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ABSTRACT 

This thesis presents a real-time hardware implementation of a gradient domain 

high dynamic range compression algorithm; this technique is useful for processing high 

dynamic range (HDR) images to be able to view them on standard display devices. The 

hardware implementation is described in VHDL and synthesized for a field 

programmable gate array (FPGA) device. The maximum operating frequency achieved is 

fast enough to process high dynamic range videos with one megapixel per frame at a rate 

of about 100 frames per second.  The hardware is tested on standard HDR images from 

the Debevec library. The output images have good visual quality and are similar to the 

output images obtained using floating-point arithmetic. An alternate hardware 

implementation that does not involve any multipliers is also discussed. 

The inverse gradient transformation required for reconstructing back the image 

from the manipulated gradients is implemented by means of a local Poisson solver that 

utilizes only local information around each pixel along with special boundary conditions. 

The local Poisson solver requires a small and fixed amount of hardware and memory for 

any image size. The quality of the images obtained using our local Poisson solver for 

both fixed-point and floating-point implementations is compared to the quality of images 

produced by a system that solves the Poisson equation using a full-image fast Fourier 

transform (FFT). 
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CHAPTER I 

INTRODUCTION 

Ordinary digital images use eight bits per pixel for each of the red, green and blue 

channels. Each channel can therefore take only 256 different values; this range, which is 

approximately two orders of magnitude, is not sufficient to represent the real world. The 

dynamic range of illumination in a real world scene is high, on the order of about 10
8
:1, 

and therefore requiring about 32 bits per pixel to represent fully. The human eye itself 

can adapt to changes in illumination of about 10 orders of magnitude.   

Modern digital cameras are equipped with advanced computer graphics for 

producing high-resolution images that meet the increasing demand for more dynamic 

range, color depth, and accuracy. Increasing use of such cameras has led to the emerging 

field of high dynamic range (HDR) imaging. HDR images can represent a large part of 

the vast dynamic range of illumination in real world scenes. They can be either captured 

by using HDR cameras that fuse images from multiple sensors, or compiled by 

combining multiple exposures of a scene into a single image. HDR images are encoded in 

special formats for storage, as they represent a wider range than the standard 24-bit RGB 

format [1]. HDR images find wide application in remote sensing, medical imaging, and 

night vision; all these applications share the need for highly detailed images. 
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The standard 24-bit RGB format is a good match to standard display devices. 

Unfortunately, standard display devices, with their small dynamic range of the order of 

256:1, are not capable of displaying raw HDR images. In order to display an HDR image 

on a standard display device, its dynamic range must first be compressed, ideally in a 

way that preserves image details. This compression of an HDR image to produce a low 

dynamic range image is called tone mapping. There are several techniques for tone 

mapping. They are broadly classified into: global tone mapping, which applies a single 

fixed mapping function to each pixel in an image, and local tone mapping, which adapts 

the mapping function used for a pixel depending on the neighborhood of the pixel. Local 

tone mapping operators (TMOs) are generally accepted as giving better quality output 

images than global TMOs [1]. 

Implementing TMOs in real time is a challenging task, but is also required if the 

TMO is to be embedded within a camera as part of an electronic viewfinder, or within a 

display device for real-time display of HDR video. TMOs are generally implemented in 

software. A local TMO proposed by Fattal [2] works by manipulating the gradients in the 

HDR image, based on the fact that human eye is more sensitive to relative changes in 

local intensities than to absolute intensities. Fattal‟s TMO is implemented on a gray scale 

(luminance) image in the logarithmic domain, as gradients obtained from the logarithms 

of the input pixels are ratios, or relative changes, in the linear domain. Gradients of high 

magnitude, which correspond to parts of the image to which the eye is highly sensitive, 

are attenuated; this compresses the dynamic range of the output image without much 

effect on output image quality. Similarly, gradients of small magnitude are magnified so 

that fine details that would not otherwise be visible can be seen. The attenuation factor is 
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computed using central differences around each pixel; thus, tone mapping is local in 

nature since the mapping function varies from pixel to pixel. Once the gradients have 

been manipulated, an inverse gradient transform is done to find an image that most 

closely corresponds to the manipulated gradients. This reconstructed output image can be 

displayed on standard display devices, while preserving details in both dark and bright 

regions of the image. Fattal‟s operator helps in preserving local contrast and results in 

few or no visual artifacts in the output image. 

The inverse gradient transform is equivalent to solving a Poisson equation, and 

solving the Poisson equation is the most computationally intensive part of any gradient 

domain method. One straightforward method involves applying a two-dimensional fast 

Fourier transform (FFT) to the entire image. Any Poisson solving technique, including 

the FFT, that requires the entire image to find a single pixel of the output image, requires 

that an entire image frame be buffered before any of the output image can be produced. 

This requires an amount of memory dependent on the image size. This makes the 

hardware size dependent on image size, introduces one image frame of lag in the 

computation, and makes implementation in real time difficult.   

 While Fattal‟s operator is generally accepted as a high quality local tone mapper, 

it is difficult to implement in real time because solving the Poisson equation for the entire 

manipulated gradient image is costly and slow. The need for enough memory to buffer 

the entire image is also a limitation. The goal of this research is to implement hardware 

for a real-time gradient domain local TMO: 

 that produces a faithful reproduction of the input image, with good detail. 

 that does not introduce visual artifacts in the output image. 
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 that uses a simplified Poisson solver that can be implemented in real time. 

 that uses the same hardware for any size image. 

The HDR local TMO proposed in the thesis relies on a novel technique for 

solving the Poisson equation. Our local Poisson solver [3] gives hardware that is 

independent of image size, and amenable to real-time implementation.  Rather than work 

with the entire image at once to find the complete output image, our local Poisson solver 

finds one pixel of the output image at a time, considering it to be the center pixel in a 3×3 

neighborhood from the input image, and solving a Poisson equation for an image 

consisting only of that neighborhood.  Zero Dirichlet boundary conditions are assumed 

beyond the neighborhood.  To find the complete output image, the local Poisson solver is 

slid over the entire image. The implementation uses a small and fixed hardware with 

small memory buffers. The hardware complexity of the method is independent of the 

image size, and although the method produces a solution that is different from the 

traditional one, the output images produced are of high quality. 

The Poisson equation plays an important role in gradient domain image 

processing techniques, including tone mapping. It also finds wide application throughout 

photography; different photography artifacts, such as lighting, shadow, and reflection [4]-

[6], can be removed by processing the gradients of the image and solving the Poisson 

equation to reconstruct a processed image. In addition, images can be fused together by 

merging their gradients and solving the Poisson equation [7]. The Poisson equation is 

also used in an image editing program allowing artists to paint in the gradient domain 

with real-time feedback [8]. While the proposed local Poisson solver is used in this thesis 

in the context of tone mapping, it could be used in these other applications as well. 



 

5 

Our hardware implementation of Fattal‟s operator is designed assuming the use of 

fixed-point arithmetic; a careful fixed-point quantization for all the arithmetic 

computations is done so as to obtain an output that closely matches the output that is 

obtained when the method is implemented using floating-point arithmetic. The hardware 

for Fattal‟s operator using the proposed local Poisson solver has been successfully 

described in VHDL and synthesized using Altera Quartus tools for a Stratix II field 

programmable gate array (FPGA) device. An operating frequency of 114.18MHz is 

achieved. The maximum operating frequency achieved is fast enough to process high 

dynamic range videos with one megapixel per frame at a rate of about 100 frames per 

second. The hardware has been tested on HDR images from the Debevec library [9], and 

produces output images having good visual quality. A small and fixed amount of 

hardware and memory is needed for implementation of the Poisson solver, regardless of 

image size.  

The remainder of this document is organized as follows. Related work is 

described in Chapter 2. Chapter 3 introduces the Poisson equation and the proposed local 

Poisson solver, considering the effect of various boundary conditions carefully. There are 

several parameters that have to be chosen to get a good quality output from Fattal‟s 

operator. Chapter 4 describes how a series of MATLAB simulations were done to choose 

the best values for these parameters. Chapter 5 details the hardware implementation for 

Fattal‟s operator using the local Poisson solver. It also describes a possible multiplierless 

implementation of the technique. Chapter 6 shows the hardware costs and synthesis 

details when Fattal‟s operator using our local Poisson solver is implemented on an FPGA 

device. It also shows simulation results that indicate how the hardware implementation of 
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Fattal‟s operator performs on HDR images from the Debevec library [9]. Finally, 

conclusions are drawn and possible future work is described in Chapter 7. 
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CHAPTER II 

BACKGROUND AND RELATED WORK 

Tone mapping operators can be classified according to whether their operators are 

global or local. Because global tone mapping operators do the same transformation on 

every pixel, they lend themselves well to parallel implementations based on lookup 

tables. However, it is not possible for a single transformation based on global parameters 

to properly eliminate the effects of illumination in images for which illumination varies 

locally. In contrast, local tone mapping operators use transforms that vary locally with the 

neighborhood of the pixel. Overall, local tone mapping operators produce higher quality 

enhanced images but also have some drawbacks. Visually, their main disadvantage is the 

appearance of “halo” artifacts; these artifacts are shadow effects around bright regions of 

an image. Also, local tone mapping operators require complex computations, and 

implementing them in real-time is a challenging task.  

Two well-known local tone mapping operators that are of special interest to us are 

the Reinhard local TMO [10] and Fattal‟s local TMO [2]. Neither operator suffers from 

significant halo artifacts, and both involve relatively moderate amounts of computation. 

Other local tone mapping operators include iterative methods [11], nonlinear filters [12]-

[14] and image appearance models [15], [16]; however, there is no published evidence of 

real-time implementation of these more complex methods.  
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2.1  The Reinhard Operator 

The Reinhard operator normalizes each pixel of an image according to a weighted 

sum of the logarithmic global average of the image and the local luminance surrounding 

the pixel. The local luminance is estimated by averaging the pixels in a scale image 

selected from among a set of scale images that form a Gaussian pyramid around the pixel. 

The Gaussian pyramid is an image pyramid that consists of a set of copies of the original 

image with both sample and resolution decreased in regular steps [28]. Computing the 

scale images of the Gaussian pyramid is a matter of applying a series of two-dimensional 

Gaussian-weighted low pass filters to the original image using a different standard 

deviation at each scale. Each scale image provides an estimate of the local luminance in a 

differently-sized neighborhood around the pixel; the Reinhard operator uses the largest 

neighborhood that does not contain drastic changes in illumination. 

Although there is some evidence in the literature [17]-[20] that the Reinhard 

operator can be implemented in real-time, including work by our own team in [20], the 

algorithm suffers from two major limitations. One limitation lies in the fact that an entire 

image is needed to properly compute its logarithmic global average; in a video 

application, implementation of this global average would result in an entire frame of 

latency, since an entire frame has to be received to begin processing. Implementation 

would also require a buffer large enough to store the entire frame. If the video frame rate 

is fast enough, this limitation can be overcome by using the logarithmic global average of 

the previous frame to normalize the current frame.  

