase vocoder implementations, TSM is 
achieved by varying the analysis hop size Ra with respect to 
the resynthesis hopsize Rs such that the time scaling factor is 
calculated as α=Rs/Ra. It follows then that Ra>Rs will result in 
timescale compression (speed up), and Ra<Rs will result in 
timescale expansion (slow down). Within the phase vocoder, 
analysis frames are ‘remapped’ along the time axis resulting in 
newly constructed synthesis frames, each with a modified 
phase spectrum, to ensure that the synthesis frames maintain 
phase coherence through time. Since the phase spectrum of 
each frame must be modified, the windowing function will 
also be affected. For this reason, a resynthesis window is 
necessary and a 75% overlap is recommended to avoid 
modulation at the output. This will result in the output having 
a constant gain factor of approximately 1.5 which can easily 
be compensated by multiplying all samples by the reciprocal 
of the gain factor. An overlap of 75% corresponds to a fixed 
synthesis hop size, Rs, of N/4 samples.  

In order for the synthesis frames to overlap synchronously, 
the frame phases must be updated such that phase continuity is 
maintained between adjacent output frames. The standard 
method used to calculate suitable synthesis phases involves 
calculation of the instantaneous frequency of each bin in 
radians per sample. Having obtained the instantaneous 
frequency, it is possible to predict the expected phase of any 
component for a given synthesis hop size. Given that the 
frequency content of both music and speech is stationary only 

over short periods, phase estimates will decrease in accuracy 
as the hop sizes increase.  The most accurate way to estimate 
phase for each component is by first calculating the principal 
argument of the heterodyned phase increment between 
adjacent analysis frames as defined in [10, 11]. The 
instantaneous frequency is then calculated in radians per 
sample.  In order to calculate the phase spectrum for the new 
synthesis frame at the time scaled output, the instantaneous 
frequency is multiplied by the synthesis hop size Rs, and added 
to the resultant synthesis phases from the previous frame. This 
is known as phase propagation or phase updating. The newly 
modified phases along with the original magnitude spectrum 
are then used to reconstruct the audio frame.  

Although, the time scaled output is horizontally phase 
coherent at this point, the timbral quality is often described as 
sounding ‘phasey’ or ‘distant’ and is generally not regarded as 
natural sounding. Particularly noticeable is how transients are 
affected by the phase vocoder. These artifacts can be 
attributed to the fact that the standard phase vocoder only 
attempts to achieve an optimal phase relationship between 
adjacent frames, known as horizontal phase coherence. 
However, the pursuit of horizontal phase coherence has a 
profoundly negative effect on vertical phase coherence, which 
describes the relationship between the phases of frequency 
components within a single frame. Maintaining vertical phase 
coherence is an important consideration in order to achieve 
natural sounding TSM.  

The improved phase vocoder [13] explicitly attempts to 
identify sinusoidal frequency bins in FFT frames by a peak 
picking process within the magnitude spectrum. The phases of 
these truly sinusoidal peak frequency bins are then updated in 
the traditional manner, i.e., by maintaining horizontal phase 
coherence between corresponding peak frequency bins of 
successive frames. The non-sinusoidal frequency bins are then 
updated by maintaining the phase difference that existed 
between each bin and its closest peak/sinusoidal frequency 
bin. The process is known as peak locking.   

III. REAL-TIME CONSIDERATIONS FOR DYNAMIC TIME-
SCALING   

When a fixed time-scale factor is applied to an entire audio 
signal both Ra and Rs remain fixed. In which case, the position 
in time of any analysis or synthesis frames can be defined as 

u
at =uRa and u

st =uRs, respectively, where u is an incrementing 
integer representing a sequence of frames as in [10]. For real-
time implementations, where the time-scale factor, α, may be 
varying dynamically due to user intervention, this definition 
will introduce distortions into the time-scaled output since the 
analysis hop is no longer fixed. The solution is to redefine 

u
a at uR=  as 1u u

a a st t Rα−= + . This ensures that the current 

analysis frame position u
at , is always updated correctly. The 

position in time of the current analysis frame is always related 
to both the previous analysis frame and the current time 
scaling factor, α.  

