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Abstract— The design and implementation of a real-time 

passive high Doppler resolution radar system is described in this 

paper. Batch processing and pipelined processing flow are 

introduced for reducing the processing time to enable real-time 

display. The proposed method is implemented on a software 

defined radio (SDR) platform. Two experiments using this system 

are described: one based on small human body motions and 

another one on hand gesture detection. The results from these 

experiments show that the proposed system can be used in a 

range of application scenarios such as eHealth, human-machine 

interaction and high accuracy indoor target tracking. 
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I.  INTRODUCTION 

Passive radar was first proposed and implemented during 
World War II for detecting aircraft by using the radio signals 
emitted by other radar systems [1]. In more recent years, 
passive systems that used FM radio, analog television and radio 
communication signals have been developed for detecting and 
tracking airborne targets. With the deployment of wireless 
communication infrastructures such as cellular, digital radio 
and internet networks a number of additional applications have 
been developed which include passive systems for monitoring 
highway traffic [2] and Wi-Fi passive radar for indoor person 
detection [3]. 

Wi-Fi passive radar has been used for detecting people in 
office buildings [4] and through-walls [3]. It has also been used 
for tracking a vehicle in an open field [5]. These studies proved 
that 802.11x signals can be used as the illuminator for target 
detection and tracking in both outdoor and complex indoor 
scenarios. Recently, further studies in [6], [7] have 
demonstrated the potential of capturing very small Doppler 
shifts which can be mapped to small human body movement. 
The signal processing methods used in [6] and [7] have been 
out of the scope of traditional radar signal processing. The 
method for extracting Doppler information in these systems 
(WiSee and Wi-Vi) is different from the cross correlation 
methods normally used in radar systems. WiSee developed an 
equalized FFT method for capturing the Doppler shifts from 
the reflected Wi-Fi signal, similar to the traditional short-time 
Fourier transform (STFT). The Doppler resolution of this 
method depends on the integration time of the FFT. In addition, 
the complexity of the system using the proposed method 
increases significantly because it has to implement the 
demodulation and channel decoding according to 802.11x 

protocols for the purpose of the equalizing the OFDM symbols. 
The Wi-Vi project proposed a 2 TXs and 1 RX system which 
uses an analog method to extract the Doppler shift from the 
reflected signal. The analog principle helps the Wi-Vi system 
to work in a real-time mode compared with the STFT or 
ambiguity function methods. However, the analog processing 
principle limits the potential of the interference elimination 
which is very important in an indoor application scenario. The 
Wi-Vi has not been verified with the standard Wi-Fi AP since 
it uses a specially modified transmitter. Regarding small 
Doppler shift detection, similar work has been discussed in [8] 
with an active radar system but little work has been reported in 
the passive radar field especially passive systems using Wi-Fi 
illuminators. In this paper, a micro-Doppler detection method 
is proposed for the passive Wi-Fi radar for capturing very small 
Doppler shifts caused by human body movement. 

For a radar system, the detection accuracy is largely 
determined by two factors: bandwidth; which determines the 
range resolution; and integration time which determines the 
Doppler resolution. In a passive system using Wi-Fi, the signal 
bandwidth is fixed at 20(802.11a,g,n)/22(802.11b)/40(802.11n) 
MHz, which equates to 7.5 to 15 meters fix range resolution, 
while the integration time is variable. This means that the 
Doppler resolution can be improved by taking longer samples 
during processing. A similar description can be also found in 
the other digital Doppler information extraction method, for 
example more OFDM symbols are required according to the 
processing principle in [6]. However, the main problem with 
longer integration times is that a longer processing time is 
required for extracting the Doppler information from the very 
large volume of data samples. In some cases, Doppler 
information may even be lost when the processing time is 
longer than the next sampling duration. Thus, batch processing 
[9] is introduced in this paper to reduce the processing time 
needed for the long samples sequences which are used for high 
Doppler resolution passive Wi-Fi radar. In addition, a pipeline 
processing flow is proposed for enabling real-time Doppler 
output. In this paper we also report the design and build of a 
real-time software defined radio (SDR) system which has been 
used to verify the proposed fast cross correlation function 
(CAF) calculation and related processing flow. Two 
experiments were designed and carried out for detecting small 
human body movements and hand gestures. The experimental 
results prove the effectiveness of the proposed real-time 
hardware and processing software , demonstrate the potential 
of real-time high accuracy Doppler tracking and human-
machine interacting based on Wi-Fi signals.   
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This paper is organized as follows. Sectio
proposed real-time processing method 
configuration. The experiments for small hu
and hand movements are presented with the
III. Finally, the results are summarised in Sec
potential applications discussed. 