The second major limitation of the Reinhard operator is that it uses a Gaussian 

pyramid with nine scales, with the largest surround lying in a 64×64 pixel window. The 
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Gaussian kernels are computed on the pixels in the linear domain, which requires a large 

number of bits for each pixel; as a result, the hardware requires a large amount of 

embedded memory. Further, the computations, which involve exponents, are of high 

complexity. The Gaussian pyramid in general is constructed using a Gaussian function 

centered at zero: 

 

2 2
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( )

2

2
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( , , )
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i j
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
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where i and j are indices indicating distance from the center and   is the scale of the 

Gaussian surround, or standard deviation. The standard deviation controls the rate of 

decay of the Gaussian surround around the pixel. The use of approximate Gaussian 

surrounds around each pixel implemented with an accumulator-based approach can 

reduce the complexity of the operator without significantly affecting the quality of the 

output [20]. However, the memory usage remains high, as described in [20], and this is 

reflected in the size of hardware needed to implement the operator.  

An alternative local TMO, Fattal‟s operator, does a gradient transformation of the 

original logarithmic luminance input image to accomplish tone mapping [2]. It attenuates 

the large gradients that are responsible for the image‟s high dynamic range, while at the 

same time magnifying small gradients that correspond to detail that may otherwise not be 

visible. This requires that an attenuation factor be calculated for each pixel in the gradient 

domain image. The attenuation factors are then used to manipulate the image in the 

gradient domain.  An inverse gradient transformation is done to bring the image back into 

the logarithmic luminance domain. Finally, an inverse logarithm transformation brings 
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the now low dynamic range image to a linear luminance domain, appropriate for use on 

standard display devices. 

Like the Reinhard operator, Fattal‟s operator calculates the attenuation factor 

around each pixel in a multi-scale fashion using a Gaussian pyramid. However, four 

scales, with the largest surround lying in a 32×32 pixel window, are enough. Further, the 

Gaussian kernels are computed on the pixel values in the logarithmic domain, so that a 

smaller number of bits are needed for each pixel. Thus, the required embedded memory is 

smaller than is needed for Reinhard‟s method. Moreover, the operator preserves local 

contrast, and introduces no visual artifacts. For this reason, we chose to focus on Fattal‟s 

operator in this thesis. In the remainder of this chapter, the various steps in Fattal‟s 

operator are described in detail with the help of a block diagram. 

 

2.2  Fattal‟s Operator for Local Tone Mapping  

Fattal [2] has proposed an effective method for compressing the dynamic range of 

HDR images. The block diagram for Fattal‟s operator is shown in Figure 2.1. The inputs 

to the system are the logarithmic luminance of a HDR image, and its four scale images. A 

HDR image in the logarithmic luminance domain can be produced using a HDR camera. 

The scale images of the input image, obtained from a Gaussian pyramid, can be produced 

in real time using the hardware described in [20].  The gradient transformation block 

transforms the input image into the gradient domain, computing gradients of the 

logarithmic luminance of the HDR image using forward differences. The attenuation 

factor computation block computes the attenuation factors used to modify the gradient 

domain image; the attenuation factors depend on the logarithmic luminance of the HDR 
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image, and its four scale images. The gradients are multiplied with the attenuation factors 

to obtain manipulated gradients in the gradient manipulation block. Then, an inverse 

gradient transformation is done on the manipulated gradient domain image to return to 

the logarithmic luminance domain. An inverse logarithm transformation for the inverse 

gradients is done to obtain the tone mapped image in linear luminance domain, 

appropriate for display on a standard display device.  

 

Attenuation 

Factor 

Computation 

Gradient 

Manipulation 

Gradient 

Transformation 

 

Inverse 

Gradient 

Transformation 

 

Inverse 

Logarithm 

Transformation 

 

Tone mapped 

image 

Four scale images from a 

Gaussian pyramid of the 

logarithmic luminance of 

HDR image 

 

Logarithmic luminance 

of HDR image 

Figure 2.1 Block diagram of Fattal‟s operator. 
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2.2.1  Gradient Transformation  

Fattal‟s operator requires that the input image, which is in the logarithmic 

luminance domain, be transformed to the gradient domain.  This is accomplished by use 

of a forward difference.  In the gradient domain, each pixel is represented by two 

components, the negative gradients in the horizontal and vertical directions, respectively: 

                                 0 0
, , 1,

V
i j i j i jG I I    and 0 0

, , , 1,H
i j i j i jG I I     (2.2)                                 

where I
0
 is the logarithmic luminance of the input HDR image, 

V
G  is the gradient in the 

vertical direction, 
H

G  is the gradient in the horizontal direction, and i and j are indices of 

the pixels.  

 

2.2.2  Attenuation Factor Computation 

The attenuation factor for the gradient of a given pixel is calculated using 

information from a multi-scale Gaussian pyramid centered on the pixel.  The work in [2] 

does not specify the number of scales; in this thesis, four scales are used. The original 

logarithmic luminance image is denoted by I
0
, and the four scale images, from the finest 

scale with a standard deviation, or scale index, of 1 to the coarsest scale with a standard 

deviation, or scale index, of 4, are denoted by I
1
, I

2
, I

3
, and I

4
.  For our implementation, 

each scale image is full resolution, with the same number of pixels as the original image; 

each pixel in a scale image is the Gaussian weighted average of a neighborhood of the 

pixel in the original image.  The largest and coarsest scale image, at scale index 4, uses a 

32×32 pixel Gaussian. While we do not report on hardware to compute the multi-scale 
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Gaussian pyramid in this work, previous work has shown that it can be effectively 

approximated in real time [20], and our results use this approximation. 

The attenuation factor makes use of horizontal and vertical gradients at each scale 

index k that are computed using central differences: 

                               
, 1 , 1 1, 1,

, ,   and   ,
2 2

k k k k
i j i j i j i jk k

i j i j

I I I I
H V

    
    (2.3)                         

where k=0, 1, 2, 3, 4 and H
k
, V

k
 are the central differences in the horizontal and vertical 

directions, respectively, at scale index k. At each scale index, the gradients are used to 

compute a scale attenuation factor based on the magnitude of the gradient at that scale 

index: 

                                                 

1

, ,

, ,

b
k k
i j i jk

i j

H V

a



 
 
 
 

 (2.4)                                 

where a and b are parameters used to control the attenuation. The scale attenuation factor 

is designed to attenuate gradients of magnitude greater than a, and to magnify gradients 

of magnitude smaller than a.  The parameter b is assumed to be less than 1. As shown in 

the equation, one-norms of the horizontal and vertical central differences are used for 

calculating the scale attenuation factors. A two-norm or an infinity-norm can also be used 

in place of the one-norm; our experiments show that they give similar results. The one-

norm is used for ease of implementation.  

The final attenuation factor Φi,j for a given pixel is obtained using all four scale 

indices to ensure that intensity transitions at every scale are taken into account: 

                                                   
4

, ,

0

.k
i j i j

k




   (2.5)                                 
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This factor is applied to both the horizontal and vertical components of the gradient 

domain pixel. 

 

2.2.3  Gradient Manipulation  

Fattal‟s operator accomplishes tone mapping by manipulating the gradient domain 

version of the image. The manipulated gradient domain pixel is found by multiplying 

both the vertical and horizontal components of the original gradient domain pixel by the 

pixel‟s attenuation factor: 

 , , , , , ,
ˆ ˆ  and  ,V V H H
i j i j i j i j i j i jG G G G     (2.6) 

where ˆ is used to denote the manipulated gradients.  To avoid spatial distortions, only the 

magnitudes of the gradients are changed; the directions are unaltered. 

 

2.2.4  Inverse Gradient Transformation 

The next step in Fattal‟s operator is an inverse gradient transformation to bring 

the image, now of low dynamic range, back into the logarithmic luminance domain.  

Because the image has been manipulated in the gradient domain, it may be that no exact 

inverse image I
out

 exists.  As a result, the objective of the inverse gradient transformation 

block is to compute the image I
out

 whose gradients most closely match the manipulated 

gradients in a least mean square sense. This transformation is a key to Fattal‟s operator, 

and is the subject of Chapter 3. 
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2.2.5  Inverse Logarithm Transformation 

The logarithmic luminance output image produced by the inverse gradient 

transformation is converted to linear luminance by taking the inverse logarithm of each 

pixel. Note that at this point, we have a linear luminance (gray-scale) image. 

The most computationally difficult part of Fattal‟s operator is the inverse gradient 

transformation which is used to obtain the tone-mapped image. Chapter 3 discusses the 

solution to the inverse gradient transformation and various approaches to obtain it. The 

preliminaries required to develop Fattal‟s operator in real-time are described in Chapter 

4. The hardware for the real-time implementation of the full operator is then discussed, in 

Chapter 5. 
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CHAPTER III 

SOLVING THE POISSON EQUATION LOCALLY 

All algorithms that do processing in the gradient domain face a common problem 

of obtaining an inverse gradient transform once the original gradients have been 

manipulated. In a one-dimensional continuous case, an inverse gradient can be obtained 

by integrating the manipulated gradients along with an additional constant. However, in a 

two-dimensional case, the manipulated gradients may not be integrable [2]; there may not 

exist a solution out
I such that

out
Ĝ I , where Ĝ  denotes the manipulated gradient 

consisting of both the horizontal and vertical components and  is the gradient operator. 

For a high dynamic range (HDR) compression of images, this means that there may not 

exist an image whose gradient exactly matches the manipulated gradient of the original 

image; that is, it may be that no exact solution to the inverse gradient transformation 

problem exists. This problem is resolved by employing a least mean squares technique to 

find the image whose gradient is closest to the manipulated gradients. In what follows, 

the solution to the inverse gradient transformation is derived in the continuous domain, 

and then discretized using finite differences for application to images. 
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3.1  Derivation of the Poisson Equation 

Employing a least mean square approach, the output solution I
out 

must minimize 

the integral out ˆ( , )F I G dxdy , where 

 

2 2
out out2

out out

2

ˆ ˆ ˆ ˆ( , ) .H VI I
F I G I G G G

x y

    
              

 (3.1)  

Note that Ĝ  has both the horizontal ( ˆ H
G ) and vertical ( ˆV

G ) components in x and y 

directions respectively. According to the Variational Principle [2], the I
out

 that minimizes 

the integral of out ˆ( , )F I G  must satisfy the Euler-Lagrange equation: 

 
out out out

0.
x y

F d F d F

I dx I dy I

  
  

  
 (3.2)                                 

Solving equations (3.1), (3.2) and rearranging, we obtain the Poisson equation 

                                                     
2 out ˆdiv ,I G   (3.3) 

where 2  is the Laplacian operator and ˆdivG  is the divergence of Ĝ . The two sides of 

equation (3.3) are 

 
2 out 2 out

2 out

2 2
 ,

I I
I

x y

 
  

 
 (3.4) 

 
ˆ ˆˆdiv .

H V
G G

G
x y

 
 

 
 (3.5) 

The Poisson equation (equation (3.3)) is generally used in gradient domain applications 

to implement the inverse gradient domain transform. The right hand side ˆdivG  is known, 

and the equation is used to solve for out
I . 