Although it is favourable to vary the analysis hop Ra and fix 
the synthesis hop Rs to achieve TSM, it can result in inaccurate 
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frequency estimation for time-scaling factors α < 1. When the 
signal is being sped up, the distance between analysis frames 
exceeds N/4. It becomes impossible to accurately predict the 
amount of phase unwrapping to be applied during the 
frequency estimation stage of the horizontal phase update 
procedure described in [10, 11], resulting in inaccurate 
synthesis phase estimates. In addition to this, when α is varied 
over time, the accuracy of the instantaneous frequency 
estimates also varies. This leads to momentary artefacts 
whenever the time scale factor, α, is changed. Effectively, the 
transitions between frames with different TSM factors are not 
perceptually smooth despite the windowed overlapping 
scheme. The solution to both of these problems is to ensure 
that the instantaneous frequency estimates are always derived 
using the phase differences between the current analysis frame 
and a frame one synthesis hop back from the position of the 
current analysis frame, ( ),u

a s kX t R∠ − Ω . Although, an extra 

FFT and an extra buffer is required to obtain the phases of this 
frame, it guarantees that phase unwrapping errors will not be 
present and that the instantaneous frequency estimates will be 
consistent  regardless of variation in α. The phase update 
equation [10, 11] is now redefined in  (1).  

1( , ) ( , ) ( , ) ( , )u u u u
s k s k a k a s kY t Y t X t X t R−∠ Ω =∠ Ω +∠ Ω −∠ − Ω  (1) 

When vertical phase coherence is to be maintained, peak 
locking can be used, and only the sinusoidal or peak frequency 
bins are updated using (1), with all other bins updated as in 
[10, 11]. This method of phase updating removes the need to 
estimate the instantaneous frequency. However, for the case 
where pitch scale modification is required, calculation of 
instantaneous frequency is still necessary. Nonetheless, the 
‘hop-back’ method described above is used to avoid phase 
unwrapping errors and to maintain smooth pitch and time 
scale transitions. This will be discussed in the next section.  

A similar phase update procedure was proposed in [14] in 
which time-scale modification is achieved through the 
insertion and deletion of entire frames. Since the approach we 
propose here uses a variable analysis hop size, it has the 
advantage of maintaining better estimates of the magnitude 
spectrum, thereby greatly reducing the possibility of removing 
or repeating perceptually salient characteristics within the 
time-scaled signal. 

IV. REAL-TIME PITCH SHIFTING  
The simplest method to shift the apparent pitch of a signal 

is by interpolating or decimating the time domain signal. The 
resulting signal, although pitch shifted, is also shortened or 
lengthened by the reciprocal of the interpolation/decimation 
factor β. A common technique used to shift the pitch and 
maintain duration is to pitch scale the signal using 
interpolation/decimation, and apply complimentary time scale 
modification to restore the original length of the signal. This is 
easily achieved in the offline context but becomes difficult to 
implement in a real-time context. If both pitch shifting and 
time scaling are required simultaneously, the problem 
becomes more difficult since time scaling is required for 2 

alternate operations (pitch and time scaling) within the same 
frame. When the signal is both time scaled and interpolated for 
any time scaling factor α and pitch shifting factor β, the 
required compensatory time scale factor such that the resultant 
signal is both the required pitch and length [15], is simply αβ.  

In a real-time context the pitch and time scaling must be 
carried out within a single frame interval (in this 
implementation 23ms). Two issues arise. First, the 
computational requirements are directly related to the product 
of α and β, since each frame must now be time-scaled 
internally to compensate for pitch shifting. This makes real-
time operation unfeasible for large products αβ. Second, the 
length of the resultant frame is no longer fixed. An additional 
buffer must be used in order to handle the overflow if the 
resultant frame exceeds N (analysis frame size) samples. If 
αβ<1, the resultant frame will be smaller than the required N 
samples. In this case, more input frames need to be processed 
until there are sufficient samples to generate an output frame. 
These issues can make the output unpredictable, added to 
which the solutions are computationally intensive. 

Here we present a novel method for real-time pitch shifting 
which resolves the problematic issues raised above. The 
computational requirements are not dependent on α and β and 
the method guarantees that a fixed frame length can be 
generated independent of the time and pitch scale factors used. 
No inter-frame time scaling and no additional buffers are 
required. The pitch shifting is performed using linear re-
sampling in the time domain, and phase vocoder theory is then 
applied using a modified phase update equation which 
incorporates the pitch scaling factor β. In order to generate a 
pitch shifted frame of known length, we interpolate or 
decimate the input time domain signal over the range u

at  to 
u
at Nβ+ , where N is a fixed analysis frame size chosen to 

ensure adequate frequency resolution. This results in a time 
domain frame of length N which has been generated by 
interpolating or decimating Nβ samples by the pitch scaling 
factor β. Figure 1 illustrates this procedure. This frame now 
constitutes an analysis frame which can have arbitrary time 
scaling applied using the phase update equations presented 
below. 

