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Abstract. Real-Time Future Interval Logic is a temporal logic in which for- 
mula~ have a natural graphical representation, resembling timing diagrams. It 
is a dense real-time logic that is based on two simple temporal primitives: in- 

terval modalities for the purely qualitative part and duration predicates for the 
quantitative part. This paper describes the logic and gives a decision procedure 
for satisfiability by reduction to the emptiness problem for Timed Btichi Au- 
tomata. This decision procedure forms the core of an automated proof-checker 
for the logic. The logic does not admit instantaneous states, and is invariant 
under real-time stuttering, properties that facilitate proof methods based on ab- 
straction and refinement. The logic appears to be as strong as one can hope 
for without sacrificing elementary decidability. Two natural extensions of the 
logic, along lines suggested in the literature, lead to either non-elementariness 
or undecidability. 

Keywords. Interval logics; concurrent systems; real-time temporal logics; 
hierarchical refinement. 

1. Introduction 

Specification and verification of concurrent systems is difficult in part because the many 
possible alternative interleavings of activities generate a large number of cases that must 
be considered. The presence of real-time constraints, and their interaction with constraints 
on the interleavings, makes the problem even more difficult. Propositional temporal logic 
(PTL) and the propositional/z-calculus are too low-level to capture abstract system re- 
quirements easily without including extraneous details that can bias subsequent implemen- 
tations. Interval logics aid the specification of concurrent systems by providing temporal 

A preliminary version of this paper appears in the Proceedings of the 13th FST&TCS, LNCS 761, December 1993, 
pp 201-220. 
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modalities designed explicitly to ease the definition of temporal contexts and of properties 
required to hold in such contexts. 

Interval logics also permit natural graphical representations, which are usually more 
intuitive and easier to understand than their textual counterparts. When expressed graph- 
ically, interval logic formulae resemble the "back-of-the-envelope" timing diagrams that 
designers typically draw to document and reason about temporal properties of their designs. 
Interval logics, in their graphical representation, could serve to extend existing design and 
documentation environments to the more challenging task of verification of concurrent 
systems. 

However, most known interval logics are either non-elementary or even undecidable. In 
particular, the Interval Temporal Logic of Moszkowski (Halpern et al 1983) is provably 
non-elementary and the Modal Logic of Time-Intervals of Halpern & Shoham (1991) is 
undecidable. In~ Ramakrishna et al (1992) we presented an interval logic, called Future 
Interval Logic (FIL), and a decision procedure for it. As far as we are aware, this is the first 
and indeed the only interval logic known today, with an elementary decision procedure. 
Examples illustrating the use of FIL in specification and verification appear in Dillon et al 

(1992) and Kutty et al (1993). However, FIL is a "timeless" logic, with no quantitative 
notion of time. 

There are numerous applications, however, where a purely qualitative notion of time 
is insufficient, because correctness depends crucially on real-time constraints between 
events in a system. This has led to real-time extensions of temporal logics (Jahanian & 
Mok 1986; Narayana & Aaby 1988; Alur & Henzinger 1989; Emerson et al 1990; Lewis 
1990). The theory of timed-automata of Alur & Dill (1990) and Alur & Henzinger (1992) 
has helped clarify fundamental issues regarding the decidability of real-time temporal 
logics. These results have not, however, been applied to real-time extensions of interval 
logics (Melliar-Smith 1987; Narayana & Aaby 1988; Razouk & Gorlick 1989) to establish 
their decidability or to obtain "efficient" decision procedures. 

In this paper we extend FIL to real-time. We associate the domain of non-negative reals 
with a computation, and extend the language of FIL to allow statements about the durations 
of intervals. This gives a relatively clean extension of FIL. Firstly, the extension is con- 
servative. All tautologies of FIL are tautologies of this logic. Moreover, the tautologies of 
RTFIL, restricted to the language of FIL, are precisely the tautologies of FIL. Secondly, the 
extension does not sacrifice decidability. RTFIL is decidable by reduction to the emptiness 
problem for Timed B~ichi Automata; this constitutes the main result of this paper. Finally, 
the extension is adequate. RTFIL has the expressiveness needed for real-time reasoning. 
We give an example of its use in Ramakrishna et al (1993), where a proof-checker based 
on the decision procedure presented here is used to verify a simple real-time system. 

Our work, like Barringer et al (1986) and Alur et al (1991 ) but unlike Narayana & Aaby 
(1988), Emerson et al (1990), Jahanian & Mok (1986) and Razouk & Gorlick (1989), uses 
a dense model of time. A dense time domain is preferable and to a discrete time domain for 
specifying concurrent systems because independent events in asynchronous components 
may occur arbitrarily close in time. It is not possible, therefore, to bound h priori the granu- 
larity of the underlying time domain, as required for a discrete model. A dense time domain 
is also preferable for carrying out hierarchical verification, since proofs remain valid under 
refinement or abstraction. A dense time domain facilitates compositional specification and 
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verification of real-time systems, where a component's (timing) semantics must be inde- 
pendent of (the timing granularity of) the environment in which it may operate. Dense time 
is also required when a component interacts with the continuous world; hybrid systems are 
a good example (Maler et al 1991). Numerous real world and process control applications, 
thus, require a dense model of time. 

Unlike most real-time temporal logics, RTFIL is insensitive to instantaneous states. 1 
This semantics agrees with our intuition that a property of a system can be "observed" 
only if it persists for some measurable amount of time. It may be counterproductive, when 
specifying systems, to impose instantaneous requirements on behaviours. Specifications 
whose only satisfying models contain instantaneous states obstruct the use of hierarchical 
refinement in much the same way that the next operator obstructs hierarchical refinement 
(Barringer et al 1986; Lamport 1991) in non-real-time temporal logics. In the case of 
RTFIL, the absence of instantaneous states, in concert with its restricted syntax, results in 
the property that, for any model whose valuation function is right-continuous, the valuation 
function extended to an arbitrary RTFIL formula is also right-continuous. This property of 
"temporal interpolation" is expected to facilitate proofs based on successive refinement or 
abstraction, where the refinement mapping defining a predicate at one level may involve 
an arbitrary RTFIL formula on predicates from an adjacent level. 

This paper is organized as follows. Section 2 introduces Real-Time Future Interval Logic 
(RTFIL) by means of a simple graphical formula. It then defines a textual syntax, intended 
models, and semantics of RTFIL. Section 3 contains some preliminary definitions and 
notation. The decision procedure is described in § 4 and its correctness is proved in § 5. 
We present complexity results in § 6. In § 7 we discuss related work and conclude in § 8 
with some open problems and on-going work. 

2. The logic 

We first provide a very informal introduction to RTFIL and illustrate the graphical repre- 
sentation of formulae. RTFIL is a linear-time temporal logic. Thus, a formula is interpreted 
on a linear trace of states, representing a possible execution of a transition system (or a 
fragment of such an execution). Every trace has an initial state. Traces may, however, be 
unbounded and may thus represent nonterminating behaviours. We assume that the states 
of the transition system are continuously observed at all t ~ R (the set of non-negative 
reals); thus, every trace of the system is a dense real-time trace. 

The key constructs of RTFIL are the interval modality and the duration constraint. 

Syntactically, an interval modality is constructed by means of searches and other (simpler) 
RTFIL formulae. Semantically, an interval modality extracts a convex subset from a given 
dense trace. This convex subset specifies the interval over which a property designated by 
a nested formula holds. The duration constraint is expressed using the special predicate 
Ion, and specifies rational lower and upper bounds on the length of an interval. 

An interval is constructed using a pair of search patterns; searches are shown dashed 
with arrowheads, and target formulae are left-justified below the arrowheads. The semantics 

1 The decidability results presented here do not require this semantics. 
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"-7 near 

near 

cross ~ cross 

[ ) 
green 

len (3.5, 7] 

Figure 1. An example specification in 
Graphical Interval Logic. 

of a search that starts at a point in the trace is that the search locates the earliest point in 
the reflexive future where the target formula holds. When such searches are composed 
sequentially into a search pattern, every subsequent search begins at the state where the 
previous search ended. In case the target of a search is not satisfied at any point in the future 
of the current point within the previous outer interval, the formula is assumed to be true 
by default if the search is "weak" (shown by a single arrowhead) and false if the search is 
"strong" (shown by a double arrowhead). Intervals are shown solid with square brackets 
on the left and parentheses on the right. A formula drawn left-justified below the start of 
an interval must hold at the first state of that interval, while a formula indented below an 
interval must hold throughout the interval. In the graphical representation of an RTFIL 
formula, the horizontal dimension shows progression through the trace (time progresses 
from left to right) and the vertical dimension describes the composition of formulae from 
sub formulae. 

The example in figure 1 is a fragment of a road intersection specification. The state 
predicates near, cross and green are true, respectively, when a car is near an intersection, 
when it is crossing the intersection and when the signal along that direction is green. It 
states that, if the signal is green whenever a car first approaches the intersection, it takes 
more than 3.5 seconds but at most 7 seconds to complete the crossing. 

Although graphical formulae such as that above are easier to read and understand than 
their textual counterparts, the rest of the paper will use a textual syntax for convenience of 
exposition. 

2.1 Syntax 

The sets of well-formed formulae (wffs), well-formed search patterns (wfsp), and well- 
formed interval modalities (wfim) of RTFIL are defined relative to a finite set 7 ) of primitive 
propositions by the following BNF grammar. We use f for a wff, p e 7:' for a primitive 
proposition, 0 for a wfsp, I for a wfim and d e Q (the set of non-negative rationals) for a 
duration, each possibly with a subscript. 

f = t r u e  I p I Ion(0, d] I - - ' f  I f l A  f2 I I f  

l = [ - 1 0 )  l[01 )l[0110z) 
O = ~ f  l ~ f , O  

Although in the syntax above, we do not use 0 to include the trivial search patterns, " - "  
and "--+", in the sequel we shall use the meta-variable 0 to mean any search pattern, trivial 
or non-trivial, unless explicitly noted otherwise. 
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( )) [] ",near ~ [--+near I --+near, --+cross, ---~--,cross)(green ~ Ion(3.5, 7]) 

Figure 2. Textual equivalent of the graphical specification in figure 1. 