The Poisson equation in the case of images should be discretized using finite 

differences since images are represented in discrete form. The discrete Poisson equation 
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can be obtained by approximating the left hand side (equation (3.4)) using finite 

differences: 

 2 out out out out out out
, 1, 1, , 1 , 1 ,4i j i j i j i j i j i jI I I I I I          (3.6) 

and by approximating the right hand side of the Poisson equation (equation (3.5)) using 

backward differences: 

                                      , , 1, , , 1
ˆ ˆ ˆ ˆ ˆdiv .H H V V
i j i j i j i j i jG G G G G      (3.7)    

Note that the left hand side of the discrete Poisson equation can be obtained by passing a 

Laplacian window over the output image. The discrete Poisson equation can be rewritten 

in a matrix form that relates the pixels of out
I  to the manipulated divergences:                  

                                                          
out ˆdiv ,LI G
 

 (3.8)  

where L is a Laplacian matrix whose coefficients are determined by the type of boundary 

conditions assumed when using the Laplacian operator.
out

I


 is the image vector to be 

reconstructed and ˆdivG


 is the vector consisting of the manipulated divergences. From 

here on in this thesis, the discrete Poisson equation is referred simply as the Poisson 

equation.              

For Fattal‟s operator, the output image out
I is found by solving the Poisson 

equation (3.3). The Poisson equation is a traditional differential equation with boundary 

conditions.  It is computationally intensive to solve because the only known boundaries 

are the borders of the image.  This implies that solution of the Poisson equation for even a 

single pixel requires computations involving the entire image; in other words, although 

the gradient domain operator is local in nature, solving for the image with a particular 
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gradient requires global information.  Because global information is needed, a traditional 

Poisson solver requires that a complete image frame be buffered. The rest of the chapter 

discusses a variety of Poisson solvers; the FFT-based solver is described in detail, as it is 

considered the gold standard in this thesis. Finally, the chapter introduces our proposed 

local Poisson solver. 

 

3.2  Poisson Solvers 

There exist several numerical methods to solve the Poisson equation. The Poisson 

solvers vary in their time complexity, memory usage and convergence or the amount of 

error in the output. The methods are categorized and described next.  

The various methods for solving the Poisson equation can be categorized into 

direct solvers and indirect solvers. Direct solvers give an exact solution after a finite 

Table 3.1 Complexity of Poisson solver algorithms. 

 

Algorithm 
Time complexity 

for image size (N) 
Type of Solver 

Gaussian Elimination N
3
 Direct 

Inverse(
2 )× ˆdivG  N

2
 Direct 

Jacobi N
2
 Indirect 

Conjugate Gradient (CG) N
3/2

 Indirect 

Successive Over Relaxation (SOR) N
3/2

 Indirect 

Multigrid N Indirect 

FFT-based NlogN Direct 

Proposed local Poisson solver N Direct 
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number of steps. Indirect solvers are iterative and give an approximate solution; every 

iteration decreases the error of the solution by a constant factor.  

Table 3.1 lists published Poisson solvers [29, 30], showing their time complexity 

for an image with a total of N pixels. Each solver is also categorized as either a direct or 

indirect solver. The Gaussian Elimination and the Inverse (
2 ) × ˆdivG methods are direct 

methods, but are very slow and require large memories. Jacobi, Conjugate Gradient (CG) 

and Successive Over Relaxation (SOR) methods are indirect methods having relatively 

large error and may also converge very slowly.  

The fast Fourier transform (FFT) based method is also a well known technique for 

solving the Poisson equation; it requires order NlogN operations, where N is the number 

of pixels in the image. The FFT-based solver is a direct approach giving an exact solution 

when such a solution exists. Implementing this method in real-time is not feasible as it is 

hardware-expensive and memory-intensive. Wang [23] has modified the FFT-based 

solver to make it implementable in real-time by solving on 8×8 tiled blocks of the image 

independently and reconstructing the full-size output image by tiling the processed 8×8 

blocks; this approach fixes the hardware size, since regardless of the image size the 

blocks processed are 8×8. The shortcoming to this block-based approach is that the 

output images have blocking effects around the 8×8 blocks; i.e., there are visible tile lines 

in the output image. 

The Multigrid algorithm [29], [30] is an indirect solver which requires order N 

operations to solve the Poisson equation approximately. This technique replaces the 

problem on a fine, pixel-by-pixel grid by an approximation on a coarser grid. This grid is 

further replaced by a coarser grid approximation recursively until the coarsest grid is 
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obtained. This coarsest grid is solved approximately and used as an initial solution for 

solving the next fine grid; the solution for one grid is used as the initial solution for the 

next grid so as to iteratively solve until the finest pixel-by-pixel grid is solved. A good 

approximation to the multigrid problem depends on the accuracy of the initial solution on 

the coarsest grid. This method is also not feasible for real-time implementation as the 

hardware cost is very high. It also requires more memory than the FFT-based solver [21], 

[22] as it is iterative in nature and there is information transferred between the grids.  

Our proposed local Poisson solver is also a direct solver; it gives an exact solution 

to the Poisson equation when a solution exists for the inverse gradient transformation. 

The main advantage over other methods is that it is suitable for a real-time 

implementation; in particular, the hardware is simple and easy to implement. It also 

requires significantly less memory than other methods. It works on a 3×3 sliding window 

and gives a single pixel of out
I at a time. There are no blocking effects in the output 

image; this is because each application of the solver produces a single pixel as its output 

and these pixels form the full image. The results from the proposed local Poisson solver 

are compared with the results obtained using the FFT-based solver. The FFT-based solver 

is assumed to be the gold standard since it gives an exact solution when one exists. The 

FFT-based solver is described in the next section. 

 

3.3  The FFT-Based Poisson Solver 

The Poisson equation is a linear system that can be solved using an FFT-based 

solver. The left hand side of equation (3.3) is shown in equation (3.4) and can be 
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discretized using a one-dimensional Laplacian window [-1 2 -1] in each of the x and y 

directions. This approximation is: 

 
2 out

out out out
1, , 1,2

2j k j k j k

I
I I I

x
 


  


, (3.9) 

 
2 out

out out out
, 1 , , 12

2j k j k j k

I
I I I

y
 


  


. (3.10) 

The right hand side of equation (3.3) is discretized as shown in equation (3.7). The 

discrete Poisson equation can be written in the form of a matrix equation as: 

 
out out ˆdivTI I T G  .  (3.11) 

The size of each of the matrices in this equation is n×n. The T matrix is a n×n symmetric 

tri-diagonal matrix with 2 along its main diagonal, -1 along the diagonal above and below 

the main diagonal, and zero elsewhere. This matrix can be factorized using an eigenvalue 

decomposition as 
1

T Q Q   where Q is a non-singular matrix consisting of the 

eigenvectors of T as its columns, and   is a diagonal matrix of eigenvalues of T. The 

eigenvalues of   are  

                                                    2 1 cos
1

j

j

n

         
 (3.12)  

and the elements of Q matrix consisting of the eigenvectors of T are obtained by 

                                              , ,

2
sin .

1 1
j k k j

j k
Q Q

n n

      
 (3.13)                               

 Substituting 
1

T Q Q   in equation (3.11), we get 

 
1 out out 1 ˆdiv .Q Q I I Q Q G     (3.14)                               
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Pre-multiplying equation (3.14) with Q
-1

 and post-multiplying with Q, the equation 

reduces to 

  
1 out 1 out 1 ˆ ˆ ˆ ˆ{ ( )} {( ) } div ,  or         Q I Q Q I Q Q GQ I I H  (3.15)                            

where 
1 out

Î Q I Q
  and 1 ˆˆ divH Q GQ

 . The Q matrix is orthogonal, which implies that 

Q
-1

=Q
T
. Also, Q=Q

T
; thus, we have that Q=Q

-1
. 

The Poisson equation,
out out ˆdivTI I T G  , now reduced to ˆ ˆ ˆ ,I I H   can be 

solved as follows. 

i) Compute 1 ˆˆ divH Q GQ
 . 

ii) Find 
,

,

ˆ
ˆ j k

j k

j k

H
I

 



  for each j=0,1,…..n-1 and k=0,1,…..n-1. 

iii) Calculate 
out 1ˆI QIQ

 . 

These steps require two two-sided multiplications of a matrix by Q. We can 

observe from equation (3.13) that the Q matrix consists of sinusoidal terms that match 

those used in the discrete sine transform (DST). A fast Fourier transform (FFT) algorithm 

is generally used in solving the DST; the DST of a matrix can be derived from the 

imaginary part of the FFT of the same matrix. Details for this approach can be found in 

[30, 31].  Therefore, the computation of Ĥ can be done by taking the FFT of ˆdivG and 

extracting a part of the imaginary part of the result. The computation of out
I  is done 

similarly. 

The FFT-based solver works well as a Poisson solver but is not amenable to real-

time embedded hardware implementation. In this thesis, it is used as a gold standard with 
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which to compare our proposed local Poisson solver. The next section introduces our 

local Poisson solver and the boundary condition assumed to obtain a good solution. 

 

3.4  Our Proposed Local Poisson Solver 

We want a technique that does not tile the image, so that there will not be 

blocking effects, and that works only locally, so that it can use fixed size hardware 

regardless of the size of the image. Taking into account the limitations of the FFT-based 

solver on a full image or 8×8 blocks, we propose a Poisson solver [3] that takes a 3×3 

window of the image as input and solves for a single pixel at the center of the window. A 

pixel can be found using the values of the neighboring pixels around that pixel in an 

image. The proposed Poisson solver works on this principle, taking local information 

around the pixel to be found, and so we call it a local Poisson solver. The pixel at the 

center of each 3×3 window is obtained while sliding the window over the entire 

manipulated gradient domain image, thereby solving for all of the pixels in the output 

image. 

This proposed method for solving the Poisson equation is fundamentally different 

from traditional solvers; it requires a different divergence calculation. In traditional 

solvers, divergence is calculated assuming the entire image, with boundary conditions 

only at the image borders; one divergence is calculated for each pixel in the image, and 

all of the divergences are needed in order to solve the Poisson equation. Here, divergence 

is calculated assuming a 3×3 window around the pixel, with a certain boundary condition 

beyond that window. The trade-off is that this specially-defined divergence must be 

calculated not only for the pixel itself, but also for its eight spatial neighbors, even to find 
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a single pixel of the output image. Thus, the proposed method does nine times as many 

divergence calculations as the traditional solver, but the redundancy is such that 

computations can be done locally and in parallel, with simple hardware and no need to 

buffer an entire frame of data.  