 
Figure 1. The real-time re-sampling method used for obtaining fixed 
length pitch shifted frames. A illustrates no pitch change, B pitching 
down and C pitching up. 
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The goal is to estimate the phase propagation required to 
allow successive interpolated frames to be updated such that 
the pitch shifted and time scaled output is horizontally phase 
coherent. Recall (1), which was introduced as a preferred 
method to ensure reliably wrapped phase difference estimates. 
This was achieved by using an extra FFT to estimate the 
phases of the frame exactly one synthesis hop back from the 
current analysis frame, thereby allowing the phase differences 
to be estimated over a known fixed interval equal to Rs. The 
‘apparent’ analysis hop is now equal to the synthesis hop, but 
the actual value of Ra is still variable.  In order to estimate 
suitable synthesis phases for pitch shifted frames, the 
instantaneous frequency must be calculated as follows. A new 
method to calculate the heterodyned phase increment for pitch 
shifted frames is given by (2), where the interpolation factor, 
β, is now included in the equation. 

( , ) ( , ) /u u u
p k k s kk a aX t X t Rs R βΔ Φ = ∠ Ω −∠ − Ω − Ω  (2) 

where ( , )u
kaX t∠ Ω and ( , )u

kaX t Rs∠ − Ω represent the 
phases of the current analysis frame and an analysis frame 
exactly one synthesis hop back from the current value of u

at . 
The resulting term, u

p kΔ Φ  , is then the principle argument of 
the heterodyned phase increment of the pitch shifted frame 
such that it is in the range -π  to π. Since the frames have been 
interpolated or decimated (resulting in frequency shifts) they 
will no longer exhibit the expected phase derivatives over a 
given hop, Rs. To calculate the correct phase increment, the 
hop must also be multiplied by the reciprocal of the pitch 
scaling factor, β. The instantaneous frequency in radians per 
sample of the pitch shifted frame is given by (3).  

ˆ ( ) /u u
k k pa k st Rω β= Ω + Δ Φ  (3) 

As opposed to the standard method [10, 11], we divide the 
phase deviation by Rs instead of Ra, because the method used 
to calculate phase difference in (3) uses two frames separated 
by a fixed distance, Rs. The standard phase update equation 
[10, 11] can now be used, and peak locking can be applied as 
discussed previously. The advantages of using (1) for phase 
updating have already been incorporated in (2) above. We 
now have modified phase vocoder equations which allow real-
time pitch shifting and time stretching simultaneously. A key 
advantage of using this method for pitch shifting is that 
compensatory time scaling is not required. Instead, the pitch 
scaling factor is incorporated in the phase update equations. 
This guarantees that the computational load remains fixed and 
predictable for any combination of time and pitch scaling 
factors. 

V. REAL-TIME TRANSIENT PRESERVATION 
Although peak locking contributes to maintaining the 

timbral quality of transients during TSM, transients should not 
be time-scaled if a naturally sounding output is required. An 
off-line solution was proposed in [16]. The approach taken 
here is to identify transients automatically in real-time. Upon 
detection of a transient, the time scale factor α is returned to 
‘1’ (no scaling), and the analysis phases are mapped directly to 

the synthesis phases (phase locking) for the duration of the 
transient. When the transient has passed, the time scale factor 
is automatically reset to the α value prior to the transient. 
Transients represent an ideal place to lock the phases since 
any discontinuities introduced to the time scaled signal will be 
masked by the transient itself.  

In order to identify an analysis frame as a transient [17], the 
log difference of each frequency component between 
consecutive frames is calculated as in (4). This measure 
effectively tells us how rapidly the spectrogram is fluctuating. 

10

( , )
( , ) 20 log , 1 / 2

( , )

u
au

f a u
a s

X t k
X t k k N

X t R k
= ≤ ≤

−
 (4) 

where ( , )u
f aX t k  is the log energy difference between 

frames separated by Rs, and u
at  is the current analysis frame 

instant. In order to detect the presence of a transient we define 
a measure given in (5). 