We consider two special sets of well-formed strings when defining the semantics. The 
first, the set of wfsp, will be denoted by srchp(P) ,  and the second, the set of wfim, will be 
denoted by imod(7~). In addition, we shall call a wf fpure ly  propositional if it is formed 
by the following grammar: 

f = true l P l - - , f l f l  A f2 

We use false as an abbreviation for --,true, f v g as an abbreviation for --,(--,f A --,g), 
len(d, c~) as an abbreviation for --1 len(0, d], and len(dl,  d2] as an abbreviation for 
len(dl,  ~ )  A len(0, d2]. The traditional temporal operators are defined by 

d e f  ---I r 

O f  = t ~ f l ~ ) f a l s e  
defr  _ . r  

[3f  = l ~  j l ~ ) f a l s e  

f Uga=eY [---~(--f v g ) [ - + ) g  

and so on. 
In FIL, the formula I f ,  I an interval modality and f a formula, has the semantics "if 

the interval designated by I exists, then f holds at the initial state within that interval." 
Syntactically RTFIL is just FIL extended with the timing primitives len(0, d] for d e Q, 
the domain of  durations. The formula I len(0, d] has the natural interpretation that if the 
interval I exists then its duration is no more than d. Intuitively, len(0, d] asserts that the 
duration of the remaining (suffix) interval is at most d time units. A search to len(0, d] 
locates the earliest future point within the current interval, such that the duration of the 
remaining interval is at most d. Consequently, over an interval of infinite duration len(0, d] 
is never satisfied, e 

A detailed description of the translation of graphical formulae to the textual syntax is 
beyond the scope of this paper (details appear in Dillon et al (1994)). For purposes of 
illustration, however, we note that the graphical formula given in figure 1 translates to the 
textual RTFIL formula given in figure 2. 

2.2 Models 

The models on which we interpret RTFIL formulae are partial functions from the non- 
negative reals R (the time domain) to states, which assign valuations to the primitive 
propositions. We represent a model by a total function A4: R ~ 2 ~ U { l }, where 7 9 is the 
set of primitive propositions and I represents undefined. 3 We require a model for RTFIL 
to satisfy the following requirement of admissibility. 

2The semantics of formulae containing wfim that involve timing primitives can be counterintuitive. Thus, while such 
formulae are decidable in the logic at no extra cost, their use should probably be avoided. 
3We assume that all functions and predicates, except equality, are strict, i.e. if any of its arguments is 2_ then the 
result of a function or predicate is also 2_. For equality, however, we regard 2_=1 to be true and 2_= x and x =_L 
to be false if x is not 2_. 
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DEFINITION 1 
[ADMISSIBILITY] A function F: R ---+ X tO {J_} is 

- f in i te ly  variable iff, for any two elements tl < t2 in R, there are only finitely many 
changes in F between tl and t2 

- right cont inuous iff for any t ~ R, limt,~t+ F(t ' )  = F ( t )  

F is admiss ib le  iffit is finitely variable, right continuous, dom F = { t 6 R I F (t) #_1_ } is 
a left-closed right-open segment of R, and im F = { x ~ X [ 3t ~ R,  F ( t )  = x } is finite. 
The above definitions of finite variability and right continuity are stated relative to an 
arbitrary valuation function on R in order that we can also use them with extended models 
(see theorem 3 in § 3.2 below), and not just with models. Note that finite variability implies 
discreteness, but finiteness of the image set is a stronger requirement. These definitions 
are equivalent to the standard ones in the literature. 

Intuitively, the domain of a model represents the interval (or "context") over which a 
formula is evaluated. Finite variability ensures that a system performs only a finite number 
of actions in any finite period of time and fight continuity guarantees that a property 
can be observed only if it holds over an interval with a positive duration. Together these 
conditions imply that corresponding to every proposition p there is a sequence to, tl . . . .  
of time values, with limi~oo ti = oo, that partition the time domain R into half-open 
segments [ti, t i+l ) over which the valuation of p is constant. We call any model satisfying 
the above properties an admiss ib le  model .  We write _/_~ for the everywhere undefined 
model A-M: R ~ 2 p U { _1_ }, which satisfies dom(_l_~) = 0 and is (trivially) admissible. 

An observation regarding the condition of fight continuity is in order. The semantics of 
RTFIL can be generalized to admit models that are not fight continuous. However, as long 
as the semantics are defined so as to be insensitive to instantaneous states, a formula will 
be satisfiable in the more general class of models precisely if it is satisfiable in the class of 
right continuous models. Moreover, the semantics of RTFIL are simpler to state and more 
intuitive if formulae are interpreted over fight continuous models only. 

An admissible model A4 satisfies an RTFIL formula if the formula is true when evaluated 
at the initial state of At, where the valuation of formulae is defined below. If an admissible 
model represents an entire behaviour of a system, then its domain will be all of R. (To 
represent a terminating behaviour by such a model, the last state of the behaviour is 
stuttered.) However, in general, the domain of an admissible model may be any left-closed 
fight-open segment of R. 

2.3 Semant ics  

We now give a formal definition of the semantics of RTFIL, which have been explained 
informally above. The semantics are a natural extension of the FIL semantics (see 
Ramakrishna et al 1992). They are defined here with respect to a dense, rather than a 
discrete, time domain. Moreover, the syntax of FIL does not contain timing primitives, so 
that FIL formulae describe only constraints on the ordering of states. 

The semantics make use of the "locator" function A for locating the result of a search 
and the "constructor" function C for constructing the subinterval, given the current interval 
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and the states located by the searches. For brevity, we use R ± ' ~  to denote R U { _1_, oo } 
below. 

DEFINITION 2 
The search-locator function 

X: srchp(P)  x (2 ~' U { ,1, })R x R ± ' ~  --+ R ±'°° 

is defined by 

- If 34 = ± M  or t =_L then 

x(o, <34, t)) =,1, 

I f  3 4  ~-'1"~,1 and t : i l l  then 

A(- ,  (34, t)) 
X(--~, (34, t)) 

X(--~a, (M,  t)) 

= t  

= sup dom 34 
_1_, if (M,  t') g= a for all t' > t, t' ~ dora 34 

= inf{t' I t' >_ t, (M,  t') ~ a}, otherwise 
A(--->a, O, (M,  t)) = k(O, (A/l, k(--+a, (.M, t)))) 

The model-constructor function 

C: imod(7 9) x (2 7, U { l })R x R --~ (2 7~ U { l })n 

is defined by 

C([01 I 02) ,  ( J ~ ,  t)) = MA(OI,(.A4,t)),A(Oz,(M,t) ) 

where 34t~ ,tz with tl, t2 6 R ±'°°, represents the subinterval model defined by 

• A"[tl ,± = -A/[L,t 2 "~'-J-A,I 

and 34q,t2 is the restriction of  34 to [tl, t2) if tl -¢_1_ and t2 ¢_1_. 

DEFINITION 3 
[SEMANTICS] The valuation of  an RTFIL formula is defined at a point t 6 dora 34 in an 

admissible model 34 E (2 ~' U { 1 })R using the satisfaction relation defined below. 
If 34 = 1  M then 

- (34, t) ~ f 

If M #-t-M then 

- (M, t) ~ true and (34, t) ~ false 

- (34, t) ~ p ,  f o r p ~ 7 9 i f f p ~ 3 4 ( t )  

- (M,  t) ~ --,f iff (.M, t) [¢:: f 

- (A4, t) ~ f  A g i f f ( M , t )  ~ f a n d ( M , t )  ~ g  
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- (.A4, t) ~ Ion(0, d] iff t  < s u p d o m M  < t + d  

- (.A4, t) ~ I f  iff (.A4', inf dom A4') ~ f where A4' = C(l, (.M, t)) 

We say that f is true at t in .A4 iff (M, t) ~ f and that it is false otherwise. 
A formula f is satisfiable iff there exists an admissible model 

.A4 e (27, U {_1_ }) R such that domA4 = R and (M,0)  ~ f .  We then say that .M is a 
satisfying model for f .  A formula f is valid iff every admissible model M for which 
dora .A4 = R is a satisfying model for f .  

The theorem below follows from the definition of admissibility and from the semantics, 
by induction on the structure of an RTFIL formula. The proof of this theorem is subsumed 
by that of theorem 3, which appears in the next section. 

Theorem 1. Let f be any RTFIL formula and let M be an admissible model. Then for 

any t ~ R, (M, t) ~ f iffthere exists E > 0 such that for all t < t' < t + ~, (All, t') ~ f .  

This theorem motivates the choice of Ion(0, d] and, by negation, Ion(d, c~) as timing 
primitives. If, for instance, we had chosen Ion[d, c~) (with the intuitive semantics) as the 
basic timing primitive then, if A4 is an admissible model with dom .M = [0, 1), we would 
have (.A4, 0) ~ Ion[l, ~ )  although (AA, t) [¢= Ion[l, oo) for any t > 0, and theorem 1 
would no longer be valid. 

The significance of theorem 1 springs from the fact that it ensures that any refinement 
mapping definable in RTFIL preserves admissibility. The absence of such a property would 
make refinement proofs difficult, since a refinement mapping on a given level might pos- 
sibly produce an inadmissible model at the next lower level. This means that, at every 
stage, in order to apply further refinements, one would first have to prove that the pre- 
vious mapping preserved admissibility. Moreover, it would overly restrict the applicable 
mappings. 

3. Preliminaries 

This section introduces important concepts required by the decision procedure. In particu- 
lar, it describes the timed automata used in deciding satisfiability and the various concepts 
of reductions and clocks used in the construction of the automata for the decision procedure. 