The specially-defined nine gradient divergences needed to solve for output image 

pixel out

i, j
I  are represented by ,

,div i j
p qG , where = 1, 2, 3p  and = 1, 2, 3q .These specially-

defined divergences in a 3×3 neighborhood around a given pixel can be computed using 

backward differences as: 

                                      
, ,, ,,

, , ,1, , 1div ,   i j i ji j i jH VH Vi j
p q p q p qp q p q=G G G G G  (3.16)    

where ,i jH
G  and ,i jV

G are gradients in horizontal and vertical directions that are 

computed using a 3×3 sliding window from the input image and extending it with 

boundaries to a 5×5 window. The 3×3 window from the input image along with general 

boundaries is 

 

1 2 3 4 5

0 0 0
6 1, 1 1, 1, 1 7

0 0 0
8 , 1 , , 1 9

0 0 0
10 1, 1 1, 1, 1 11

12 13 14 15 16

            

        

     

,

    

 

    

 
 
 
 
 
 
 
 
 

i j i j i j

i j i j i j

i j i j i j

b b b b b

b I I I b

b I I I b

b I I I b

b b b b b

  

where the bk values are the (yet to be determined) pixels outside the window that set the 

boundary conditions. For convenience in notation, this 5×5 window is denoted as  
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i j i j i j i j i j
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i j i j i j

I I I I I

I I I I I

I I I I I

I I I
, ,

3,3 3,4

, , , , ,
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.
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 
 
 
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i j i j

i j i j i j i j i j

I I

I I I I I  

The gradients in horizontal and vertical directions are computed using negative 

forward differences as follows: 

 , ,, ,, ,
, , , ,1, , 1 and .    i j i jV Hi j i ji j i j

u v u v u v u vu v u vI I I IG G  (3.17) 

where u and v vary from 0 to 3. The divergence of the corresponding 3×3 window is 

, , ,
1,1 1,2 1,3

, , ,
2,1 2,2 2,3

, , ,
3,1 3,2 3,3

div div div

div div div .

div div div

 
 
 
 
 
 

i j i j i j

i j i j i j

i j i j i j

G G G

G G G

G G G
 

Note that the gradients in horizontal and vertical directions are manipulated to obtain tone 

mapping in our actual implementation. As a result, the divergences used by the Poisson 

solver would also be manipulated divergences. The manipulated gradients or divergences 

are denoted with a „^‟ symbol. In what follows in this chapter, we develop our local 

Poisson solver using notation that shows unmanipulated gradients and divergences. 

However, manipulated gradients and divergences may be substituted for the 

unmanipulated ones. 

To solve the Poisson equation, each of the pixels in the 3×3 window is passed 

through a Laplacian operator which serves to take a moving average in the window. The 

two-dimensional kernel of the Laplacian operator used for this purpose is 
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The operator is passed over each pixel in the window in turn, centered over the pixel, so 

that a weighted average is computed for each pixel. The neighbors of each of the pixels 

along the boundary of the 3×3 window are needed as the Laplacian operator is passed 

over the window. Therefore, a suitable boundary condition is required for the 3×3 

window for solving the local Poisson equation. Note that we use the same boundary 

condition for calculating the divergences and also for solving the Poisson equation. The 

3×3 window obtained by solving the Poisson equation is  

, , ,
1,1 1,2 1,3

, , ,
2,1 2,2 2,3

, , ,
3,1 3,2 3,3

.
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The pixel at the center of the 3×3 window,
,

2,2 ,
i j

I  is the output of the local Poisson solver; 

that is, it is the pixel out

i, j
I  in the output image. The remaining pixels in this 3×3 window 

are thrown away.  

The matrix equation for the local Poisson solver on a 3×3 window can also be 

written in the vector form 
,, div ,


i ji j

LI G  as follows: 
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 (3.18) 

Boundary conditions play an important role in determining the solution to the 

Poisson equation. We consider three types of boundary conditions. 

i) Zero Dirichlet boundary condition. The pixels outside of the 3×3 window are 

assumed to be zeros. 

ii) Neumann boundary condition. The boundaries have zero gradient values. This 

means that the pixels outside the window are symmetric extensions of the 

pixels in the window. 

iii) Semi-implicit boundary condition. A combination of boundary conditions is 

used. The pixel values b1 to b8 in equation (3.18) use a zero Dirichlet 

boundary condition in the full-size output image and b9 to b16 use a Neumann 

boundary condition in the 3×3 window. Note that if an image is processed in 

row major order starting in the top left corner, pixels b1 to b8 correspond to 

pixels in the output image that have already been solved when the local 

Poisson solver is applied to pixel at i, j in the full-size image. Thus, it is 

possible to fill in each of the pixels b1 to b8 with either a zero if the pixel 
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corresponds to a boundary of the original full-size image, or with an already 

calculated output pixel if the pixel corresponds to a location within the interior 

of the original full-size image. Pixels b9 to b16 have not been previously 

solved, and are filled in using symmetric extension of the pixels in the 3×3 

window. 

The three choices for setting the boundary conditions for the local Poisson solver 

are described in more detail next. A 3×3 window, extended to 5×5 window using each of 

the three considered types of boundary conditions, is presented in each case. The 

boundary values that are known, either as zeros or as previously calculated pixel values, 

are represented in red. The unknown boundary values are represented in green; these are 

values that are symmetrically extended. For the semi-implicit boundary condition, the 

known boundary values are zeros if the window is at the border of the full-size image, 

and previously calculated output pixels otherwise. The corresponding Poisson equation in 

matrix form, rearranged where required, for each boundary condition choice is also 

presented.  

 

Zero Dirichlet boundary condition 

The 3×3 window from the input image extended with zeros at the boundaries, 

used for calculating the divergences, is 

0 0 0
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The output 3×3 window used for solving the Poisson equation uses the same boundaries 

as the input window and is represented as 
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Note that the boundaries are represented in red. The resulting Poisson equation in matrix 

form is written as 
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 (3.19) 

The matrix form for the Poisson equation using the zero Dirichlet boundary 

condition shows the computations needed when applying the Poisson solver. This matrix 

equation is used to obtain the center pixel of the 3×3 window. The inverse of the matrix 

equation yields the relationship:  

 

,
, , , , ,out

2,2 1,1 3,1 1,3 3,3

, , , , ,
2,1 2,3 1,2 3,2 2,2

1
(div div +div +div )

16

1 3
(div +div +div +div ) div .

8 8

  

 

i j
i j i j i j i j i j

i j i j i j i j i j

I I G G G G

G G G G G
 (3.20) 
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Note that ,
out
i jI is the output pixel and equal to

,
2,2
i j

I ; this is the center pixel of the output 

3×3 window where i, j is the index for the pixel in the output image. This equation is 

simple to implement in hardware. Because the coefficients have denominators that are all 

powers-of-two, the multiplications can be easily implemented with just shifts and 

additions. Division by a power-of-two is accomplished by shifting a variable bit-wise to 

the right. The 3 in the numerator is also easily implemented using only shifts and 

additions; multiplying a number by three is equivalent to adding the number to a version 

of itself that has been shifted one bit to the left. 

 

Neumann boundary condition 

The 3×3 window from the input image symmetrically extended at the boundaries, 

used for calculating the divergences, is 
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The output 3×3 window used for solving the Poisson equation also uses symmetric 

extension and is represented as 
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Note that the boundaries are represented in green. The resulting Poisson equation in 

matrix form is written as 
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When the Neumann boundary condition is used, the corresponding L matrix is singular 

and the equation does not have a unique solution; for this reason, Neumann boundary 

condition cannot be used for our hardware approach and will not be considered further.

   

Semi-implicit boundary condition 

The 3×3 window from the input image using a semi-implicit boundary condition 

is represented as 
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The output 3×3 window used for solving the Poisson equation also uses a semi-implicit 

boundary condition and is represented as 
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Note that the previously calculated pixels are represented in red and symmetric extension 

in green. The resulting Poisson equation in matrix form is written as 
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The matrix form for the Poisson equation using the semi-implicit boundary 

condition is used to obtain the center pixel of the 3×3 window. The inverse of the matrix 

equation yields the relationship: 
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 (3.23) 

We can observe from equation (3.23) that the coefficients are not simple to implement in 

hardware and we need to pass information from previously calculated output pixels. 
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A simulation experiment was conducted using MATLAB to assess which choice 

of the boundary conditions that can be implemented in hardware gives the best result. 

The Nave image from the Debevec library [9], shown in Figure 3.1, was used as a test 

case for this experiment. Figure 3.1 was displayed by linearly mapping the pixels 

between 0 and 255, i.e., without tone mapping. Fattal‟s operator using a local Poisson 

solving approach with a 3×3 window was simulated, based on Poisson equations (3.20) 

and (3.23) obtained using the zero Dirichlet and semi-implicit boundary condition 

choices, respectively. The output images produced are in color. The conversion required 

to produce a linear red output pixel R
out

 of the tone-mapped output image is: 

 
in

out out

in
,

s
R

R L
L

 
   
 

 (3.24) 

where R
in

 and L
in

 are the linear red and luminance components of the input HDR image, 

L
out

 is the linear luminance component of the tone-mapped image. The exponent s is color 

saturation factor; a value between 0.4 and 0.6 gives satisfactory results. The linear green 

 

 

Figure 3.1 The original Nave image. 
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and blue pixels G
out

 and B
out

 of the tone-mapped color output image are computed 

similarly. 

The output images produced using the zero Dirichlet and semi-implicit boundary 

condition choices are shown in Figure 3.2. The zero Dirichlet boundary condition works 

well; detail in the output image is clear. The semi-implicit boundary condition also gives 

a good quality image but the details on the windows are clear using zero Dirichlet 

 
(a) Zero Dirichlet boundary condition 

 
(b) Semi-implicit boundary condition 

 

Figure 3.2 Output images obtained using zero Dirichlet and semi-implicit boundary 

conditions on the Nave image. 
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boundary condition. The zero Dirichlet boundary condition is chosen for our proposed 

local Poisson solver; this is because the hardware implementation is simpler, with no 

need to pass information from previously calculated output pixels. Also, we can observe 

that the coefficients in our local Poisson solver using zero Dirichlet boundary condition 

are powers-of-two which can be implemented using shift operations. 

A Poisson solver produces the image whose gradients are closest to the input 

manipulated gradient domain image in a least squares sense, thereby doing a kind of 

inverse gradient transform. Note that if the input were a gradient domain image whose 

gradients had not been manipulated, the inverse gradient transformation would have an 

exact solution, and the Poisson equation would give a perfect reconstruction of the image. 

Both the FFT-based solver and the proposed local Poisson solver using zero Dirichlet 

boundary condition work successfully in obtaining an inverse gradient transformation in 

the sense that they give a perfect reconstruction of the image when the input gradient 

domain image is not manipulated. 

Thus a local Poisson solver is proposed and described in detail that has significant 

advantages over traditional solvers for real-time applications. It has a fixed hardware size 

irrespective of the size of the image, requires less memory than traditional solvers, and is 

easier to implement in real-time hardware. The next chapter discusses preliminaries that 

are required to develop a real-time implementation of Fattal‟s operator. 
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CHAPTER IV 

PRELIMINARIES TO DEVELOPMENT OF A REAL-TIME IMPLEMENTATION OF 

FATTAL‟S OPERATOR 

Our aim of the thesis is to implement Fattal‟s operator in real time using our local 

Poisson solver. Both Fattal‟s operator and our local Poisson solver were discussed in the 

previous chapters. Before a real-time implementation of Fattal‟s operator can be 

designed, it is essential to decide on values for the various parameters that form a part of 

the operator. Fattal‟s operator involves an attenuation factor calculation that requires two 

attenuation parameters, a and b. Here, simulation experiments are done to determine 

appropriate values for the attenuation parameters. Fattal‟s operator calculates the 

attenuation factor using a multi-resolution edge detection scheme to identify all the 

significant intensity transitions. Multi-level Gaussian pyramids are used for this purpose. 