( ) ( )
( )

/ 2 1

1

, 1 ( , )

, 0

u u
N a f au

a u
k a

P t k if X t k T
Pe t

P t k otherwise=

⎡ = >
⎢=
⎢ =⎣

∑   (5) 

where, T1 is a threshold which signifies the rise in energy, 
measured in dB, which must be detected within a frequency 
channel before it is deemed to belong to an onset. In order for 
the frame to be declared a transient, ( )u

aPe t  must exceed a 
second threshold T2. In practice we have found that T1=6dB 
and T2=3N/8 give satisfactory results for most popular music. 
Thus, a transient is detected at frame u

at , if at least 75% of the 
bins in the log difference spectrogram, equation (4), exceed a 
value of 6dB. Note that using this measure, the energy present 
in the signal is not the defining factor of the transient. Instead, 
we assign the transient probability, ( )u

aPe t , using  a measure 
of how “broadband” or percussive the onset is [17]. This is 
based on the number of bins exhibiting a positive first 
derivative as described by equation (5). Figure 2 shows the 
effectiveness of this approach. Despite the fact that the signal 
itself has little dynamic range, the feature detector is rarely 
prone to false detections which makes it ideal for transient 
detection in time scaling. Furthermore, it can easily be 
implemented within the current framework since the only 
requirement is that the current and previous frame magnitudes 
are available. 

 
Figure 2. A highly dynamically compressed signal containing rock 
music is depicted in the top plot. The bottom plot shows the output of 
the percussive onset detector.  

Upon detecting a transient, the time scale factor, α, is 
automatically returned to ‘1’, inhibiting TSM momentarily. 
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We term this method ‘transient hopping’. In addition the 
frame phases are locked and the frame is mapped directly to 
the output. This mechanism preserves the transient and 
ensures that it is reproduced unaffected at the output. Since we 
use 75% overlap, Rs = 1024 for analysis frame length 4096, a 
short transient will exist in 4 consecutive frames. In order to 
preserve the transient correctly, the TSM factor, α, must 
remain at a value of ‘1’ until all overlapping frames have 
passed the transient. Since the local time scale factor is 
reduced, a time scale compensation factor is applied after each 
transient. Eq. (6) describes this action:  

1 4

4 4

T

T T
F

if u u
m

if u u N
m

otherwise

α α
α

α
α

− <

−
= ≤ − <

−

⎧
⎪⎪ +⎨
⎪
⎪⎩

 (6) 

where α  is the global time scale factor, Tα  is the TSM 
factor to be applied during the frames preceding the transient, 
and where m is the maximum desired TSM factor and m must 
be strictly greater than 1. The number of frames, NF, in which 
the time scale compensation factor must be applied after the 
transient, is dependent on the maximum timescale factor, such 
that  = 4 -4 FN m . Using a larger number of frames to 
compensate for the transient has the advantage that smaller 
TSM factors may be distributed over a longer time period, 
thus reducing signal distortion due to excessive timescale 
factors. 

Figure 3 illustrates how the time scaling factor is varied 
before and after the transient in order to both preserve the 
transient and to maintain a constant global time scale factor. 

 
Figure 3. Time scale factor as a function of transient detection  
 

VI. BUFFER SCHEMES 
One of the key issues in a real-time implementation of TSM 

is the choice of buffer scheme and for completeness sake we 
suggest a suitable scheme here. In offline processing, the 
entire signal is overlapped and concatenated before playback. 
However, in a real-time environment, a constant stream of 
processed audio must be outputted and consecutive output 
frames must be continuous. In order for seamless 
concatenation, the boundaries of each output frame must be at 
the constant gain associated with the overlap factor in order to 
avoid modulation. The method presented below addresses this 

concern. For reasons discussed in previous sections, a 75% 
overlap is recommended. This effectively means that at any 
one time instant, 4 analysis frames are actively contributing to 
the current output frame.  

 
Figure 4. The relationship between input and output frames for α=1. 

In Figure 4, the audio to be processed is divided into 
overlapping frames of length N. In order to output a processed 
frame, 4 full frames would need to be processed and 
overlapped. This leads to considerable latency from the time a 
parameter change is affected to the time when its effects are 
audible at the output. However, given that the synthesis hop 
size is fixed at Rs=N/4, we can load and process a single frame 
of length N, output ¼ of the frame, and retain the rest in a 
buffer to overlap with audio in successive output frames. To 
do this, a buffer of length N is required in which the current 
processed frame (with synthesis window applied) is placed. 
Three additional buffers of length 3N/4, N/2 and N/4 will also 
be required to store remaining segments from the 3 previously 
processed frames. Each output frame of length N/4 is then 
generated by summing samples from each of these 4 buffers. 
Figure 5 shows how the buffer scheme works. On each 
iteration u, a full frame, Fu, of length N is processed and 
placed in buffer 1. The remaining samples from the 3 previous 
frames occupy buffers 2, 3 and 4. The required output frame 
of length N/4, S

u, is generated as defined in (7). 

 
Figure 5. Real-time output buffer scheme using a 75% overlap. The 
gray arrows indicate how each segment of each buffer is shifted after 
the output frame has been generated.  