3.1 Timed Biichi automata and timed w-strings 

The approach we use for our decision procedure is closely related to the procedure for 
the untimed logic in Ramakrishna et al (1992). The first step in that procedure is the 
construction of a Biichi Automaton (BA) for a formula, such that the formula is satis- 
fied iff the automaton has a non-empty language. This is the basic automata-theoretic 
approach (Wolper 1987). However, since RTFIL deals with real-time rather than only or- 
der relations, the notion of automata on infinite strings is now extended to that of timed 
automata on timed strings. 
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DEFINITION 4 
[TIMED W-STRING] A timed w-string over the alphabet E is an infinite sequence 
( (~ i ,  t i ) ) iEw  in (E × R) ~° such that ( t i ) i~w is an unbounded strictly monotonically in- 
creasing sequence, with to > 0. 

Observe that an admissible model for our logic identifies a timed string over the alphabet 
27'. In fact, in some of our subsequent proofs we shall use this representation for RTFIL 
models rather than the one we gave in the previous section. 

The following definition of Timed BiJchi Automaton (TBA) is a special case of the TBA 
described in Alur & Dill (1990). 

DEFINITION 5 
A Timed Biichi Automaton  .4 is a tuple (E, S, C, p, S t , S v)  where 

- E is a finite input alphabet 

- S is a finite set of states 

- C is a finite set of clocks 

- p: S x E --+ 2 s×2c×2.(c) is the transition function where ~ (C) ,  the set of  clock 

conditions, is the set of inequalities of the form c < t and c = t, for c ~ C and t ~ Q 

- S I c__ S is the set of possible initial states 

- S F c S is the set of accepting states. 

The transition function p defines for each state s and input or a set of triples, where 
each triple (s', C' ,  ok) ~ p(s ,  or) specifies a next state s', a set C t of clocks reset with 
that transition and a set 4~ of clock conditions that must be satisfied at the moment of 
the transition. We say that a clock assignment y E R c satisfies a set of clock conditions 
4~ ___ ~ (C) iff the set of inequalities 4~[c +-- y (c)] obtained by replacing each clock variable 
c in ~b by the corresponding value y(c) is satisfied. 4 If (s t, C' ,  4)) ~ p(s ,  or), we say that 

cr, C',4~ St . p allows the transition s 
A run of .4 on an w-string cr = ((~ri, ti))i ~ ( E  × R)  ~° is an w-string ~ ( A ,  or) = 

{(si, ~'i))i ~ (S  x R c )  °~ satisfying 

- Initiality: so ~ S t, and for all c ~ C, y0(c) = 0 

- Transitions: for each i, there is a set of clocks Ci c_ C and a finite set 4)i C ~ ( C )  of 
clock conditions such that 

cri,Ci,~i 
- p allows the transition s i > si+ 1 

- the inequalities in cki[c +-- y i (c)  + ti - ti-1] are satisfied, where t-1 = 0 

- Yi+l (c) = 0 for all c ~ Ci 

- Yi+l(C) : y i ( c )  -k- ti --  t i - 1  for all c ~ C \ Ci 

4As usual the empty set of conditions imposes no conditions and so is always satisfied. 
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We write (so,)to) o0,~ (s 1 Yl) trl ' t l  , > . . .  when these conditions hold. Such a run is 
accepting iff the set { i I s i e  S F } is infinite. The language of a TBA is non-empty iff 
there is a timed w-string over its alphabet on which it has an accepting run. 

Intuitively, a TBA reads a timed E-string and makes transitions satisfying its transition 
function. It has a finite set of clocks, which proceed at the same rate, and which it can reset 
with a transition or compare with rational constants. Transitions must satisfy the associated 
clock conditions for the input string to be consumed. The operational semantics of the run 
shown above are that the automaton stays in state si at time t, ti-1 < t < ti. At time ti 

it moves into state si+t resetting the clocks in Ci. The remaining clocks have meanwhile 
advanced by the time spent in si. The semantics of the input string tr are that it is a model 
A4~ such that for ti-1 < t < ti and i E o9, A4a(t) = ai. We say that the TBA .A consumes 

a timed E-string when there exists a run of A on the string and that it accepts the string 
when some such run is accepting. 

We note for the sequel that a BA can be regarded as a TBA whose set of clocks is empty. 
We take this as our definition of BA below. Because the set of clocks of a BA is empty, 
its transition function is regarded as a function p: S x E ~ 2 s, and it ignores the timing 
information on a timed og-string. 

DEFINITION 6 
[UNTIMIr~C] We define a polymorphic untiming function as follows 

- When given a timed w-string (cri, t i)i~to, it returns the untimed w-string 

untime((cri, ti )i~o~) = (tYi )iEo9 

- When given a TBA A = (E, S, C, p, S t , SF), it returns the BA 

untirne(A) = (E, S, p', S t , S t )  

where the transition function p~: S x E --> 2 s is defined by 

p'(s, = { s' I <s', c ,  p(s, } 

Lemma 1. For a timed og-string cr and TBA A, i f .4  accepts tr then untime(A) accepts 

untime(a).  

Proof. The statement follows immediately from the definition of untiming. [] 

Observe that the admissibility requirement makes the acceptance criterion for our TBAs 
slightly more restrictive than that in Alur & Dill (1990). However, it is not difficult to see 
that, because of our more restricted edge conditions ~,  if there is any accepting run of the 
TBA by the less restrictive definition of Alur & Dill (1990), there is a also an admissible 
model on which the TBA has an accepting run by our definition. 5 Thus, the emptiness 
algorithm of Alur & Dill (1990) suffices for our purpose. 

5The latter model is obtained by simply closing each interval of  the former model on the left (and opening its 
successor interval on the right) - that this does not violate any of  the transition conditions in the course of  an 
identical run of  our automaton on the latter model is easy to establish, using the fact that edge conditions are of  the 
form c = t or c < t only. 
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Theorem 2. Alur & Dill (1990) It is decidable whether the language of  a TBA is empty. 

3.2 Subformuhe, reductions and extensions 

The concept of subformula closure set, reductor set and reductions on interval formulae 
for FIL were introduced in Ramakrishna et al (1992). The first is well-known in automata- 
theoretic approaches in conventional temporal logics. The latter were introduced to simplify 
the statement of the FIL decision procedure and correspond, roughly, to the so-called 
rewrite rules used in the method of semantic tableaux. 

The definitions that follow are straightforward extensions of those appearing in 
Ramakrishna et al (1992) to take into account the presence of duration formulae, i.e. those 
involving predicates of the form len(0, d]. 

The subformula closure sel(f)  captures the idea that in deciding the satisfiability of 
the formula f ,  one need only consider formulae in the set sel(f) .  The formulae in the set 
intuitively represent all the "verification conditions" arising in an on-line strategy to verify 
if f is satisfied by an arbitrary model. As in Fischer & Ladner (1977) our closure is an 
extended subformula closure, sometimes also called Fischer-Ladner Closure, in the sense 
that sol(f)  may contain formulae that are not syntactic subformulae of f .  

Notation 1. Let I be an interval modality and let F be a set of formula~,. Then I. F denotes 
the set of formula. ~ { I f  I f ~ F}. If F is empty then so is I .F.  

DEFINITION 7 
[SUBFORMULA CLOSURE] 
set such that 6 

The subformula closure sel ( f )  of a formula f is the smallest 

a) f E scl(f) .  

b) true s sc l ( f )  and false ~ scl(f) .  

c) f! ~ sc l ( f )  iff--,fl E scl(f) .  

d) if f l  A f2 ~ sc l ( f )  then f l  ~ sc l ( f )  and f2 ~ scl(f) .  

e) if [--+a, 01 [ 02)fl ~ scl(f)  or [01 I --->a, 02)fl ~ scl(f)  
then [01 [ 02)fl c sol(f).  

f)  if [--+a I 02)fl c scl(f)  then if02 is not ~ then [ -  I 02)fl ~ scl ( f )  and if02 is 
then f l  ~ sol(f).  

g) if any of [--+a, 01 I 02)fl, [01 I ~ a ,  02)fl, [--+a I 02)fl, or [01 I ---~a)fl is in se l ( f )  
then a ~ scl(f) .  

h) if[01 I 02)fl ~ sc l ( f ) then  

- -  if01 is not -- then [01 I --+)false e scl(f) ,  and 

- if02 is not -+ then [02 I -+)false ~ scl(f) .  

6As usual we identify ~ f l  with fl ,  ~true with false and ~false with true. 
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f def [--+P I --+P, --*q)~ len(0, 3] 

fl a~I [- I --*p, --*q)~ Ion(0, 3] 

f2 d_=ef [- I --*P, --*q) Ion(0, 3] 

f3 d=e_I [--*P I --*q)-~len(0, 3] 

f4 d=ef [--I--*P,--+q)false 

f5 def [- I --*P, --*q)true 

f6 de=f [-- I --*q)~ len(0, 3] 

f7 d_e=f [-- I --*q) len(0, 3] 

f8 d=ef [--*P, --*q I --*)false 

f9 clef [-- I--*q)falso 

fl0 d=e_f [-- I--*q)true 

fll  d=ef [-*q I--+)false 
deI 

f12 = [--*P I --,)false 

f 

fl, f2 f3 

f4,f5 f6,J7 

true 

Figure 3. Example illustrating the subformula closure definition. 

i) if [ -  I O)fl ~ sol(f)  and f l  is purely propositional 
duration predicates are not purely propositional) 

j) if [ -  10)f l  e sol(f)  then [ -  I 0).scl(fl)  c sol(f) .  

then f l  ~ sol(f)  (recall that 

Example 1. Let f be the formula [--->p I --+P, --+q)--' Ion(0, 3], where p, q ~ P and 
let f l ,  " " ,  f12 represent the subformulae as shown in figure 3. Then s t ( f )  consists of 
precisely the formulae f ,  f l ,  " "  f12, P, q, true and all their negations. This is shown in 
the figure in the form of a Hass6 Diagram, where a formula f '  (and its negation) is in the 
subformula closure of another formula f "  (or its negation) if either fP and f "  are at the 
same "node" (such as, for instance, f l  and f2) or if f l  is below fpr and reachable from it 
(such as for instance f l  1 and fl) .  We assume that at every node, a formula and its negation 
are both present although, for clarity, we do not explicitly show the negation. 