In this chapter, we discuss the implementation of the Gaussian pyramids.  

 

4.1  Attenuation Parameters 

As described in Chapter 2, an attenuation factor is required to tone map the high 

dynamic range (HDR) image. Tone mapping is done by multiplying each pixel by an 

attenuation factor calculated from the one-norm of the central differences around that 

pixel in both the vertical and horizontal directions, ,
,
i jk

u vH  and ,
, ,i jk

u vV  respectively. The full 
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calculation, which is given in equation (2.4), is rewritten for our 3×3 window approach 

as: 

 

, ,

,

1

, ,

, ,


    
 
 

i j i j

i j

b
k k

u v u vk

u v
a

H V

 (4.1) 

and involves two attenuation parameters a and b, that determine the amount by which the 

HDR pixels should be compressed. Note that the indices u and v vary from 0 to 3 within 

the 3×3 window along with its boundaries and the index i, j indicates the pixel being 

solved in the output image. Details of our approach are discussed in detail in Chapter 5. 

These attenuation factors are calculated for each of the pixels in each of the 3×3 

windows, extended with zero Dirichlet boundary condition, of the input HDR image and 

its four scale images of the Gaussian pyramid. Gradients of larger magnitude than a are 

attenuated and those smaller than a are magnified. The value of parameter b is assumed 

to be less than 1. 

To get a satisfactory low dynamic range compressed image, the parameters a and 

b should be chosen wisely. One way to decide these parameters is to look at a histogram 

of pixels of tone-mapped output image. A histogram is a graphical representation of the 

distribution of pixel intensities of an image. A good quality image has a histogram with 

pixel values spread throughout the intensity range in a Gaussian-like distribution that 

spreads widely from the center towards the edges of the intensity range. An experiment 

was carried out using MATLAB to study the effect of the attenuation parameters on the 

quality of a tone-mapped test image. One attenuation parameter is varied while keeping 

the other parameter fixed, and vice-versa. The effect of the varying parameter on the 
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output image is studied qualitatively. Later the histogram of the pixels of the output 

image produced using the chosen values of a and b is shown. 

An experiment was setup to implement Fattal‟s operator using our local Poisson 

solver and simulated using floating-point mathematics in MATLAB to produce a tone-

mapped output image. The Nave image from the Debevec library [9], previously shown 

in Figure 3.1, is chosen for this experiment. The effect of the attenuation parameter a on 

the quality of the output image was investigated by fixing b to 0.9 and setting a to 

different values. The output images are obtained in color as discussed in Chapter 3. 

When the output images for different values of a were observed, it is evident that 

higher values of a gave higher contrast and lower values of a gave lower contrast. To get 

a good contrast in the output image, a should be chosen appropriately. Higher values of a 

could lead to saturation of pixels, with loss of detail in the bright parts of the image. 

Lower values of a deteriorate the contrast of the image. The output images with the value 

of a set to 0.2, 1.5, and 2.5, respectively, are shown in Figure 4.1. For a=0.2, the output 

image has a low contrast; as a result, the image does not look realistic. For a=2.5, the 

windows on the left side of the image are saturated and the details cannot be seen. The 

windows on the right side also start to wash out. The Nave image with a=1.5 has a good 

contrast and tone maps the dynamic range well without losing detail in the windows on 

either side of the image. As a result, a=1.5 is chosen for our implementation. Note that a 

wide range of values for a are tested; only a few sample images are included here. In 

addition, a was varied while fixing b to values other than 0.9, and the other images in the 

Debevec library were also tested. Overall, an a value of 1.5 gave good quality tone-

mapped output images.  
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(a) a=0.2 

 
(b) a=1.5 

 
(c) a=2.5 

Figure 4.1 Experiment showing the effect of the parameter a on the contrast of the 

Nave image. 
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 Now that we have chosen a value for a, we fix a to 1.5 and vary the value of b to 

study its effect on the quality of the Nave test image. Fattal‟s operator using our local 

Poisson solver is again simulated using floating-point mathematics in MATLAB. Fattal 

suggests a b value between 0.8 and 0.9 in his original paper [2]. However, we considered 

a wider range of b values. 

 
(a) b=0.6 

 
(b) b=0.8 

 
(c) b=0.85 

 
(d) b=0.9 

 
(e) b=0.95 

 
(f) b=1.0 

Figure 4.2 Experiment showing the effect of the parameter b on the tone mapping of the 

dynamic range of the Nave image. 
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As the value of b is decreased, the tone mapping algorithm produces poor quality 

and strange output images. Higher values of b do not tone map the image properly; detail 

in dark and bright regions are lost. The output images produced using values of b set to 

0.6, 0.8, 0.85, 0.9, 0.95, and 1.0 are shown in Figure 4.2. For b=0.6, we can observe that 

the visual quality of the output image is poor. As the value for b is increased, the quality 

of the tone mapping improves, up to a certain point. For b=0.9, good tone-mapping is 

obtained. However, when b is increased to 0.95, the windows on the left side are washed 

out; the bright areas of the image are not properly tone mapped. For b equal to 1, there is 

no tone mapping of the high dynamic range image at all; as can be seen in equation (2.4), 

the attenuation factor in this case is equal to 1. A b value of 0.9 was chosen for our 

 
 

Figure 4.3 Histogram for Nave with a=1.5 and b=0.9 
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implementation. Note that the remaining images from the Debevec library were also 

tested for different b values and good quality tone-mapped images were obtained for 

b=0.9. 

Figure 4.3 shows the histogram for Nave image obtained after tone mapping 

implemented in MATLAB using a=1.5, b=0.9. The x-axis shows the intensity range 

using 256 bins normalized between 0 and 1, and the y-axis shows the number of pixels in 

each bin. The histogram has a Gaussian-like spread, suggesting that the parameters a=1.5, 

b=0.9 are suitable choices for implementing the tone mapping operator in hardware. It is 

also evident from Figure 4.2 that a=1.5 and b=0.9 is a good choice of parameters to 

obtain a high quality output image. 

 

4.2  Obtaining Gaussian Pyramids 

Real world scenes have edges at multiple scales, and so do the HDR images 

capturing those scenes. The objects in the images may be of different sizes and at 

different distances. Some information that can be detected at different scales may be 

missed if an image is analyzed at only a single scale. To detect all the important intensity 

transitions, Fattal‟s operator employs a multi-scale edge detection scheme using Gaussian 

pyramids that are constructed using the HDR image in the logarithmic luminance 

domain. In Fattal‟s original work, the levels of the pyramid, each of which is a lower 

resolution version of the one before, are produced recursively; from a given scale, a scale 

of reduced resolution is found by lowpass filtering and downsampling by a factor of two. 

As previously defined in equation (2.1), the filter used for a Gaussian pyramid is 
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constructed using a Gaussian density function centered at zero with a specified standard 

deviation, and extending a specified distance from the center. 

Implementing true Gaussian pyramids, with their exponential filter weights, is 

computationally difficult and requires extensive hardware. Approximating Gaussian 

pyramids using powers-of-two was proposed by Hassan [20]; this method is easy to 

implement in hardware. Four square windows of size 4×4, 8×8, 16×16 and 32×32 pixels 

are used to obtain the four scales of an approximate Gaussian pyramid with σ=1, 2, 4, and 

8, respectively. These four scales are used in our implementation of Fattal‟s operator. The 

approximated weights obtained using powers of two are as follows: 

 4×4 square window approximating σ=1 with weights 2 2
, 16 16i j

i jw
   . 

 8×8 square window approximating σ=2 with weights 4 4
, 4 4i j

i jw
   . 

16×16 square window approximating for σ=4 with weights 8 8
, 2 2i j

i jw
   . 

32×32 square window approximating for σ=8 with weights 
8 8

2 2
, 2 2

i j

i jw

            .

 

where     denotes a ceiling function. Since the windows are two-dimensional, they can 

 
 

Figure 4.4 The original gray scale Nave image in logarithmic domain. 
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be implemented using two one-dimensional filters. In [20], the vertical filters are 

implemented using an accumulator-based structure and horizontal filters are implemented 

using finite impulse response and accumulator-based structures. A detailed description 

for the implementation of these filters can be found in [20]. 

Figure 4.5 compares the Nave image processed using true Gaussian and powers-

of-two approximation approaches. It shows an example image and its four scales, in order 

from finest to coarsest, as computed by the two approaches. The Nave image is taken for 

this purpose in its logarithmic domain which is shown in Figure 4.4. Looking at the 

images in Figure 4.5, the coarser the image gets at each scale, the blurrier the image 

becomes using both the approaches. The powers-of-two approximation does a good job at 

each scale in low pass filtering the image and obtaining a blurry image similar to that 

obtained using true Gaussian filters. The blurriness can be observed particularly near the 

windows in the Nave image. Since the powers-of-two approximation can be implemented 

using simple shifts in hardware, use of the powers-of-two approximation decreases the 

computation cost. Thus, the powers-of-two based Gaussian filtering is a reasonable 

approximation to true Gaussian filtering. 

Now that the preliminaries to developing a real-time implementation of Fattal‟s 

operator have been decided, the next step is to design the hardware for the 

implementation. The hardware is implemented using VHDL. The next chapter describes 

the hardware implementation for Fattal‟s operator using our local Poisson solver. Based 

on the experimental simulation results given in this chapter, the attenuation parameters 

are fixed at a=1.5 and b=0.9. 
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σ=1 

 
4×4 

 
σ=2 

 
8×8 

 
σ=4 

 
16×16 

 
σ=8 

 
32×32 

Using true Gaussian filters. 
Using approximate Gaussian filters based on 

powers-of-two.  

Figure 4.5 Comparison of four-level Gaussian pyramid images, calculated using a full 

exponential and powers of-two approximation. 

 



 

47 

CHAPTER V 

HARDWARE IMPLEMENTATION 

An image processing algorithm would require implementation in real-time to be 

usefully embedded within a camera or a display device. Most of the published tone 

mapping operators have been developed to be applied on stored images without 

considering their hardware implementation. Successful real-time implementation of these 

algorithms requires making hardware-friendly approximations that preserve the basic 

sense of the computations and do not adversely impact the quality of the processed 

images. It is also necessary to consider the effects of the use of fixed-point mathematics; 

generally, floating-point mathematics is too slow and expensive for real-time embedded 

systems. The preliminaries required to implement Fattal‟s operator have been discussed 

in Chapter 4. This chapter describes the hardware implementation of Fattal‟s operator 

taking fixed-point arithmetic and approximations for high complexity computations into 

account. 