1 2 3( ) ( ) ( / 4) ( / 2) ( 3 / 4)
1 / 4

u u u u uS n F n F n N F n N F n N
n n N

− − −= + + + + + +
∀ ≤ ≤

 (7) 

From (7), it can be seen that the output frame, Su(n), is 
generated by summing the first N/4 samples form each buffer. 
Once the output frame has been generated and outputted, the 
first N/4 samples in each buffer can be discarded. The data in 
all buffers must now be shifted in order to prepare for the next 
iteration. The gray arrows in Figure 5 illustrate how each 
segment of each buffer is shifted in order to accommodate a 
newly processed frame in the next iteration. The order in 
which the buffers are shifted is vital. Buffer 4 is filled with the 
remaining N/4 samples from buffer 3, buffer 3 is then filled 
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with the remaining N/2 samples from buffer 2, and finally 
buffer 2 is filled with the remaining 3N/4 samples from buffer 
1. Buffer 1 is now empty and ready to receive the next 
processed frame of length N. The result of this scheme, is that 
¼ of a processed frame will be outputted at time intervals of 
Rs, which is equal to N/4 samples.  Using the suggested frame 
size of 4096 samples, the output will be updated every 1024 
samples which is approximately equal to 23.2 milliseconds. 
The audio will be processed with newly updated parameters 
every 23.2 milliseconds, but the latency will be larger than this 
and depends on the time required to access and write to 
hardware buffers in the audio interface. In general however, it 
is possible to achieve latencies < 40ms. 

VII. SYNCHRONISATION WITH THE HOST APPLICATION 
The requirement to synchronise independent time and pitch 

scaling with video and screen updates adds additional 
complexity. To maintain multimedia synchronisation, the time 
scaling process should control the master clock within an 
application. In this section, we present a real-time media 
synchronisation framework which has made this possible 

Previous sections have described in detail the audio 
processing blocks required to achieve real-time time and pitch 
scaling simultaneously. Figure 6 shows how the overall 
system is configured. 

 
Figure 6. Overview of clocking between time/pitch scale 
modification and host application. 

Firstly, it is important to note that, in order to allow time 
scale modification to be carried out in real-time whilst 
maintaining synchronisation with other media such as video or 
screen updates, e.g., the audio locators, it is necessary to pass 
full control of the host clock to the time scaling algorithm. 
This is because time scaling by its very nature involves 
manipulation of the time base of the audio. As described 
previously, the time increment between frames is purely 
dependent on the choice of time scale factor. Furthermore, if 
we wish to continuously vary the time-scale factor, the time 
line becomes non linear at transition points. Essentially, the 
time scale algorithm must be able to request any audio frame, 
starting at any sample point within the audio stream. 

With this in mind, the first stage involves loading an audio 
frame defined by the time scale algorithm itself. Immediately 
following this, the first stage of pitch shifting is achieved by 
interpolating or decimating the input waveform by the pitch 
scaling factor. Regardless of time or pitch scale factor, one full 
frame is always populated on every iteration. For example, 
using a pitch scale factor of ‘2’, 2N samples will be 
interpolated to produce an N sample frame where N is the 
frame size. If the frame is identified as a transient, no further 
processing is applied, and time scaling is suspended for 4 
frames (due to 75% overlap). The frames around a transient 
are reproduced at the output identical to that of the input and 
the audio clock is updated as normal. If no transient has been 
detected, the phases are updated according to the modified 
phase update equations. Pitch shifting is only completed at this 
stage since the phase update procedure needs to include the 
interpolation factor. Following this, the processed audio frame 
is reproduced and re-windowed. The audio clock is then 
updated, and the frame incremented by a varying factor 
depending on the user input (i.e., TSM factor). In order to 
produce a continuous stream of audio, the buffer scheme 
described above is used. 

Regardless of what processing is carried out by the time-
scaling algorithm, it is solely responsible for updating the host 
clock. The host then uses this information to update screen 
components which depend on audio playback position. Thus, 
all screen components, processes and visualisations are 
synchronised with the audio clock which is controlled by the 
time-scale modification algorithm.  

VIII. VIDEO SYNCHRONISATION 
Combined audio/visual artefacts that can be introduced due 

to loss of synchronisation are often the most perceptually 
undesirable. Failure to keep audio and video streams 
synchronised, known as ‘lip sync errors,’ result in audio 
events occurring before or after the associated video frames. 
When audio advances video by 20ms or when audio lags 
video by 40ms, it becomes detectible. Errors of +40ms  and -
160ms are “subjectively annoying” as reported by the 
International Telecommunications Union (ITU) in 1993[18]. 
Further research reported in ITU-R BT1359-1 [19], showed 
reliable detection of 45ms audio leading and 125ms audio 
lagging, while the acceptability region is even wider. The ITU 
recommends that the difference between audio and video 
should be no less than -90ms and no more then +185ms. In 
reality, this range is probably too wide for acceptable 
performance. For example, in video footage of musical 
instruments being played, key strokes or string plucks are 
more precise than lip movement during speech, so the 
synchronisation thresholds need to be reduced. In addition, 
when a video has been stretched it can be easier to analyse and 
therefore synchronisation errors become more perceivable. 