Consider now a model .M and t ~ R, such that the formulae p and [--,p I ---*P, --*q)--' 
Ion(0, d] are both satisfied at (.A4, t). Clearly, the "search" to p starting at t will locate 
the current point, so that, as a result~ the formula [ -  I --+q)" Ion(0, d] must also hold at 
t. Moreover, the formula [ -  I --+q) Ion(0, d] must not hold at t, unless either q holds at t 
(the interval "collapses") or q never holds for any t t > t (the search "fails"), i.e. unless q 
or [--+q [ --,)false also holds at t. This notion of a set of formulae forcing the truth of other 
formulae is closely related to the concept of (finitary) "forcing" in descriptive set theory, 
and motivates the following series of definitions, culminating with lemma 2. 

DEFINITION 8 
[REDUCTOrt S~,T] The reductor set r e d ( f )  of a formula f is the smallest set of wff, 
not containing f ,  such that 

- if f is of the form [-+a, Ol [ 02)fl,  [--+a [ 02)fl,  [01 I -+a,  02)fl 
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or [01 I ---~a)fl then a ~ r ed ( f )  

- if f is of the form " f l  then red(f l  ) c_ r ed ( f )  

- i f f  is of the form [01 I 02)fl then 

- if01 is not - then [01 I ---~)false e r ed ( f )  and 

- if02 is not ~ then [02 I ~ ) f a l s e  ~ r ed ( f )  

- i f f  is of the form [ -  I 02)fl then [ -  I 0z).red(A) _ red(f) 
- if f is of any other form then r e d ( f )  = 0. 

DEFINITION 9 
[REDUCIBILITY] Let a and f be formulae. Then f is a-reducible iff a e r ed ( f ) .  
Otherwise it is a-irreducible. If S is a set of formulae, then f is S-reducible iff it is a- 
reducible for some a e S. 

DEFINITION 10 
[REDUCTION] Let a, f be such that a 6 r ed( f ) .  Then the wff f~ is an a-reduct of f ,  
written f '  "<a f ,  iff one of the following holds 

-- f is of the form [---~a, O1 I 02)fl or[01 I--+a, O2)fl and f ' i s  [01 ] 02)fl 

- f i so f the form[- -+alO2) f l  and f i s [ -  102)fl 

- f is of the form [01 I ---~a)fl and f '  is true 

- f is of the form [01 [ 02)fl,  a is either [01 [ ---,)false or [02 I ~ ) f a l so ,  and f~ is true 

- f i s o f t h e f o r m [ - - - ~ a l ~ ) f l  and f ' i s  f l  

- f is of the form " f l ,  f '  is --,f( and f (  <a f l  

-- f is of the form [ -  I 02)fl, a is [ -  ] 02)b, f '  is [ -  I 02)f; and f (  <b f l .  

When f is reducible to f~ through a chain of reductions with respect to formula ~. in a 
set S, we say f '  -<~ f .  

Example 2. Continuing with example 1, figure 4 illustrates the definitions just given. In 
the figure, if a formula f~ is reachable from a formula f "  by a direct edge labelled with a 
formula a, then f '  <a f ' .  Thus, the fanout labels of a node f r  are precisely the formulae in 
r e d ( f ) .  For instance, f is p-reducible but q-irreducible. Moreover, p transitively reduces 
f to f6. This reduced formula is now q-reducible, so that truo -<*{p,q} f .  Note also that f8 
directly reduces f to true. 

Observe that for a wff a, the parameterized reduction operator ~a on wff, has been 
defined so that f '  "<a f guarantees that a ~ ( f '  = f )  and sel(f ' )  C sel(f) .  This 
is formalized in the next lemma, which helps motivate the construction of the untimed 
automaton described in § 4.2. 

Lemma 2. Let f ,  fr, a be formulte and A4 be a model such that (At, t) ~ a and f '  "<a f . 

Then (At, t) ~ f iff (At, t) ~ f ' .  
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f 

true 

f8, f12 

Figure 4. 

tions. 
Example illustrating reduc- 

Proof. The proof is by a case analysis of the reduction rule used in the reduction (defini- 
tion 10). The presence of the last rule requires an induction. We use induction on the number 
of applications of the last rule in the reduction. The base case involves an application of 
one of the earlier rules, which can be proved easily using the semantics of FIL. 

For the induction step, let f be [ -  [ 02)fl, a be [ -  ] 02)b and fr  be [ -  [ 02)f;. To 
establish the forwards implication, assume that (.h4, t) ~ f ,  (M, t) ~ a and f r  "<a f .  
Using the semantics of the logic, it is clear that (A4 p, t) ~ f l ,  and (.M r, t) ~ b, where 
A4 p = A4[t,x(02,(~,t))). But, by the definition of reduction, fl  ~ ~b f l ,  so that by the induc- 
tion hypothesis (.M r, t) ~ f ; .  Again, from the semantics, we have (M, t) ~ [ -  [ 02)f( 

as required. The backwards implication follows similarly. [] 

COROLLARY 1 
Let (.M, t) ~ a for all a • S and let f '  <*s f " Then (At, t) ~ f iff (.M, t) ~ f ' .  

Example 3. Observe, in ourrunning example, that p ~ ( f  = f l ) ,  (P A q) =~ f and 
f8 =~ f -  Note also that, for a formula f ,  the formulae which are the (transitive) reducts 
of f give rise to a complete lattice under the relation "is a reduct of." 

We have so far represented models as mappings from R to the powerset of primitive 
propositions. It is a useful abstraction for the description of the decision procedure and for 
the subsequent correctness proofs to extend this mapping so that it provides valuations to 
every formula in sel(f) .  

DEFINITION 11 
[MODEL EXTENSION] Given an admissible model M • (2~') R, its extension with 
respect to an RTFIL formula f is the function .Mf: R --+ 2 s¢l(f) satisfying . A / f f ( t )  = 

{fl I f l  E s t ( f ) ,  (.hi, t) ~ fl}- We call A/l f an extended model, and each set A/If(t) an 
extended state. 
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It is easy to see that for an arbitrary model, extension is well-defined and, thus, that 
corresponding to every model there is a unique extension with respect to a given formula. 
Moreover, every state .A/[f (t) in an extended model .A/[ f is 

- -  consistent in the sense that for any formula f '  E sel(f) ,  f t  ~ A4f( t )  only if ~ f t  ¢~ 
A4f (t) 

- complete (up to elements in sel(f))  in the sense that for any formula f '  ~ sel(f)  either 
f t  E .MY(t) or ~ f  E .MY(t). 

Theorem 3. Admissibility of  models is preserved under extension. 

Recall that the real-line is partitioned by any primitive proposition P into a sequence 
of segments over which the valuation of P is constant. We may extend this concept to 
arbitrary subsets of formulae in scl(f) ,  such that two points tl <_ t2 ~ R are in the same 
equivalence class iff all points t such that t I < t < t 2 yield the same valuation for all 
formula~ in the set. Intuitively, our proof of theorem 3 uses the fact that the partition of 
the real-line induced by any RTFIL formula f ,  not involving duration predicates, is at 
most as fine as the coarsest partition that refines the partitions induced by the formulae in 
scl(f)  \ {f, --,f}. Moreover, if every equivalence class belonging to one of a finite set of 
partitions is left-closed and fight-open, then so is every equivalence class in the coarsest 
partition that refines these partitions. For formulae containing duration predicates, we note 
that there is at most one (right-continuous) change in the valuation of a duration predicate 
in any finite segment of R, and no change in any infinite segment of R. 

The proof of theorem 3 makes heavy use of the following lemma, the proof of which is 
straightforward. 

Lemma 3. Let X1 and X2 be finitely variable and right continuous functions from R to 

finite subsets of a set S. Let P ( bl , . . . ,  bn ) be a boolean function of  n variables bl , . . . ,  bn, 

and let X l . . . . .  xn be elements of  S. Then the functions 7 

1. X: R ~ 2 s definedby X(t)  = Xl( t )  tJ X2(t) 

2. B: R ~ {true, false} defined by B(t) = P[bi+--(xi E Xl(t))]i 

are also finitely variable (FV) and right-continuous (RC). 

Proof of  theorem 3. Let A4 be an admissible model. Then dom .A/i f --~ dom At. Moreover, 
since sol(f)  is finite for any formula f ,  clearly A4f is image finite. It remains to prove that 
J ~ f  is fight-continuous and finitely variable. The proof is by induction on the inclusion 
order induced by the subformula closure. 

For the first of two base cases, we note that 

{true, p} if p E .M/(t) 

"A4P(t) = {true, --,p} otherwise 

Finite variability and fight continuity of A4P then follows easily from that of .A4 for any 
p ~ 7  ~. 

7The abbreviation P [X i *-Yi ]i denotes simultaneous substitution of Yi for xi, for every i. 
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For the remaining base case, we note that sup dom .M ~ t for t ~ dom .M, so that, for 
any t e dom(.M), d ~ Q, 

{true, Ion(0, d]} if s u p d o m M  - t < d 
Mlon(°'dl(t) = {true, --, len(0, d]} otherwise 

Thus there is at most one fight-continuous change in the valuation of .M lon(°'dl over 
dom Mlon(°'d]. 

For the induction step, we consider two sample cases. The remaining cases are similar. 
CASE 1. Consider M A^£2. We have 

where 

3AfIAf2(t) = .Mf l ( t )  u . M f 2 ( t ) U X ( t )  

{ f l A f 2 }  i f f l  E M f l ( t )  andf2E2t4f2(t)  

X(t)  = { ' ( f l  A f2)} otherwise 

Clearly X is FV and RC by the second clause of lemma 3, since M fl and M f2 are. By 
the first clause of lemma 3, so is Ad fl^f2 

CASE 2. Consider now the case of M f with f = [---~a, Ol I --+b, 02)f  f. 