II. REAL-TIME SIGNAL PROCESSING

IMPLEMENTATION  

A. Radar Processing 

In order to obtain the range and Doppl
target, a 2-D time frequency analysis tool, th
function (CAF) is often used. A discrete fo
shown in (1): , ∑
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introduced in this work. The batch pr
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A. Experiment 1: Human Body Gesture Dete

The Wi-Fi AP used in this experiment is
which has 15 dBm power output. One antenn
as the reference channel and the other antenn
target as the surveillance channel. Both 
selected from variety of different type of ante
the application scenario. For example, for
through-wall scenario, a low gain, omni-dire
sufficient for detecting the scattered sign
through-wall scenario, high gain antennas
optimal performance. The setup of a through
gesture detection experiment is shown in 
scenario, high gain (24 dBi) dish antennas
reference and surveillance channels. 

In this experiment four different body g
stooping-back, squatting-standing, left-ri
backward-forward swing. The detection res
Figure 7. 

Figure 6. The experimental setup for through-wal

gesture detection (thickness of the brick wall

Figure 7. The human body movement results. (a), s

squating-standing, (c), left-right body swing, (d), f

swing. 4 seconds Doppler record is shown for each g

dynamic Doppler shift range of the body gesture i

gesture cycle are 
in real-time. The 
ed in detail in this 

ection  

s an Edimax M300 
na points to the AP 
na is directed to the 

receivers can be 
ennas according to 
r an indoor non-
ectional antenna is 
nals. While for a 
 are required for 

h-wall human body 
Figure 6. In this 

s are used as the 

gestures are tested: 
ight swing and 
sults are shown in 

From the detection results 
the real-time Doppler record 
distinguished from the others.
experiments (Figure 7a, 7b), 
records are shown. During th
only the upper body is appro
Thus, predictably a positive and
The stoop – stand sequence is n
is a difficult motion to perfo
record shows a much sharper 
motions. In addition, the detec
strong due to the more limite
Figure 7a clearly shows these 
During the squatting-standing
becomes more complex since 
have different motions. For exa
knee is moving forward, while
meanwhile upper body has s
procedure will occur during th
record (Figure 7b) of this gestu
positive and negative excursion
result, a single cycle gesture D
experiment the subject was fa
the surveillance antenna on th
torso from left to right. In this g
angled rather more obliquely
giving slightly smaller bistatic D
movement occurs in a double
positive Doppler followed by
trough as the torso swings thro
This is then followed by posit
swings upright (Figure 7c). Th
is also shown in the backwar
case, the upper torso swings dir
surveillance antenna at a sligh
This results in a characteristic 
Doppler which is clearly visible
7d. The value of the detected 
particular geometry of the 
between this Doppler record an
resolved by the bistatic radar e
study. 

B. Experiment 2: Hand Movem

 Many electronic devices suc
phones can emit Wi-Fi signal 
illuminator in an integrated
demonstrate this concept, we 
antennas and laptop together to
system for capturing the hand m
or around the device. The addit
GHz 2 dBi PCB antennas whic
laptop or tablet. As shown in F
closed to the laptop Wi-Fi whi
and the other antenna is fixed
which is used as the surveillanc
from the two channels are dig
sent back to laptop for CAF pro
experiment is the same as descr

 
ll human body 

l is 22 cm) 

stooping-back, (b), 

forward-backward 

guesture cycle. The 

is around ±10 Hz 

in Figure 7, it can be seen that 
for each body gesture can be 
 In the stooping and squatting 
single gesture cycle Doppler 

he stooping-back gesture cycle, 
oaching or leaving the antenna. 
d negative Doppler is generated. 
normally completed quickly as it 
orm slowly. Thus, the Doppler 

characteristic than in the other 
cted signal strengthen is not as 
d span of the body movement. 
Doppler record characteristics. 

g gesture cycle, the situation 
different parts of the body may 

ample, when squatting down, the 
e the waist is moving backward, 
slight forward lean. A reverse 
he standing period. The Doppler 
ure cycle shows a combination of 
ns. In the left-right swing gesture 
Doppler record is shown. In this 
acing the wall pointing towards 
he other side and swinging the 
geometry the torso movement is 

y towards the bistatic baseline 
Doppler than the above case and 
e cycle. This result in initially 
y significant negative Doppler 
ough the complete return cycle. 
tive Doppler again as the torso 

he single gesture Doppler record 
rd-forward swing result. In this 
rectly towards or away from the 

ht angle to the bistatic baseline. 
sinusoidal positive and negative 
e in the Doppler record in Figure 
Doppler shifts is related to the 
experiment. The relationship 

nd experimental geometry can be 
equation and is part of a future 

ment Detection 

ch as laptops, tablets and mobile 
and thus could be used as self-

d passive radar system. To 
combined two small receiving 

o set up a miniature passive radar 
movements in front of the screen 
tional antennas are small size 2.4 
ch are widely used in cell phone, 
Figure 8, one antenna is located 
ich is used as reference channel 
d at the corner of the keyboard 
ce channel. The signals received 
gitized through the USRPs and 
ocessing. The laptop used in this 
ribed in the Section II Part B. 



 

 

 In this paper, four hand movements and 
real-time Doppler records are shown in Figur
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experiment, four hand gestures were carried
The corresponding real-time Doppler rec
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IV. CONCLUSIONS  
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