In this section, three approaches to the preservation of 
audio/video synchronisation in time scaling applications will 
be presented. Insertion and deletion of frames is necessary 
when the frame rate is dictated by the playback device. 
Television standards such as PAL/SECAM and NTSC use 
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standardised refresh rates and hence the output of a time 
stretching module must maintain a corresponding frame rate. 
However, many software implementations of video players, 
including mplayer, VLC player and others, allow for change 
of the video rate once the compressed video is unpacked. 
Screen refresh rate of modern equipment is in the range of 
100-200Hz, so variations in the frame rate can be introduced 
by choosing when a particular video frame will be shown on 
the display device. Hence, less noticeable artefacts and 
smoother picture transition can be obtained when variable 
frame rate, the second method, is applied. The third method, 
Adaptive Video Refresh Rate (AVRR), relies on the precision 
of the audio clock. Synchronisation is maintained by ensuring 
that the video time code remains locked to the audio time code 
within an allowable threshold. 

Video time stretching for conventional broadcast uses 
insertion and deletion of frames to maintain synchronisation. 
When speeding up the video, some frames need to be dropped, 
whilst when slowing down some need to be duplicated. When 
frames are duplicated or dropped, maximal synchronisation 
error is half of a video frame length, since we round to the 
closest frame. Hence, if the frame rate is 25 fps, maximal error 
will be 20 ms. This error range (-20ms to +20ms) meets ITU 
recommendations for lip sync error to be undetectable. 
However it may not be good enough for more demanding 
applications such as time stretching of video, when precise 
movements are slowed and become easier to analyse. In 
addition, frame duplication can cause jerkiness to be perceived 
in the video of slow steady movements. 

Changing the video frame rate by the scaling factor will 
generally give a smoother image since frames are equally 
spaced in time. The additional advantage is that no frames are 
dropped when speeding up. Ideally, timing for a new frame is 
easy to calculate by advancing the previous frame time by the 
new frame rate interval. However, due to the fact that timing 
precision is influenced by factors such as temperature and 
humidity, simply setting-up the next frame to display a given 
period after the previous frame without comparing it to a 
master clock can cause long term synchronisation errors.  

The AVRR method refreshes the display with a new frame 
when the video time code is equal to (or within a threshold of) 
the original time code of the audio frame being outputted. The 
refresh rate is adaptive since the period between two frames 
adapts to the audio clock. Ideally, it should be equal to the 
reciprocal of the scaled frame rate, but will oscillate around 
that value. We define here two time-lines; one is the media 
player’s actual time-line and the other is the original media 
time-line. It is crucial for this method to calculate precisely the 
time on the media time-line of the audio sample currently 
being played. This time value is then compared with the 
original time code associated with non-time scaled video 
frames and the display is refreshed with this frame when the 
video frame time code is smaller than or equal to the time of 
the audio sample that is currently being outputted. To 
minimise loss of synchronisation due to computationally 
intensive processing, the decoding algorithm needs to be 
efficient and implemented in a separate high priority thread. 

 

  
Figure 7. Video time scaling implementation. 
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The video-synchronised time stretching algorithm described 
above was implemented as presented in Figure 7, and intended 
for a demanding application requiring fast access to audio 
frames while other intensive processing tasks are performed. 
Here, the audio stream is first uncompressed and stored locally 
in an audio input buffer. Unlike audio however, uncompressed 
video would require an unacceptably large local buffer, so 
video packets are accessed directly from the compressed 
stream. 

Since video decoding is done on-line, particular 
consideration was given to its implementation. Higher time 
compression rates will demand that video frames be decoded 
and scaled much faster than usual. Hence, the video decoding 
is carried out together with video zooming in a separate high 
priority thread. The video decoding thread receives two 
control inputs from the user interface. Video zoom factors, 
changeable from the interface, are sent directly to the video 
scaler, which scales a frame according to a zoom factor and 
sends it to the video display buffer. Change of playback 
position is sent to the decoder and it instructs the decoder to 
seek the stream and also to erase any previously decoded 
frames from video display buffer. 