From the definitions of extension and subformula closure we have 

4 

M f  (t) = U Adfi (t) tO Ma(t) U .A4b(t) U X(t) 
i=1 

with 

X ( t )  = 
{f} 

{~f}  

f l 6 M  A(t), or 
f2 ~ M fl (t), or 

if a ~ Ma(t)  and f3 ~ Mf3(t) ,  or 
b ~ A4b(t) and f4 ~ A4f4(t), or 
B(t) 

otherwise 

where 

f l  = [--+a, el I ---~)false 

f2 = [ ~ b ,  02 I ---~)false 

f3 = [el I --+b, O2)f' 

f4 = [ ~ a ,  01 l 02)f '  

and B(t) is a boolean condition defined by 

3t' > t Yt ~' t < t" < t' ~ --,b ~ .Mb(t')'-,a ~ .Ma(t ") 

B(t) = or 

3t' > t Yt" t <_ t" < t' =~ -,b e .Mb(t")--,a e .Ma(t ~) 
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We now show that B(t) is itself RC and FV. By the induction hypothesis each of the 
functions 340, Mb, A4f3 and Atf4 is RC and FV. Consider now an arbitrary point t E 
dom M.  We have the following possibilities. Either a ~ ./Ha (t) or b ~ Atb(t) or neither. 
In the first two cases B(t) is false, and continues to be false at least up to (but possibly not 
including) the least t' where neither a ~ Ata(t') nor b c Atb(tt). Consider therefore the 
third case, for which --,a ~ Ma( t )  and -,b ~ Mb(t). Now we have two cases depending 
on whether there is any point t' > t where either a E Ata(tl) or b E Mb(tl). 

- Assume not. Then clearly B continues to be false for all t I > t. 

- In the alternative case, let t t > t be the least point such that either a ~ Ata (t ~) or 
b E Atb(tt). Then B is false on [t, t ') if 

~((a E Ma(t ') f3 E Mf3(tt))  V (b E Mb(t ') f4 E Atf4(t '))) ,  

and otherwise B is true on [t, f ) .  

This establishes the RC of B. 
Let Dj~aa represent the set of points at which Ata has a (left) discontinuity, and similarly 

D~bforMb.Forasubse tSofRandt  ~ R,letS $ t = {s E S I s < t }. The FV condition 
fo r  .A/[ a is then equivalent to saying that DMa .~ t is finite for any t E R. By the induction 
hypothesis Ata and M b are FV, so each of DMa and DMb has this property and, therefore, 
so also does DMa U D~b, and afortiori any subset of DMa U DMb. As our argument 
above for RC of B clearly shows, B is constant between any two consecutive points (in 
the usual ordering) in DMo U DMb. Therefore, DR ~ DMO U DMb, giving FV for B. 

Now, using lemma 3 we obtain RC and FV, first for X, and then for M f .  [] 

Note that right continuity of Atf for an arbitrary f gives us theorem 1 as a corollary to 
theorem 3. 

The above theorem plays a crucial role in our completeness proof. The automata that we 
build in the sequel operate on extended models. Satisfying models for f are obtained by 
restricting the extended models accepted by the automaton for f to the set 7' of primitive 
propositions. 

Our definition of reductions yields the following property of extensions, which helps 
motivate the construction of the untimed automaton in § 4.2. 

Notation 2. In what follows, Z represents a string of zero or more interval modalities of 
the form [ -  ] 0), which we refer to as current modalities. 

Lemma 4. Let A4 be an admissible model and fl  E se l ( f )  be A t f  (t)-irreducible. Let 
t' ~ R be the least t r > t such that A t f  (t) ¢ A t f  (tt). Then 

a) if f l is E[ Ol l Oz ) f 2 where O1 is not - then (At, t) ~ f l iff ( At, t') ~ f l 

b) if f l  isE-',[Ol]Oz)f2 where Ol is n o t -  then (At, t) ~ fl iffboth 

(M, t') ~ f l  and (At, t') V= 27false 

c) if f l  isZlen(O, d] and (At, t) ~ f l  then (M, t') ~ Z--len(O, d] iff 
(M, t ') ~= 2-false 
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d) if f] is 77--, len(0, d] and (A/t, t) ~ f l then (All, t') ~ 77false. 

Intuitively, in the first case, if 2-[01 I 02) can be constructed, it lies in the strict future of t 
and, therefore, in the reflexive future of t/. In the second case, [01 I 02) can be constructed 
within 77 (its surrounding context), so 2- cannot collapse at t/. For the third case 77 must 
collapse at t / since its duration cannot increase in going from t to t I. Finally, for the last 
case, 77 cannot collapse before its duration becomes less than d (at the earliest such point 
77 len(0, d] must hold). 

In the following proof, we say that "a search ---~a at t resolves at a point t / > t in a 
• model M "  when either 

- t I = t and (.M, t) ~ a, or 

- t ' > t, (.A/l, t I) ~ a and for all t" such that t < t" < t', (.A4, t f') ~ a. 

Proof sketch oflemma 4. Proofs of each of the four clauses are sketched below. 
[CLAUSE 1 .] We sketch only the proof of the forwards direction, the reverse direction 

follows by similar arguments. From the definition of reductions, we know that since f l  is 
Mf(t)-irreducible, all searches in 77, 01 and 02 must resolve in the strict future of  t and 
not before t t. The semantics of searches immediately gives us (.M, t f) ~ f l .  Note that 
none of the searches in 77, 0l or 02 can "fail" since our definition of reductions ensures the 
reducibility of f l  to t rue in MY(t)  in such a case. 

[CLAUSE 2.] Once again, we shall sketch only a proof for the forwards direction. 
For the forwards direction, the proof that the first consequent follows is essentially along 
the lines of the last case• We show why the second consequent, (.M, t I) ~ 77false, also 
holds. Assume for a contradiction that (M,  t) ~ Z~[01 I 02)3°2, (A4, t f) ~ 77false and f l  
is .A4f(t)-irreducible. As in the last clause, then, all of  the searches in Z, 01 and 02 will 
resolve in the strict future and not before t I. Since all modalities in 2? are current, the left end- 
points of  all these intervals are at t. With the above, (M, t f) ~ 77false implies that the right 
endpoint of  one of the intervals in 77 was located at t/. From the semantics, therefore, in fact 
(M, t I) ~ 77ff for an arbitrary formula f l ,  and in particular, (.A4, t t) ~ 77101 I --+)false. 
Now, since 77101 I 02)f  is Mf(t)-irreducible, so also is 77101 I ---~)false. By the reverse 
direction of clause 1 above, therefore, (.A4, 1) ~ 77[01 I ~ ) f a l s e .  But 2-[01 I ---~)false 
red(f1 ) thus contradicting the assumption of irreducibility of f l  in .A/[ f (t). 

[CLAUSE 3.] From the semantics, we know that all searches in 77 resolve in the strict 
future, not before t f. Thus the right endpoint of the instance of interval 77, cannot be before 
t I. If  it is at t f, then some search in 77 caused an interval to "collapse" at t t, so that from the 
semantics (.A/l, t r) ~ 2-false and, therefore, also (.M, t') ~ 77--, len(0, d]. If not (i.e. if the 
right endpoint is in the future of tf), assume that the right endpoint is located at some tl > 1 I, 
then from the semantics, t] < t + d. Moreover, since the instance of interval Z beginning 
at t / also ends at tl, surely the duration of that interval is also less than d, since from the 
above tl < t I + d. In this case, both (A//, t I) [¢= 77--, len(0, d] and (.A/l, t f) ~ 77false. 

[CT,AUSF~ 4.] The argument here is quite similar to the previous. The right end-point 
of  the instance of interval 77 starting at t ends either at t f or later• In the first case, there 
must exist a point between t and t I at which an instance of the interval 77 (also ending at t ~) 
has duration at most d. At this time (say, tl), we have (.A/l, tl) ~ 77 len(O, d], contradicting 
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Table  1. Example illustrating model extension. 

[0, 1) [1, 4) [4, 7) [7, c~) 

t r u e  1 1 1 1 

p 0 1 1 1 
q 0 0 0 1 
f 1 1 0 1 
f l  1 1 0 1 
f2 0 0 1 1 
f3 1 1 0 1 
f4 0 0 0 1 
f5 1 1 1 1 
f6 1 1 0 1 
f7 0 0 1 1 
f8 0 0 0 0 
f9 0 0 0 1 
flo 1 1 1 1 
f l l  0 0 0 0 
f12 0 0 0 0 

the assumption that t' is the first time greater than t at which the .A/If changes. Thus, we 
need only consider the second case. In such a case, the instance of 77 starting at t ' cannot 
collapse at t', giving us the result. [] 

Example 4. Let .M be defined by AA(t) = 0 for t ~ [0, 1), M(t)  = {p} for t ~ [1, 7), and 
3A(t) = {p, q} for t ~ [7, ec). The reader can verify that .Adf(t) is defined by the matrix 
shown in table 1, where the fi are as defined in figure 3. In the table, a row denotes an 
interval I of R. A formula appearing in a column is in JMf(t), t C I, iffthe entry in that 
column is a 1 and its negation is in .Adf(t) iff the entry in that column is a 0. The example 
also illustrates the ideas in lemmas 2 and 4. 

Finally, we introduce the following notation that we use to describe the construction of 
the eventuality automaton. 

DEFINITION 12 
[BASIS] Let f ,  f '  be formulae and let S be a set of formulae such that f '  <3 f and f '  
is S-irreducible. Then f '  is a basis formula for f with respect to S, and is denoted by 

f ' =  ( f ) s .  

Note that the basis formula for any formula with respect to a given set is unique. The 
proof relies on the local confluence property of -< s and the absence of infinite descending 
chains. This ensures global confluence by Newman's Diamond Lemma (Newman 1942). 
It is useful to bear this in mind (and we shall implicitly assume this in our subsequent 
exposition) although we do not require this property for any of our subsequent proofs. 
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Example 5. For the case of example 4, for instance, f6 = (f)A4f(t) for t e [1, 7) and 
true -- ( f ) ~ / ( t )  for t 6 [7, oo). Note also that f is irreducible at t e [0, 1) and is 

(trivially) its own basis with respect to .A4f(t), t 6 [0, 1). 

3.3 Interval reductions, clocks and conditions 

In Example 4 there are no formulae involving nested interval modalities. However, in 
general, a formula may involve nested modalities, so that for ease in describing our con- 
structions, we require the more general machinery below. 