The block diagram of the hardware implementation of Fattal‟s operator using our 

local Poisson solver is shown in Figure 5.1. The input is a 3×3 window of the HDR 

image in the logarithmic luminance domain and the four scales of the Gaussian pyramid 

obtained from the full resolution HDR image. The four scale images of the Gaussian 

pyramid are obtained using a hardware-friendly powers-of-two approximation previously 

proposed in [20] for standard deviations of 1, 2, 4 and 8, as already discussed in Chapter 
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4. We take a 3×3 window from the image, and calculate horizontal and vertical gradients 

around each pixel in the 3×3 window. At the same time, the 3×3 window and 

corresponding 3×3 windows from the Gaussian pyramid are used to calculate an 

attenuation factor for each pixel in the window. The attenuation factors are multiplied 

pixel-by-pixel with the vertical and horizontal gradients to obtain the manipulated 

gradients. Using our local Poisson solver, we calculate the output pixel in the middle of 

the window from its surrounding manipulated gradients. An inverse logarithm is applied 

to the output pixel to transform to its linear luminance (i.e., gray-scale) form. This 

process is repeated for each pixel in the output image, as the 3×3 window slides over the 

Local Poisson 

Solver 

 

Tone mapped 

pixel 

3×3 windows of four scale 

images from a Gaussian 

pyramid of the logarithmic 

luminance of HDR image 

 

    Figure 5.1 Block diagram of Fattal‟s operator on a 3×3 window. 
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full-size input image. This process is shown as a high level diagram in Figure 5.2. Note 

that in the entire description of our hardware that follows, each of the 3×3 windows along 

with zero Dirichlet boundary condition along the borders, slid throughout the input 

image, is fed into our hardware and solved independently. The output of our hardware is 

a single pixel which is the center pixel of the 3×3 window. Any computations done on the 

3×3 window, along with its borders, are used to solve for that center pixel only. Each 

pixel of the tone-mapped output image is produced completely independently of the other 

output pixels, using only the 3×3 window surrounding that pixel. 

Many published algorithms for processing HDR images were developed without 

taking into account the effects of precision when the algorithms are implemented in 

fixed-point arithmetic. Implementation of Fattal‟s operator in hardware requires 

development of two main parts: calculation of the attenuation factor for a given pixel, and 

calculation of the tone-mapped output pixel. It is important to determine the number of 

integer bits and fraction bits required to implement the method in hardware without 

adversely affecting the quality of the output image; the goal is for the fixed-point 

embedded implementation to be a close approximation to a floating-point (non-

embedded) implementation. 
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Figure 5.2 High level view of our hardware. 
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To assist with the precision analysis, a MATLAB simulation is developed that is 

true to the hardware at the bit level. The simulation allows us to try different fixed-point 

precisions and see the quality of the results, so that we can decide on the fraction and 

integer bits required at every stage. First, the attenuation factor is calculated using the 

fixed-point simulation, while the rest of the method is simulated in floating-point to 

decide on fixed-point formats within the attenuation factor computation block; then, 

fixed-point formats for the rest of the hardware are decided by simulating the attenuation 

factor calculation in fixed-point using the decided-upon formats, and trying a variety of 

fixed-point formats for the rest of the hardware. Different numbers of fraction bits are 

tried during the process; by looking at the visual quality of the tone-mapped output 

images, an appropriate number of fraction bits is chosen. The integer bits are decided by 

taking into account the maximum range of values possible in every stage of Fattal‟s 

operator. Bits are allocated to each variable such that the entire required range of that 

variable can be represented, with no possibility of overflow. The method used to obtain 

the fraction bits for the individual variables is discussed as the hardware is described. 

For hardware implementation, an appropriate data format must be chosen for each 

signal value. We use the notation (n, -f ) to denote a fixed-point format where f  is the 

number of fraction bits and n-f  is the number of integer bits. Throughout our design, the 

precision of a signal is decided by analyzing the effect of fixed-point quantization on the 

quality of the output image. We assume that the input pixels, which are logarithmic, have 

a (15,-10) unsigned fixed-point format; this format covers a large enough dynamic range 

to represent high dynamic range images, including those from the Debevec library [9]. 
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5.1  Conversion to Floating-Point 

As will be described later, part of the attenuation factor computation is done using 

a floating-point representation. The hardware used to convert to floating-point is 

described next. The conversion to floating-point block is implemented following the 

work in [27].  A block diagram is shown in Figure 5.3. The input to this block is a 16-bit 

fixed-point integer; the output consists of four exponent bits and six mantissa bits. The 

block consists of registers and multiplexers. The main aim of this block is to look for the 
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0 0 0 0 0
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Figure 5.3 Conversion to floating-point block. 
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most significant bit (MSB) of significant information in the input using a binary search 

strategy; each step in the binary search determines one additional bit in the value of the 

exponent. When the exponent is fully determined, the most significant six bits of the 

input are transferred to the mantissa.  

The binary search is accomplished with a series of multiplexers.  To start, the 

input to the conversion block is padded with five zeros on the right, for a total of 21 bits. 

The first stage checks whether there is significant information in the top 13 bits; if so, the 

MSB of the exponent is set to „1‟ and the most significant 13 bits of the input are passed 

through to the next stage; otherwise, the MSB of the exponent is set to „0‟ and the least 

significant 13 bits of the input are passed through to the next stage. The second stage 

decides on the next most significant bit of the exponent by checking for significant 

information in the top nine bits of its input, and passes through either the top or bottom 

nine bits of its input, as appropriate, to the third stage.  This process is continued; after 

four stages, the exponent is fully determined and the remaining six bits of data form the 

mantissa. The process is such that the top bit of the mantissa is always a „1‟, unless the 

input to the block is all zeros.  The mantissa is in an unsigned (6, -5) format; in later 

hardware stages, we consider the mantissa to be in an unsigned (6, -6) format by simply 

adding an offset of one to the exponent. 

 

5.2  Attenuation Factor Computation 

The attenuation factor computation is an important step in Fattal‟s operator, as it 

decides the extent to which the gradients of the HDR image are attenuated or magnified. 
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The hardware implementation of the attenuation factor calculation for a single pixel 

centered in the 3×3 window is described below. 

The attenuation factor for each pixel in the 3×3 window  involves the HDR image 

I 
0 

and its four scale images from a Gaussian pyramid I 
k
 (k=1, 2, 3 and 4). The central 

difference of the pixel in vertical and horizontal directions is calculated for the 3×3 

window from the image and 3×3 windows of its four scale images. The one-norm of the 

central differences, denoted by ,
k

u vC , are obtained for the pixel and then the attenuation 

factor ,u v  is calculated as: 

 

( 1)
4

,
,

0





 
  
 
 


b

k
u v

u v

k
a

C
 (5.1) 

where a=1.5 and b=0.9, as chosen in Chapter 4. The indices u and v vary from 0 to 3.   

Calculating the attenuation factor as given in equation (5.1) is computationally 

intensive, with multiple multiplications of values with large number of bits. The 

computation can be simplified by first converting the five central differences to a 

floating-point representation; floating-point allows for values of large dynamic range to 

be represented with fewer bits.  Each floating-point number consists of a mantissa and an 

exponent scaled by a base; in our case, the base is two. In a simulation experiment 

designed to assess the number of fraction bits required for the attenuation factors, the five 

mantissas obtained from the five central differences from the original HDR image and its 

four scales of the Gaussian pyramid are fixed to use a certain number of fraction bits and 

the rest of the computations in Fattal‟s operator are done in floating-point mathematics. 
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Taking six fraction bits for the five mantissas gave a good visual quality output image, 

without any halo artifacts.  

The floating-point representation used in our hardware then represents a central 

difference of scale k with a mantissa and an exponent as: 

 ,
, , 2 

k
u vek k

u v u vmC  (5.2) 

where the mantissa ,
k
u vm  is a six-bit number in an unsigned (6, -6) format and the 

exponent ,
k
u ve  is a four-bit unsigned integer. 

Figure 5.4 shows the hardware to calculate the central difference for a single scale 

in a floating-point (mantissa and exponent) format. It consists of a horizontal central 

difference block and vertical difference block to calculate the horizontal and central 

differences of input pixels at scale k respectively. This calculation involves simple 

subtractions and a right shift operator to achieve the division by two. It is calculated as: 
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Figure 5.4 Hardware block to calculate the central difference for a single scale in 

a floating-point (mantissa and exponent) format. 
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These vertical and horizontal central differences are fed to the one-norm block which 

computes the one-norm as: 

 , , , . k k k
u v u v u vC H V  (5.4) 

The absolute value of a negative central difference is approximated using the ones-

complement of the value. This makes the hardware simpler, because taking the ones-

complement involves simply inverting all of the bits. The error is one least significant bit, 

which is negligibly small. After obtaining the one-norm of the central difference, it is 

converted to floating-point: mantissa and exponent using the conversion to floating-point 

block. Note that because the conversion to floating-point block considers the input to be 

an integer, but the actual input has ten fraction bits, the exponent produced at the output 

is off by ten.   

The attenuation factor, using the floating-point representation with a mantissa and 

exponent, can be rewritten as: 
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 (5.5) 

Figure 5.5 shows how the central differences at the four scales, in floating-point format, 

are used to calculate the attenuation factor. Each signal is annotated with its fixed-point 

format. The product of the central differences must be found; this is done by multiplying 

all of the mantissas, and adding all of the exponents. The advantage of computing the 

attenuation factor in floating-point is that multiplications, now involving only the 

mantissas, are only six bits by six bits. After each multiplication, the floating-point 
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intermediate result is normalized so that the mantissa of the product is between 0.5 and 1. 

Note that the normalization is not shown in Figure 5.5. Also not shown in the figure is the 

offset compensation needed because the mantissas at the output of the conversion to 

floating-point block were interpreted to be in a (6, -6) format, as mentioned earlier; 

because there are five such mantissas, the compensation requires adding five to the final 

exponent of the product. 

The values of the two power terms in equation (5.5) are obtained using lookup 

tables. The first lookup table is the mantissa lookup table and is indexed by the mantissa 

of the final product. The most significant bit of the mantissa is always an implied „1‟, so 

it does not need to be used as part of the address. The input to the mantissa lookup table 

is only five bits of the mantissa without the MSB; as a result, there are 2
5
 entries in the 

lookup table. This lookup table returns the (b-1) power of the mantissa of the final 

product; here, the b value is 0.9, and the mantissa is normalized to be between 0.5 and 1, 

so the output power term is between 1.000 and 1.072. This means that the output of the 
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Figure 5.5 Hardware to compute attenuation factor from the central 

differences of the five scales in floating-point (mantissa and exponent) format. 
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mantissa lookup table requires one integer bit; the number of fraction bits is yet to be 

decided. 

The second lookup table is the exponent lookup table and is indexed by the sum 

of the exponents. Each of the exponents has four bits; when all the exponents are added 

together, the final sum of the exponents has seven bits to avoid the possibility of any 

overflow. As a result, the exponent lookup table has 2
7 

entries. Note that because each 

exponent has an offset of -10, the sum has an offset of -50; this means that a sum of zero 

corresponds to an exponent of -50, and the sums range from -50 to +77.  The exponent 

lookup table produces the second power term in equation (5.5) as its output. Because the 

term can range from 0.0059 to 39.19, the output requires six integer bits; again, the 

number of fraction bits is yet to be determined. The values read from the mantissa and 

exponent lookup tables are multiplied together to get the final attenuation factor for each 

pixel. This value also requires six integer bits. 