The time-stretching factor is sent to the audio processing 
engine in order to change the analysis hop size, and the audio 
output frame timestamp is calculated accordingly. However, 
this timestamp is not sufficient for proper A/V 
synchronisation, since it represents the time when the audio 
frame is sent to the audio hardware buffer. For example, if an 
audio frame is 1024 samples and the sample rate is 44100 Hz, 
the time resolution will be 23.2 ms. For the normal playback 
speed, this may be sufficient, but in the case of doubling the 
playback speed the time span between two audio sample 
points on the media timeline becomes 46.4 ms. Hence, some 
measure of fullness of the audio hardware buffer needs to be 
introduced for precise timing of outputted audio samples. The 
fullness of the hardware audio buffer is hardware dependent 
and measuring it is often a complex task, so we propose to 
find approximate timing of the audio sample by measuring the 
time difference (Δt) between the moment the audio frame is 
sent to the hardware buffer and the current time. This value is 
then added to the timestamp of the audio frame that was sent 
to the audio buffer (Taudio), and is then compared with the 
video frame timestamp (Tvideo). The display is refreshed with 
this frame when the video frame time code is smaller than or 
equal to the calculated audio time: 

video audioT T t≤ + Δ  (8) 

Another issue is timer precision for measuring Δt. In 
Windows OS, the maximal precision that can be achieved with 
the standard timer is 15ms, which is hardly enough for a 
synchronisation application. Hence, Δt is determined by 
measuring CPU counts from the moment the frame is sent to 
the hardware buffer and then dividing by the CPU count 
frequency. Since Δt gives a value related to the real playback 
time-line, it is transposed to the media time line by dividing it 
by the time-stretching factor α: 

1 cpu

cpu

CNT
t

fα
Δ = ⋅  (9) 

However, both variable frame rate and adaptive video 
refresh rate have the potential disadvantage that at higher time 
scale factors, since more frames are displayed per second, 
frames need to be decoded much faster. Synchronisation can 
be lost if a frame is not decoded within a frame interval, so a 
preferred solution is to combine AVRR with frame dropping 
when loss of synchronisation occurs. In our implementation, 
whenever the video lag exceeds 20 ms, the application 
instructs the decoder not to decode the following frame, and 
returns to full decoding when the lag returns to under 10 ms. 

IX. AUDIO QUALITY EVALUATION 
Since the focus of this research is concerned with the real-

time implementation of a synchronised video/audio and 
multimedia time and pitch scale modification algorithm, the 
evaluation of the audio time-scale algorithm presented here is 
not intended to be comprehensive. Instead, to ensure that this 
real-time implementation has not resulted in a compromise to 
the audio quality of the algorithm, a series of subjective 
listening tests were carried out in order to ensure that the TSM 
algorithm is as least as good as that described in [13]. The 
transient detection has not been used in these comparison tests 
since [13] does not employ transient detection.  

In total, 10 subjects undertook a series of 20 tests1 each, 
totalling 200 individual tests. The tests used included slowing 
and speeding of audio as well as pitch shifting in both 
directions by a range of factors. Both time and pitch scale 
factors ranged from 0.75 to 1.5.  A range of signals including 
solo and ensemble music from a range of genres and male and 
female speech segments sampled at 16 bit, 44.1 kHz comprise 
the test suite. Each listener was presented with an unprocessed 
reference signal and two alternative processed signals. The 
same processing parameters and frame sizes are used in each 
algorithm. The order in which the algorithms are presented 
was randomised.  

 
Figure 8. Subjective listening test results for 10 subjects. Along the 
horizontal axis, 1 indicates a predominant preference for real-time 
TSM whereas 5 indicates predominant preference for the improved 
phase vocoder [13].  

 
1 http://www.audioresearchgroup.com/downloads/tsmtests.zip 
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The results are presented in Figure 8, where results for each 
subject are given from 1 to 5, where 1 indicates predominant 
preference for real-time TSM, 3 indicates no preference, and 5 
indicates predominant preference for the improved phase 
vocoder. The subjective listening tests indicate that the overall 
trend is such that the algorithms are perceived to perform 
equally well. The average value over all 200 tests was 2.985, 
very close to no preference, with a relatively low standard 
deviation of 0.94. Subjects who were predisposed to distinctly 
choosing 1 algorithm over the other tended to choose each 
algorithm a similar number of times indicating equivalence of 
the algorithms. Many subjects reported that the algorithms 
sounded very similar but felt compelled to make explicit 
decisions regardless. The data is skewed slightly in favour of 
the real-time TSM algorithm, but it is likely that a greater 
number of test subjects would introduce greater balance in the 
data. Some differences between the algorithms which may 
account for this include the fact that the real-time TSM 
algorithm does not perform peak locking above 10 KHz due to 
the fact that peak locking is intended to maintain the phase 
relationship between the peak and lobes of sinusoidal 
components. Significant acoustic energy above 10 KHz is 
often stochastic and attributed to transients, noise and 
ambience. Peak locking above 10 KHz forces non-sinusoidal 
components into a state of unnatural phase coherence which 
can sound objectionable to subjects with acute hearing in the 
upper frequency range.  