Roughly speaking, the essential "real-time" unit of manipulation by the TBA is a timed 
current interval formula of the form:/Ion[0, d] or 2--, Ion[0, d], where 2- = [-101 ) [ -102) . . .  
[-IOn) is a string of zero or more current interval modalities. For the case of such formulae, 
we also need the concept of an interval-reduct. Interval reduction is a relation on strings 
of current interval modalities and is parameterized by a set of formulae. 

DEFINITION 13 
[INTERVAL REDUCTION] Let 2- and 2-' denote strings of current interval modalities and 
let S be a set of RTFIL formulae. Then 2-' is an interval reduct of 2- with respect to S iff 
2-'true -~ 2-true. We represent this by 2-' r-* s 2- and we say that 2 is S-reducible. 

Note that 2-' above may be the "empty" sequence of modalities (which we suppress), which 
is irreducible with respect to any S. We shall simply say "2-' is a reduct of 2" instead of 
"2-' is an interval reduct of 2-" when there is no confusion. 

Among the possible reductions on an interval modality is a special kind of reduction 
called a collapsing reduction. A collapsing reduction may trigger the checking of clock 
conditions on a transition that was just taken, and so our procedure must treat it differently 
from a non-collapsing reduction. This will become clear later when we describe the TBA 
construction. 

DEFINITION 14 
[COLLAPSING REDUCTIONS] Let 2- = I i12. . .  In and 2-i = I~I~.. .  l~m be such that 
Z' C~ 2- and m < n. Then 2-' is a collapsed reduct of 27 and the corresponding operation 

is a collapsing reduction, written C~s . 

The important property of interval reductions that we require for the sequel is as follows. 
Suppose .M is ac~,issible, t e R and 2- is .MY (t)-irreducible. Suppose further that there is 
a next (least) time t' > t such that ./~f (t r ) ~ J~f  (t). Then 2 is )k/If (t')-reducible to 2" if:/  
is of the form 2-1 [ -  I ~a)2-2 or Z1 [ -  I ~ a ,  0)2-2 where 2-1a e MY(t1). Intuitively, then, 
2- is equivalent to the syntactically simpler formula 2-' when evaluated at t'. Moreover, the 
reduction of 2- in J~ f ( t  I) is collapsing in the case that 2- has the first form. Essentially, 
this means that, if the interval 2- is evaluated at time t, it will "end" at time t' and, if it is 
evaluated at t', it will be empty. 

Example 6. Continuing with Example 4, the modality [ -  I --+q) collapses at all t e 
[7, cx~). The modality [ -  [ --+p, -+q) reduces to [ -  [ --+q) at t e [1, o~) and collapses at 
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t 6 [7, ~ ) .  In each case the "set" with respect to which the collapse or reduction occurs 
is .A/If( t) ,  fo r  the appropriate t. 

We also use reductions on intervals to keep track of the "remaining searches" of an 
interval as it is timed by an active clock of the automaton. 

The clock closure and clock condition sets defined below represent the clocks and associ- 
ated conditions required by a TBA during the satisfiability procedure. Thus, while deciding 
a formula f ,  the automaton A ( f )  never needs any timers other than those in c locks(f)  
and the conditions appearing on its transitions are contained in the set c lkconds(f) .  

DEFINITION 15 
[CLOCK CLOSURES] Given a formula f its clock closure set, denoted clocks(f) ,  is the 
smallest set satisfying the following conditions: 

ald 1. i f2 len(0 ,  d] ~ sc l ( f )  then c z' ' ~ d o c k s ( f )  

2. if CzJ 'el ~ clocks(f)  and 2-2 r-~ 2-1, for S c_ sci( f ) ,  then cz'z z'cl E clocks(f)  

3. if c~'t z'cl ~ clocks(f)  then c~zl z'a e clocks(f)  

DEFINITION 16 
[CLOCK CONDITION SET] Given a formula f ,  its clock condition set, clkconds(f)  is 
the set of conditions of the form 

a,Z,d - c < d for all c = czl e clocks(f)  

fl,~,d 
- c = d for all c = czt ~ clocks(f)  

Intuitively, a-clocks enforce upper-bound constraints and/3-clocks enforce lower-bound 
constraints. States in the TBA for a formula will contain "clock-activity sets," which 

×zd 
indicate the clocks that are active. The clock Czl ' (where y is either a or/3) will be made 
active at a state within an instance of an interval 7~ when it is necessary to time 77, and 21 
is the interval that remains to complete the instance of 2-. 

Example 7. Let f be [--+p I -+P,  ---~q)" Ion(0, 3]. Then clocks(f)  contains the clocks, 
c[__+p.__.~q)Ct'[---~P'---~q)'3, c ct'[--*p'---~q)'3[._.~q) , c[__+q)~'[--+q)'3, and their 13 counterparts. 8 The clock condition 

associated with c a,[---~q),3 fl,[-+q),3 is c t 3. = C[~q) is c < 3 and with its r-counterpart c' = c[._+q) = 

As in Ramakrishna et al (1992), let the number of logical connectives and primitive 
propositions in an RTFIL formula be its size, and the depth of nesting of interval modalities, 
plus one, be its depth. The following lemma is straightforward. 

Lemma 5. For an RTFIL formula f of size n and depth k, [sol(f)[ = O(n k) and 

[clocks(f)t = O (n 2k). 

8We are using the abbreviation [0) for [ -  I 0). 
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4. Decision procedure 

We now have most of the formal machinery required to describe the construction of the 
TBA -Am(f) corresponding to a formula f ,  whose satisfiability is being checked. The 
construction of Am is described in four steps. 

In the first step, we construct a BA -Au ( f )  containing timing assertions in its states. 
This construction is similar to the construction of the local automaton for the untimed case 
Ramakrishna et al (1992). Intuitively, the automaton produced in this first step ensures 
that all timing-independent safety conditions are satisfied and also checks some simple 
consistency conditions relating to real-time. The BA -Au ( f )  accepts the untiming of any 
timed string corresponding to a model of f ,  but may also accept other strings, since it does 
not fully take into account the real-time constraints imposed by f .  The states of -Au ( f )  

are annotated by timing assertions that encode these constraints. 
The second step is the heart of the construction. This step constructs a TBA, At (f), from 

-Au ( f )  in such a manner that all timing assertions, of the form 2- Ion(0, d] and 2--, Ion(0, d], 
annotating the states of-Au ( f )  are encoded as timer related actions of the TBA. Each state 
of the TBA .At ( f )  has a set of"active clocks," a subset of clocks(f) ,  that is uses to enforce 
the timing assertions. The edges of .At ( f )  have timer resetting and comparison actions. 
.At ( f) ,  thus, ensures that all timing based properties are handled properly, in addition to 
the timeless safety conditions. In this connection, it is useful to note that a time-bounded 
liveness property is really a safety property; the time bound must not pass before the 
liveness property is satisfied. That the requisite time must eventually pass - -  the condition 
of non-Zenoness - -  is an implicit liveness condition. 

In order to take care of the timeless liveness conditions, we construct the eventuality 
automaton .Ae(f) in the third step of the construction of .Am. The eventuality automaton 
is a pure BA, without any timers. It is constructed in essentially the same manner as for 
FIL (Ramakrishna et al 1992). 

The final automaton.Am ( f )  is a product of.At ( f )  and.Ae ( f ) .  The formula f is satisfiable 
iff the TBA .Am (f) accepts some timed string. We use the procedure by Alur & Dill (1990) 
to solve the emptiness problem. 

An interesting aspect of RTFIL is reflected in this construction. The local automaton 
.At ( f )  might consume non-Zeno runs, but .Am ( f )  does not. This is because, in RTFIL, 
unlike for instance MITL (Alur et al 1991), there is an implicit liveness condition asso- 
ciated with every timing constraint, namely, the right endpoint of an interval satisfying 
the timing constraint is eventually found. This allows us to, in effect, dispense with the 
"progressiveness check" that Alur & Dill (1990) require while checking the emptiness of 
the final TBA. 

4.1 Hintikka sets 

Most constructive decision procedures use sets of formulae to construct the "components" 
of a canonical model for a given formula. The formulae in the sets, like the states in 
the model extensions above, give a complete characterization of that component of the 
model in terms of not only the atomic formulae (primitive propositions), but also more 
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complicated formula~. Following tradition (Smullyan 1968; Emerson 1990) we call such 
a set of formulae a Hintikka set for an RTFIL formula. 

DEFINITION 17 
[HINTIKKA SET] A Hintikka set for  a formula f 

following conditions: 
is a subset s of sol(f)  satisfying the 

1. for all 

2. for all 

3. for all 

4. for all 

f l  ~ scl(f) ,  f |  ~ s iff " f l  ~ s 

Ztrue ~ sc l ( f )  such that Etrue is s-irreducible, Etrue ~ s and :/:false ~ s 

len(0, d] ~ sel(f) ,  --, len(0, d] ~ s 

Ef l  ~ sc l ( f )  such that 2-fl is s-irreducible, 2-fl c s iff2---,fl ¢~ s 

5. for all Z( f l  A f2) ~ se i ( f )  such that 77(fl A f2) is s-irreducible, 
Z( f l  A f2) 6 S iff 2-fl C S and 2-f2 6 s 

6. for all 27fl c sol( f )  such that f l  is purely propositional and Z f l  is s-irreducible, 
7:fl 6 s iff f l  c s (note that len(0, d] is not propositional) 

7. for all Z--'[-102)fl ~ sol(f)  such that Z--'[-102)fl is s-irreducible, 
2---,[-102)fl E s i f fZ[- lO2)- ' f l  ~ s 

8. for all f l ,  f2 ~ sc l ( f )  such that fl  <~ f2, f l  ~ s iff f2 ~ s 

The set of all Hintikka sets for f is denoted H ( f ) .  
As a result of the first rule, Hintikka sets are complete and consistent in the sense ofp 160. 

However, they may contain temporal inconsistencies that may make them unsatisfiable. The 
completeness proof for our decision procedure uses the fact that if a set is not Hintikka then 
it is unsatisfiable. Thus, it suffices to consider Hintikka sets in the automaton construction, 
as we shall see shortly. 