An important consideration in the design is how many fraction bits should be used 

for the values read from the lookup tables. A precision analysis is done by simulating 

Fattal‟s operator in MATLAB and observing the quality of the output images. Given that 

the number of fraction bits in each of the five mantissas has already been set to six, the 

number of fraction bits for the output of the mantissa lookup table is varied. The rest of 

the method uses floating-point mathematics. The image with eight fraction bits for the 

output of the mantissa lookup table does not have any halo artifacts. 

Fixing the mantissas to six fraction bits and the output of the mantissa lookup 

table to eight fraction bits, the fraction bits for the output of the exponent lookup table are 

varied. Eight fraction bits for the exponent lookup table gave good quality images. 
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Similarly, the fraction bits required for the product of the outputs of the two lookup tables 

are obtained. This product, which is the attenuation factor, requires nine fraction bits. 

Now that the fraction bits are decided for each of the lookup tables and the 

attenuation factor, the sizes of the lookup tables can be determined. The size of the 

mantissa lookup table is 2
5
×9 bits; each entry in the table has one integer bit and eight 

fraction bits. The size of the exponent lookup table is 2
7
×14 bits; each entry in the table 

has four integer bits and eight fraction bits. 

The attenuation factors for all the pixels in the 3×3 window, including the top and 

left boundaries of the window, are calculated in a similar way. A zero Dirichlet boundary 

condition is assumed for the boundaries, so that a total of sixteen attenuation factors are 

calculated for a single 3×3 window. As shown in Figure 5.6, the top corner boundary 

pixel has a zero central difference in the image and its four scale images, so its 

attenuation factor is zero. Also, because the top and left boundaries are all zeros, it 

happens that 
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Figure 5.6 Central differences for a 3×3 window.  
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so that the corresponding attenuation factors Ψu-2,v-1  and Ψu-1,v-2 are equal. This results in 

fourteen unique attenuation factors to be calculated for each pixel in the output image. 

Each attenuation factor is in a (15, -9) unsigned format. 

 

5.3  Gradient Transformation and Gradient Manipulation  

The hardware for gradient transformation and gradient manipulation on a 3×3 

block is shown in Figure 5.7. The horizontal and vertical gradients are computed on the 

3×3 block of the HDR image using forward differences as: 

 
0 0 0 0

, , , 1 , , 1, and .    H V
u v u v u v u v u v u vI I I IG G  (5.7) 

The manipulated gradients are obtained by multiplying the gradients in both horizontal 

and vertical directions with their corresponding attenuation factors: 

 , , , , , ,
ˆ ˆ and .     H H V V
u v u v u v u v u v u vG G G G  (5.8) 

To obtain the fraction bits required for the gradients and manipulated gradients, 

Fattal‟s operator is again simulated in MATLAB as done previously for the precision 

analysis. The attenuation factor computation is done using fixed-point mathematics and 

the fraction bits are varied for the gradients and the manipulated gradients. They are 

assigned the same number of fraction bits for the simulation. Any precision above nine 

fraction bits gave good quality images without any halo artifacts. Ten fraction bits are 

used in our implementation.  

For our hardware, gradients are in a signed (16, -10) format and the manipulated 

gradients are in a signed (15, -10) format; the manipulated gradients require one fewer 

integer bit than the gradients because they are attenuated. 
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Figure 5.7 Hardware to obtain gradients and manipulated gradients. 
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5.4  Local Poisson Solver 

Once the manipulated gradients are obtained, the divergence of the manipulated 

gradients needs to be computed to obtain nine different divergences corresponding to the 

3×3 window around one pixel in the HDR image. These divergences can be computed 

using backward differences as:  

 , , 1, , , 1
ˆ ˆ ˆ ˆ ˆdiv .    HV V H
p q p q p q p q p qG G G G G  (5.9) 

The indices p and q vary from 1 to 3. 

The divergence calculation in equation (5.9) can be combined with the Poisson 

solving equation in (3.20) to yield a computation that involves only additions, 

subtractions, and simple shifts: 

 

out
, 2,1 3,1 0,1 1,1

2,3 3,3 0,3 1,3

3,2 0,2 2,2 1,2

1,2 1,3 1,0 1,1

3,2 3,3 3,0

1 ˆ ˆ ˆ ˆ( )
16

1 ˆ ˆ ˆ ˆ        ( )
16

1 1ˆ ˆ ˆ ˆ        ( ) ( )
8 4

1 ˆ ˆ ˆ ˆ        ( )
16

1 ˆ ˆ ˆ        (
16

   

   

   

   

   

V V V V
i j

V V V V

V V V V

H H H H

H H H

I G G G G

G G G G

G G G G

G G G G

G G G 3,1

2,3 2,0 2,2 2,1

ˆ )

1 1ˆ ˆ ˆ ˆ        ( ) ( ).
8 4

   

H

H H H H

G

G G G G

 (5.10) 

A similar precision analysis is carried out, as was done for previous stages of the 

hardware, for determining the fraction bits required for the output of the local Poisson 

solver. Ten fraction bits are chosen. The output pixel is in a signed (15, -10) format. 
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5.5  Inverse Logarithm Transformation 

The final step of Fattal‟s operator is to compute the inverse base-2 logarithm of 

the output pixel. We separate the output pixel into a signed integer part X with five bits 

and a fraction part Y with ten bits. Hence, 

 
out out out
, , ,2 2 2 ,i j i j i jI X Y   (5.11) 

where 
out
,2 i jY

is a number between 1 and 2. To determine the value of the fraction part of

out
,2 i jY

, a lookup table is used; the integer part is always one. The lookup table used has a 

ten-bit address and returns an eight-bit fraction. The multiplication by 
out
,2 i jX

is 

accomplished by feeding 
out
,2 i jY

 to a barrel shifter controlled by the integer part out

,i jX . If the 

number of positions to be shifted is negative, the barrel shifter outputs a zero. If the 

number of positions to be shifted is greater than or equal to eight, the barrel shifter 

saturates its output to 255. The fraction bits of the output of the barrel shifter are 

truncated to get the final inverse base-2 logarithm of the output image pixel, in an 

unsigned (8, 0) format. 

Hardware for a real-time Fattal‟s operator is successfully implemented by 

simplifying complex computations, while taking into account the effects of fixed-point 

quantization. The hardware is described using VHDL. The hardware developed is 

independent of the input image size and uses very little memory. It is synthesized on a 

field programmable gate array (FPGA) and tested on standard HDR images from the 

Debevec library. The synthesis and simulation results are discussed in Chapter 6. 
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CHAPTER VI 

SYNTHESIS AND SIMULATION RESULTS 

This chapter details the synthesis and simulation results for the hardware 

developed in Chapter 5. The hardware has been described in VHDL and is synthesized 

using Quartus tools, and details of the synthesis are given. Finally, simulation results are 

discussed verifying the functionality of the system, and assessing its quality. 

 

6.1  Hardware Cost and Synthesis Results 

Our approach is to design a piece of hardware that can do all the computations 

required to produce a single tone-mapped output pixel, so that the hardware produces one 

output pixel per clock.  The input to the hardware consists of 3×3 windows of the 

logarithmic luminance HDR image and its four scale images. The window is updated as 

the pixels of the input video stream enter the system, row by row. Because the window is 

3×3, it consists of three rows; this requires that two rows each of the image and its four 

scale images must be buffered in advance. This is a total of ten rows of pixels that need to 

be buffered from the logarithmic luminance HDR image and its four scale images; if a 

frame has 1024 pixels per row, and each input pixel has 15 bits, a total buffer size of 

150K bits is needed. 

Our implementation of Fattal‟s operator calculates the gradients on the 3×3 

window of the logarithmic luminance HDR image and also computes attenuation factors 



 

64 

that are multiplied by the gradients to obtain manipulated gradients. These manipulated 

gradients are used in solving the Poisson equation to obtain a single output pixel. The 

hardware for the Fattal‟s operator is described in Chapter 5.  

As we saw in Section 5.1, we need to calculate a total of 14 attenuation factors 

associated with a single 3×3 window in one clock period. In order to compute these 14 

attenuation factors simultaneously, each computation has its own dedicated hardware. 

The computations required for computing a single attenuation factor are at most 24 

additions, four 6×6 multiplications, one 14×9 multiplication, and two lookup tables of 

2
5
×9 and 2

7
×14 bits, respectively. Hence, to calculate the 14 attenuation factors, we need 

a total of 336 additions, 56 6×6 multiplications, 14 14×9 multiplications, and 14 lookup 

tables of 2
5
×9 and 2

7
×14 bits, respectively. This is evident from Section 5.1. 

Section 5.2 details the computations required to obtain the gradients and 

manipulated gradients. They require 17 additions and 23 16×15 multiplications which can 

be found in Figure 5.7. The Poisson equation is solved using equation (5.10) which is 

described in Section 5.3. It involves additions and shifts, and requires 23 additions. The 

inverse logarithm transformation involves a lookup table of 2
10

×8 bits. 

An FPGA device is used for the hardware implementation as FPGAs are rich in 

wired multipliers and embedded memory, permitting low cost implementation. The 

Fattal‟s operator is described in VHDL and synthesized using Altera‟s Quartus II 8.1 

Web Edition toolset. Table 6.1 summarizes the results of the synthesis from Quartus. 

Altera‟s Stratix II FPGA is used for the synthesis. It is a low-cost device and the smallest 

in the Stratix II family. The synthesis results show that the area on the FPGA device is 

effectively used. The DSP block 9-bit elements are used to implement multiplications. 
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The total block memory bits show the total memory used for the implemented hardware 

including the lookup tables and buffers; the total memory used is about 38 KB. Other 

computations apart from the multiplications are implemented by the logic elements. 

An operating frequency of 114.18 MHz is achieved. This operating frequency is 

capable of processing about 100 frames per second for a one megapixel frame. This is 

calculated by dividing the operating frequency with the frame size which is one 

megapixel. Note that this is a large improvement over [21], which implemented the same 

operator using a multigrid solver for the Poisson equation on a notebook PC with a 

2.2GHz Core 2 Duo processor and 4GB of RAM; that paper reported a throughput of 

around three frames per second for a one megapixel frame.  

Now that we have the synthesis results, the next step would be to verify the 

hardware on standard HDR images. Simulation of VHDL code using Altera Quartus and 

code in MATLAB are compared for this purpose. The simulation results obtained are 

discussed in the next section.  

Table 6.1 Summary of hardware synthesis report. 

 

Device Stratix II EP2S15F484C3 

Max operating freq. 114.18MHz 

Total registers 6586 

 Used Available 

Total block memory bits 307,200 419,328 

DSP block 9-bit elements 88 96 

Logic elements 9019 12480 
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6.2  Simulation Results 

The hardware for Fattal‟s operator has been developed and synthesized on a 

FPGA device. It is important to verify the correctness of the hardware implementation. 

This is achieved by testing the hardware on the Nave image, one of the more demanding 

images from the Debevec library [9].  