Theoretically, the pitch shifting quality in [13] should 
outperform that of the real-time algorithm but subjective tests 
have shown that the differences are largely imperceptible for 
moderate time scaling factors (in the region of 0.75 to 1.5) 
although the real-time algorithm can become noticeably more 
objectionable when opposing time and pitch scale factors are 
used simultaneously (i.e. slow down and pitch up 
simultaneously). This is due to the efficient pitch shifting 
technique used to achieve frame synchronous pitch shifting.  

X. A/V SYNCHRONISATION EVALUATION 
To measure the quality of the A/V synchronisation algorithm, 
we compared it with integration of our time-stretching into the 
FFmpeg (v0.4, ffmpeg.org/ffplay-doc.html) platform and with 
the MPlayer implementation (v1.0rc2, www.mplayerhq.hu/) in 
LinuxOS. FFplay is a well known efficient open source 
application for video encoding, and MPlayer is a robust, open 
source video player based on ffmpeg libraries. One of the 
many features of MPlayer is the possibility to change playback 
speed, but without independent pitch-shifting. Nevertheless, 
this feature, robust implementation and the possibility to 
extract A/V synchronisation information make MPlayer useful 
for evaluation and comparison with our algorithm. For A/V 
synchronisation, FFplay uses duplicating and dropping video 
frames whereas MPlayer uses a variable frame rate. 

We compared video players on the “Casino Royale” trailer 
sequence coded in MPEG1 format with video frame 
dimension 640x352 at 23.97 frames per second and an audio 
sample rate of 44100 Hz. The video frame lag with respect to 
audio is presented for 100 video frames from the middle of the 

sequence in the case of playing the video at half of the original 
speed (Figure 9) and with double the original speed (Figure 
10). It can be seen that our adaptive video refresh rate 
algorithm clearly outperforms the other two, because of the 
precise matching of the video timestamp to the audio clock. 
The video lag of the AVRR time-stretching algorithm is also 
well below the ITU lip sync error recommendation with 
maximal video lag being 14 ms and maximal video advance 
being 13 ms in the case of doubled playback speed. Moreover, 
the standard deviation of video lag is 3.328 ms, showing 
stability of this solution. 
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Figure 9. Comparison of video lag for three video player 
implementations when playback speed is half of original.  
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Figure 10. Video lag when playback speed is doubled. 
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Figure 11. Average video lag as a function of time scaling factor. 

Figure 11 depicts the average video lag as a function of the 
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time scaling factor for the three video synchronisation 
techniques. FFplay was modified to ensure that it would not 
decode dropped frames, otherwise its performance would be 
significantly worse. However, it still shows notable 
degradation in performance as the time scaling factor 
increases beyond 2 and video frame decoding becomes 
significantly slower than the time to process a time scaled 
audio frame. MPlayer maintains suitable performance as time 
scale increases, though it does not adapt the variable refresh 
rate to the precise audio time codes. The AVRR method 
maintains strong synchronisation over the entire range of time 
scaling factors. Only at time scaling factors beyond 3.5 does 
the AVRR occasionally lose synchronisation, and opts not to 
decode a frame.  

XI. CONCLUSIONS 
A framework for real-time independent video time scaling 

and pitch shifting was presented. Careful consideration was 
given to the problems which arise in a real-time context and 
novel solutions to these issues have been provided. It was 
shown how time-scale changes can be achieved in real-time 
with almost imperceptible latency and no transitional artefacts. 
The approach is based on a modified phase vocoder with 
optional phase locking and an integrated transient detector 
which enables high quality transient preservation in real-time. 

The framework presented is the basis for the developments 
of applications which allow for a seamless real-time transition 
between continually varying, independent video time-scale 
and pitch-scale parameters. A novel solution for audio/visual 
synchronisation called adaptive video refresh rate has also 
been developed. Due to the fact that synchronisation errors in 
the foreseen applications will be easier to detect, special focus 
was given to minimizing video lags and advances, resulting in 
an algorithm that significantly outperforms existing 
algorithms. 
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