Lemma 6. Any complete subset of  sol( f )  that is not Hintikka is not satisfiable. 

Proof Assume that s is a complete subset of sol( f )  that is not Hintikka. We use a case 
analysis on the condition in definition 17 that s violates. Consider for instance the last 
condition. Assume that fl  ~s f2, f l  6 s but f2 ¢~ s. Since s is complete, --'f2 6 s. Let M 
be a satisfying model for s. Then (M, 0) ~ fl  and for all a 6 s, (A4, 0) ~ a, so that by 
Corollary 1, (3//, 0) ~ f2. But --'f2 ~ s and, thus, (M, 0) ~ --'f2, a contradiction. The 
case of f l  ¢~ s and f2 c s is similar. 

Arguments for the remaining cases can be done in a similar manner using the semantics 
of the logic to exhibit a contradiction. [] 

It follows that each state J~f (t) of the extended model J~f is Hintikka. However, not 
every w-sequence of Hintikka sets is the extension of a model, because the consecufion of 
states in the sequence might be unsatisfiable. 

Example 8. When M f is constant throughout the interval [q, t2), let M f [q, t2) denote its 
value in that interval. In Example 4, it is clear that the sets S1 = M f [0, 1 ), S 2 -~- jk/[ f [ 1 ,4 ) ,  
$3 = A/If[4, 7), $4 = M f [ 7 ,  ~ )  are Hintikka. In this case the conjunction of forrnula~ in 
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a Hintikka set is satisfiable. However, consider the set $5 = (SI \ {- 'f l l}) tO {flÂ}. This 
set is Hintikka by our definition above, but is not satisfiable, because the conjunction of 
~f8  and f l  1 cannot be satisfied in any model. Such "temporal conflicts" are detected by 
the consecution and acceptance conditions of .Ae(f) and .At ( f ) ,  as will become clear in 
the sequel. 

4.2 Untimed construction 

Having obtained the candidate states for .Au ( f )  as Hintikka sets above, we must now 
connect them together appropriately. Compared to FIL Ramakrishna et al (1992), the 
only new feature now is the presence of formube of the form 2- Ion(0, d] and 2---, Ion(0, d]. 
Reductions on such formuke in a given state are essentially as before. However, consecution 
of two different states imposes further conditions on the timing assertions that these two 
states may contain, in addition to the reducibility of non-current interval formulae from 
one state to the next. 

DEFINITION 18 
[UNTIMED CONSTRUCTION] .Au(f) is the BA with 

- Input alphabet 2 sol(f) 

- State set H ( f )  

- Non-deterministic transition function Pu defined on H ( f )  × 2 sel(f) such that Pu allows 
i 

s ~  t i f f  

1.  i = s  

2. if I[01102)fl e s is s-irreducible and 01 is not - ,  
then 2[01102)fl • t 

3. if 2--,[01102)fl • s is s-irreducible and 01 is not - ,  
then Z--,[O1 I 0 i f 1  • t and 2"false ~ t 

4. i f /  len(0, d] • s is s-irreducible, then if 2---, len(0, d] • t then 2- has a collapsing 
reduction in t 

5. if 2---, len(0, d] • s is s-irreducible, then 2-false ¢' t 

- Accepting state set H ( f )  

- Initial state set {s • H ( f )  I f • s} 

The first transition rule ensures that the automaton consumes only Hintikka sets. The 
remaining transition rules reflect the conditions stated in lemma 4. Observe that Pu is 
reflexive, allowing the automaton to (non-deterministically) stay in state s whenever input 
with i = s. 

Example 9. Consider the Hintikka sets SI ,  • - . ,  S4 of the last example, and.JL~ f of Example 
4. If we feed u n t i m e ( M f )  to Au ( f )  as an untimed w-string, then the resulting run is shown 
in figure 5. The vertices represent states of the automaton and the edge labels represent 
letters of the input string. Note that the automaton Au ( f )  has many other states and 
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SI $2 $3 $4 

S1 " $2 S3 - - -  " $4 

Figure 5. A run of .Au for example 9. 

transitions, but for brevity only those in the locus of this run are shown. The reader can 
verify that the transition conditions given above are satisfied for each transition shown. 

4.3 Timing augmentation 

The timing augmentation systematically examines each state of the automaton built above, 
starting from an initial state, adding activity indicators to its states and clock conditions 
to its transitions, and splitting states when necessary. State-splitting occurs when different 
paths from an initial state to some state of .Au( f )  require different sets of timers to be 
active. The resulting automaton is the required local TBA. 

The augmentation is described in two steps. First, we replicate the states of .Au ( f ) ,  

pairing the replicas with subsets of clocks(f) ,  to obtain the states of At ( f ) .  Intuitively, 
for (s, as) ~ H ( f )  × 2 ci°ckstf), the clock-activity set as represents the clocks that are 
active in this replica of the state s of Au ( f ) .  We then define the transition function of 
.At ( f )  to permit only "legal" transitions between the states produced by this replication 
process. While this style of exposition clarifies the underlying mechanics, it is generally 
more expedient to perform a breadth-first traversal of .Au ( f ) ,  adding clock-activity sets to 
its states and splitting states as required. Although the worst-case behaviour of this latter 
augmentation procedure may be as bad as the na'ive method of the description, in general, 
the latter procedure never creates many unreachable replicas. 

For expositional reasons, we allow the transitions of .At(f) to copy the value of a 
y , z ,d  _y , I ,d  

clock Cl into a clock c2 provided that cl has the form Cz~ , c2 has the form cz2 , and 

22 C* 2-1. Thus, in addition to clock resetting actions, we allow restricted copying actions. 
This method of description clarifies the underlying reasoning better than a direct encoding 
into a conventional TBA. A slightly unnatural clock-naming scheme would allow us to 
rename the clocks in .At(f) while eliminating the copying actions on its transitions. For 
instance, it is easy to see that instead of the copy action c2 ~ Cl, a "shadow clock" Cl,2 
could be started simultaneously with cj and used in place of c2 following the copy action. 
This simple-minded scheme, however, increases the number of clocks quadratically and 
increases the number of states by a factor exponential in the number of clocks. A slightly 
more sophisticated scheme, taking account of properties of interval reductions, allows us 
to encode copy actions without increasing the number of clocks, while keeping the number 
of states essentially the same. Note for this that the clocks form a natural partial order under 
the copying relation. We give details of this construction in the next subsection. 

Note also that clock-activity sets are not mentioned in the definition of TBAs given 
earlier or in the original definition in Alur & Dill (1990). It is easy, however, to modify the 
definition of TBAs and the emptiness algorithm in Alur & Dill (1990). to handle clock- 
activity sets in a straightforward manner; see Dill (1989), for instance, where a similar 
concept is used. 
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Below we formalize the operations of clock activation and deactivation, which we use 
in our construction of the TBA .At. 

DEFINITION 19 
[CLOCK OPERATIONS] The transition (s, as) i,c,~ (t, at) of .At(f)  activates the clock c 
iff one of the following holds 

ct,Z,d 
1. c = c z , I l e n ( O ,  d] ~ t, 2" is irreducible in t, and 271on(0, d] ~ s only if 2- is 

reducible in s 
fl 2"d , . , -  

2. c = c z '  ' , .L Ion(0, d] ~ s, 2- len(0, d] ~ t, and 27 is irreducible in both s and t 

y,I ,d y,~,d 
3. c = cz2 ¢ as, 2-2 is irreducible in t, cz~ ~ as, 2-1 is irreducible in s, 272 [-~ 271, and 

this reduction is not collapsing 

y,:Ld The transition deactivates clock c iff c = czl is in as and 271 is reducible in t. 
We now define the automaton .At ( f ) .  

DEFINITION 20 
[TIMING AUGMENTATION] Let.Au ( f )  be an untimed automaton such as obtained above. 
Then its t iming augmentat ion,  denoted .At ( f ) ,  is the TBA with: 

- State set H ( f )  x 2 d°eks(f) 

- Input Alphabet 2 s¢l(f) 

- Clock Set clocks(f)  

- Non-deterministic transition function Pt defined on ( H ( f )  × 2 el°eks(f)) × 2 sd(f )  such 

that Pt allows the transition (s, as) i,c,¢> (t, at) iff 

1. S -~ t is allowed by Pu 

2. at consists of all clocks that are activated by the transition and all clocks of as that 
are not deactivated by the transition 

transition activates C2 by the third rule of definition 19, Cl = c ~  z 'd 3. if the and 

= cYz2 z 'd are the clocks in this rule, and F = /~ ,  then for all c~ = c~zi z 'd ~ as C2 

such that I~ ~ 2-1, it is not the case that 22 t-~ I~ 

4. C contains the reset action "c +- 0" iff the transition activates c by either the first 
or the second rule of definition 19 

5. C contains the copy action "c2 +-- Cl" iff the transition activates c2 by the third 
F,z,d y,:~,d rule of definition 19, Cl = Cz~ and c2 = cz  2 are the clocks in this rule, and if 

= or, then for all c; = czlZ'd ~ as such that 772 r-; 77' 1 we have ZI r-; 2-; Y 

ot,I,d 6. ~ contains the clock condition c < d iff c = czl ~ as 

7. ~ contains the clock condition c = d i f f  c = c~z~ z 'd ~ as and 2-1 has a collapsing 
reduction in t 
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S1 $2 $3 $4 

~ S 1  ~ $ 2 ~ c < = 3 S 3 ~  

~ S I '  " $ 2 '  " $ 3 '  > $ 4 '  
c ~-- O; c'~-- 0 c<=3; c'=3 

F i g u r e  6 .  A run of .At as in example 10. 