The images in the library are color, with each color component represented in an 

unsigned (32, 0) format. Fattal‟s operator works on gray-scale images, and so the color 

images must be transformed to gray-scale before processing; this is done by calculating a 

luminance value for each input pixel as: 

 L
in

=0.299R
in

+0.587G
in

+0.114B
in

. (6.1) 

The inputs to the hardware are the logarithm luminance of the gray scale image 

and its four scale images. The four scale images are produced using a Gaussian pyramid 

based on powers-of-two approximation in MATLAB as discussed in Chapter 4. All five 

images are converted to fixed-point (15, -10) format. The values of the attenuation 

parameters are fixed at a=1.5, and b=0.9. These values, which control the tone mapping, 

are determined experimentally as described in Chapter 4.  

The output image obtained from a simulation of the behavioral VHDL using 

ModelSim is compared with the output image produced by a fixed-point MATLAB 

simulation. Both the output images match exactly, bit for bit, verifying that the hardware 

implemented for the Fattal‟s operator is correct. 

After verifying the correctness of the hardware implementation, it is essential to 

verify that the visual quality of the output image has not been affected by the fixed-point 

representations and approximations used in the hardware. This is achieved by comparing 
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the output image produced by the hardware, which is in gray-scale, with the output 

image, also in gray-scale, obtained from a floating-point simulation in MATLAB. The 

Nave image is again used for this purpose. 

The floating-point simulation in MATLAB uses an exact Gaussian pyramid to 

obtain the four scale images of the logarithmic luminance input image. Figure 6.1 shows 

the Nave image obtained from both the fixed-point implementation and the floating-point 

simulation. Comparing the images, the fixed-point representations and hardware 

simplifications are judged not to have a significant effect on the quality of the output 

image produced by the hardware. 

The developed hardware for Fattal‟s operator produces gray-scale images. 

Conversion to color can also be implemented directly in hardware. The conversion 

required to produce a color tone-mapped output image is discussed in Chapter 3. This 

conversion process is simple, and involves inputting the red, green and blue input HDR 

pixels corresponding to the output pixel. This conversion to color should have negligible 

effect on the frame rate; because the conversion to color can be added as additional 

pipelined stage, the clock rate and the throughput should not be affected. However, 

adding the conversion to color in the hardware will introduce some additional lag from 

input to output. The output color images will have values in (8, 0) format to display the 

values between 0 and 255.  

In our experiment, we have converted the gray-scale images produced by the 

hardware into color using MATLAB. Figure 6.2 shows the compressed HDR images 

from the Debevec library obtained using our hardware and converted to color using 

MATLAB. The system compresses the high dynamic range of the original images 
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effectively, without introducing halo artifacts. Fine details are reproduced well, and the 

dark regions can be seen clearly. In addition, this sliding window method has the benefit 

that it does not introduce any blocking effects. 

 

 

(a) as processed using the proposed fixed-point implementation of the Fattal‟s operator. 
 

 

(b) as processed using a floating-point implementation of the Fattal‟s operator. 
 

Figure 6.1 The Nave image obtained using the proposed fixed-point and floating-point 

implementations of the Fattal‟s operator. 
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(a) Nave 
 

(b) GroveC 

  
(c) VineSunset 

 
(d) GroveD 

  
(e) Rosette 

 

 

 
(f) Memorial 

Figure 6.2  High dynamic range images from the Debevec library [9], processed using the 

proposed hardware implementation of Fattal‟s operator, and converted to color using 

MATLAB. 
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(a) Full-image FFT as Poisson solver 

 
(b) 8×8 block-based FFT as Poisson solver 

 

(c) Local Poisson Solver 

Figure 6.3 The Nave image after a four-level gradient domain tone mapping, using three 

different approaches to solving the Poisson equation. 
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The simulation results discussed so far show that successful hardware has been 

implemented for the Fattal‟s operator using our local Poisson solver. It is important that 

the output image obtained using the local Poisson solver be compared to images obtained 

using other Poisson solvers. We compare to images produced by a full-image FFT 

Poisson solver which we consider a “gold standard”, while noting that a full-image FFT 

is not realizable in real time. We also compare to images obtained using the block-based 

FFT Poisson solver proposed by Wang [23], which is implementable in real time. 

To make a fair comparison, the same values for the attenuation parameters are 

used for all the three approaches. The parameter a is chosen to be 0.05 times the average 

of the gradients of the luminance of the HDR Nave image, and the parameter b is set to 

0.9. These values are chosen so that the output images obtained using all three methods 

are of good visual quality. The output images are obtained using floating-point 

simulations for each of the solvers in MATLAB.  

 Figure 6.3 shows the output images obtained using the three solvers.  When a 

full-image FFT is used to solve the Poisson equation, the resulting image is of reasonably 

good quality, with clear details and no halo artifacts. As might be expected, using a 

block-based technique to solve the Poisson equation caused blocking artifacts in the 

resulting tone-mapped image. Further, this approach, which uses discrete sine transforms 

within the 8×8 blocks, is still quite computation-intensive. In contrast, the output using 

our local Poisson solver has clear details and moderate contrast, and does not suffer from 

blocking or halos. 

In results presented so far, the hardware has been successfully verified for 

correctness, and the output has been checked qualitatively to ensure that the use of fixed-
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point mathematics has not had an adverse effect on output quality. The next section 

provides some quantitative measurement of output quality. 

 

6.3  Quality Measurement 

Image quality metrics like the mean square error, peak signal to noise ratio 

(PSNR) and structural similarity (SSIM) index [26] require a perfect image with which to 

compare. Since we do not have a perfect tone-mapped image, there being no ideal tone-

mapping algorithm, a conclusive assessment of the quality of our hardware 

implementation is not possible. However, it is instructive to compare the images 

produced by our hardware to the closest thing there is to a “gold standard” for local tone 

mapping: an output image that uses a full-image FFT as the Poisson solver. 

The PSNR is used for measuring the quality of our local Poisson solver and is 

calculated using the equation below.  

 
2

10

255
PSNR 10 log ,

mse

 
   

 
 (6.2) 

where mse is the mean square error between the output image obtained using the full- 

Table 6.2 PSNR values for floating-point and fixed-point implementations using our 

local Poisson solver. 

 

HDR image PSNR for floating-point (dB) PSNR for fixed-point (dB) 

Nave 53.8 45.2 

VineSunset 50.9 41.2 

GroveC 51.1 41.3 

GroveD 51.4 41.5 

Rosette 51.1 41.3 

Memorial 51.3 47.1 
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image FFT and that using the local Poisson solver. The output images, obtained using the 

local Poisson solver and the full-image FFT, are multiplied with an appropriate scaling 

factor so as to cover the entire range of intensities between 0 and 255. This is to ensure 

that a standard intensity range be used for all the images obtained using both solvers, 

because each of the output tone-mapped images may have different intensity ranges. 

The PSNR values for the output images using the local Poisson solver with the 

gold standard for both floating-point and fixed-point implementations are shown in Table 

6.2.  It is evident from the high PSNR values that the Fattal‟s operator using the local 

Poisson solver gives high quality output images. The values for the fixed-point 

implementation are also high, showing how close the approximation is to the floating-

point implementation.  

Thus, the synthesis results show that the hardware for Fattal‟s operator using our 

local Poisson solver uses small and fixed amount of hardware. It also requires very less 

memory and can process about 100 frames per second for a one megapixel image. The 

simulation results verify that the hardware is correct and produces high quality tone-

mapped images. The next chapter concludes the thesis and lays a path for future work. 
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CHAPTER VII 

CONCLUSIONS AND FUTURE WORK 

Hardware for a real-time gradient domain local tone mapping operator, Fattal‟s 

operator, has been designed and verified in simulation. A simplified Poisson solver that 

uses local information has been introduced; this approach to implementing an inverse 

gradient transformation is the key to implementing Fattal‟s operator on inexpensive 

hardware in real time. Hardware for the Fattal‟s operator using the local Poisson solver 

has been described in VHDL and synthesized for a Stratix II FPGA device using Altera‟s 

Quartus II toolset. The correctness of the hardware is verified by comparing tone-mapped 

images produced by the hardware in simulation with tone-mapped images produced by a 

fixed-point MATLAB simulation. The produced output images are of good visual 

quality. The quality of the local Poisson solver is also evaluated by comparing tone-

mapped output images produced by using the local Poisson solver to images produced 

using full-image FFT and block-based FFT Poisson solvers.  

The approximations used in the hardware implementation make it possible to 

process images in real-time on an embedded system, and do not significantly affect the 

quality of the output image when compared to those produced without approximations. 

The hardware size is fixed and independent of image size. The hardware uses 

significantly less memory than other approaches. High PSNR values are obtained, 

showing that the output images produced are of high visual quality. The hardware 
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implementation described takes in and produces gray scale images. However, the 

conversion to color is simple to implement in hardware, and should not impact the 

system‟s frame rate.  

The proposed local Poisson solver processes a 3×3 window to produce a single 

pixel of the tone-mapped output image. One possible avenue for further research is to 

consider the use of different window sizes for the local Poisson solver. Using a larger 

 
(a) using hardware without multipliers 

 
(b) using hardware with multipliers 

 

Figure 7.1 Comparison of the Nave image obtained using hardware with and 

without multipliers. 
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window would require more hardware, but should produce a tone-mapped output image 

closer to the image obtained using a full-image FFT as a Poisson solver.  

We are also considering extension of the application of the local Poisson solver to 

other gradient domain problems that require a real-time implementation. These 

applications could include finite element analysis, removing photography artifacts [4] and 

shadows [5], image stitching [7], and gradient domain painting [8]. All these applications 

are based on gradient domain computations and involve taking an inverse gradient 

transformation, which can be posed as solving the Poisson equation. 

The hardware described so far for implementing Fattal‟s operator using local 

Poisson solver includes multipliers. The hardware cost can be further reduced by 

designing an implementation that is completely free of multipliers. The hardware 

implementation remains the same as described in Chapter 5 except the attenuation factor 

computation and gradient manipulation; these are the only hardware blocks that have 

multipliers. For these parts of the calculation multipliers are avoided by moving the 

calculations into the logarithmic domain, where multiplications become additions. In 

making these modifications to the hardware, it is important to observe the quality of the 

output images to assess any adverse impact.   

A preliminary simulation experiment was conducted in MATLAB to assess the 

potential of the multiplier-free version of the hardware. The Nave image is used for this 

purpose. The values for the attenuation parameters are fixed at a=1.5 and b=0.9, as 

chosen previously. Figure 7.1 compares the tone-mapped output images obtained from 

simulation of the original and multiplier-free computations. The tone-mapped output 

image from the multiplier-free version has a good visual quality and is similar to the 
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image obtained using hardware with multipliers. A multiplier-free version of hardware 

has the added benefit that it could be used to vary the values of the attenuation parameters 

at run-time, thus adding more flexibility to the system. Further investigation of a 

multiplier-free version of the hardware would require describing the system completely 

in hardware to determine the hardware cost and attainable frame rate, and to investigate 

the benefits of varying the values of the attenuation parameters at run-time. 
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