, a , 2 , d ,  
- Initial state set { (s, as) }s,as suchthat f e sandas = Ic z Ia,z,d suchthat771en(0, d] e 

s and 7? is s-irreducible 

- Accepting state set H ( f )  × 2 cl°cks(f) 

The intuition behind the augmentation procedure is as follows. Rule 4.3 ensures that 
any model of .At(f), when untimed, is accepted by .Au(f). Rules 4.3 and 4.3 ensure that 
the appropriate clocks get started whenever there is a new upper- or lower-bound condition 
to verify, and that conditions are remembered until discharged. Rules 4.3 and 4.3 ensure 
that the upper- and lower-bound timers are compared with their prescribed limits when the 
ends of intervals are reached. Rule 4.3 frees up timers for reuse. The condition for u-clocks 
in the last part of that rule states that if there are two running instances of an interval that 
reduce to the same one, the older instance continues to be timed for the upper-bound. Rule 
4.3 guarantees that such a condition will not arise for/%clocks. 

Example 10. Recall example 9, where we illustrated an accepting run of .Au (f). Figure 6 
shows the corresponding accepting run of .At ( f )  on our now familiar .MY. The states of 
.At(f) shown in the figure are S' 1 = ($1,0), S~ = ($2, 0), S~ = ($3, {c, c'}), S,~ = ($4, 0), 

a [--+q) 3 t fl [--~q) 3 where c = C[~q) " and c = C(~q) " are the clocks of Example 7. The edge labels also 
indicate associated clock conditions and/or clock actions. 

Although the role of clock c is superfluous in the run shown above, in general it may be 
required. 

4.3a Eliminating copying of clocks Notice that the only clause in the transition con- 
ditions of .At that requires copying of one clock's value into another is clause 5. In the 
following we describe how such copying actions can be eliminated in order to obtain 
a conventional TBA. First of all, we note that we may rename the timers in c locks(f)  

y.z,d is replaced by a unique clock c~ 'z'a, i e {1 , . . . ,  m} where so that each clock c z, 
m = I { 77' I 77' C* 77 } I. Further, we associate with each state a tagging function, which 
associates with each clock active in that state an element of { 77' I 77' r--* 2 }. The essen- 
tial idea is that, instead of copying one clock c value into another c' on a transition, we 
simply update the tag function on c in the next state. The tag function, thus, keeps track 
of the remaining suffix of the interval being timed by a clock. This will not work in case 
a transition also resets the active clock, following a copying action, since the old value 
would get "clobbered." In such a case, (i.e. if the transition also resets the source clock of 
a copy action), we simply pick an inactive clock, with the same superscript (perhaps with 
the lowest subscript among those available) and activate it. It is not difficult to see that in 
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every such case an inactive clock will always be available. This takes care of all cases of 
copying. When a clock's tag collapses, indicating the end of an interval, it is compared 
with its upper or lower bound as appropriate, and returned to the pool of inactive clocks. 

We need only show that the number of clocks suffice, i.e. there is always a clock of the 
required kind available, when we want to pick an inactive one. But this is clear from the fact 
that for a clock with superscript 77 there cannot be more than [ { Z t [ 77~ E* 77 ] I copies ever 
required, since there will never be more than that many instances of the interval 27 active 
simultaneously. We have thus eliminated all copying actions while keeping the number of 
clocks the same as before. However, in comparison with our original construction which 
involves copying between clocks, there is an increase in the number of states, because of 
the association of active clock sets and tag functions with states. In fact, the total number 

of states in the resulting TBA is now bounded above by ]H (f)[  • 2 ° (n2kkl°g n). 

4.4 Eventuality automaton 

This is essentially the same as the construction in Ramakrishna et al (1992) to which we 
refer the reader for more details and intuition. 

DEFINITION 21 
[EVENTUALITY AUTOMATON] Me(f) is the BA with 

- Input Alphabet 2 st(f) 

- State Set 2 E(f), where E ( f )  is the subset of sc l ( f )  that contains all formulae of the 
form--,[0 I --~)false 

- Deterministic transition function Pe defined on 2 E(f) x 2 sel(f) such that s -~ t satisfies 

1. t = {fl ~ E ( f )  • i I f]  is i-irreducible} when s = 0 

2. t = {(fl)i  E E ( f )  I f l  ~ s} when s # 0 

- Accepting state set {0} 

- Initial state set {0} 

Note, in particular, that Me(f) handles only unbounded liveness conditions. Time- 
bounded liveness conditions are handled by the combination of Me(f) and .At(f); Me(f)  

ensures that the required state is eventually reached (without regard to real-time) and 
.At ( f )  ensures that the related timing constraints are met when the state is reached. A 
similar "communication" (via the "input" string) also occurs in the purely untimed case 
of FIL while dealing with eventualities that are bounded within intervals (Ramakrishna 
et al 1992): for checking an eventuality within a bounded context, the local automaton 
checks that the context does not end before the eventuality is found, a pure safety property; 
the eventuality automaton checks that the right end-point of the enclosing context does 

eventually occur, a pure liyeness property. 

Example 11. In our running example, we have E ( f )  = {'-'f8, ~ f l l ,  ~f12}" As in the 
previous two examples, we illustrate the accepting run of Me(f)  on .A4 f in figure 7. The 
states shown are 0, E1 = {'-'f8, " f l l ,  -"f12}, and E2 = {-'fll}. 
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$4 S1 $2, $3 

S! 
, . E1 " E 2  

Figure 7. A run of .Ae for example 11. 

Note how .Ae(f) is always one step "behind" .Au ( f ) :  Au ( f )  is non-deterministic, while 
Ae( f )  is fully deterministic, allowing precisely one transition on any input. Note also 
that both automata do not cycle, in the terminology of fundamental mode asynchronous 
automata; i.e. on any input stream consisting of precisely one input letter, there is at most 
one state change. 

4.5 Combining the automata 

The decision procedure is now straightforward. We construct .Au ( f )  and augment it using 
the timing construction to obtain At( f ) .  We then take the product of .At(f) with the 
eventuality automaton .Ae ( f ) ,  where .Ae is run on the untiming of the input string. Finally, 
we check the emptiness of the resulting timed automaton .Am ( f ) ,  using the emptiness 
algorithm of Alur & Dill (1990). We thus have our main theorem. 

Theorem 4. [DECISION PROCEDURE] Given an RTFIL formula f ,  it is decidable 

whether or not f is satisfiable. 

The main lemma required in the proof of theorem 4 is 

Lemma 7. The language of.Am ( f )  is empty iff f is not satisfiable. 

Proof The proof follows from the Completeness and Soundness lemmas below. The proofs 
of the two lemmas follow the usual format of playing off the semantics of formula ~. against 
the allowed runs of the automaton, and are sketched in the next section. 

Lemma 8. [COMPLETENESS] Let f be an RTFIL formula and A4 a satisfying model for 

it. Then .All f is accepted by .Am(f ) .  

Lemma 9. [SOUNDNESS] Let f be an RTFIL formula, A4' a timed string accepted by 

Am(f),  and A4 the restriction of A4' to the primitive propositions. Then A4 ~ f . 

The construction for our decision procedure shows, once again, that RTFIL is invariant 
under finite infinitesimal timed stuttering. This was stated and proved directly in theorem 1, 
but is further clarified by noting that the local TBA .At ( f )  has a reflexive transition relation 
with the self-loops containing edge conditions of the form c < d only and no clock actions. 
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5. Proof of correctness 

We devote the next two sections to proving the Soundness and Completeness lemmas. 

5.1 Completeness 

Throughout this section we assume that .MY is the extension of a satisfying model .M for f ,  
as stated in the Completeness Lemma. Moreover, we use the timed w-string representation 
for .MY. It is easy to see that admissibility of .MY implies that there is a timed w-string 
representation for it. Note that any of the uncountably many representations suffices for 
our purposes. However, for convenience, we use a "canonical" representation, with .Mf 
represented by the timed w-string (cri, ti)i~oJ defined inductively as follows (let t_ 1 = 0): 

~i m . M f  (ti-1) 

ti =inf({{t  > ti-1 I .M}f  (t) ~ .Mf(ti_l)} U {[ti-1] + 1}) 

The proof of the Completeness Lemma follows from lemmas 12 and 14. Proofs or these 
lemmas make use of several intermediate lemmas. 

Lemma I 0 . . A u ( f )  accepts untime(.Mf).  

Proof. Observe first that since all states of .Au ( f )  are accepting, we need only show that 
there is an infinite run of .Au that consumes (cri)i~o~ = untirne(.Mf). Since each state cri 
is Hintikka, it is a state of .Au. By clause 1 in the definition of Pu (see definition 18), ~u 
CAN CONSUME the input symbol cri iff it is in the state cri. Thus, if .Au has an infinite 
run consuming .M y , that run is unique. That it has an infinite run is shown by induction 
on the length of the run. 
BASE CASE. Since (.M, 0) ~ f ,  we have f ~ .MY(o) and, therefore, f ~ cr 0. Thus cr0 
is an initial state of .Au. 

INDUCTIVE STEP. We need to show that cri + 1 ~ Pu (ai, cri). Assume not. Then cri :~ cri+ 1, 
since Pu allows self-loops. This means that ti+l is the least t I satisfying t t > ti and 
.Mf(ti) ~ .Mf(tt). But then the assumption that the transition ~ri ) ~ri+t violates one 
of the last four transition requirements of Pu. But using the definition of extension, this 
contradicts lemma 4. [] 

Lemma 11. Ira timed w-string (cri, ti)ie~o is accepted by .At, then the acceptance run is 
unique. 

Proof. From the definition of the transition function of At, the BA .Au must accept the 
untimed string (ai}i. From the proof of lemma 10, the run of.Au on (cri)i must be unique. 
Recall that the state of At consists of two components: a Hintikka set and a set of active 
clocks. From the above, it is clear that the "Hintikka component" of the run of At on 
(cri, ti)i is unique. What remains to be shown is that the "clock component" is also unique. 

To see that this is indeed the case, we note from definition 19, that the clocks that are 
active in the state following a transition are uniquely determined by the Hintikka component 
of the states adjoining the transition, and the clocks that are active in the state prior to the 
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transition. Moreover, the clocks that are active in the initial state are uniquely determined 
by the Hintikka component of the state. Since the Hintikka component is unique and 
determined, so also is the clock component, and the result follows. [] 

L e m m a  1 2 . . A t ( f )  accepts .All f .  

Proof. Assume for a contradiction, that it does not. From lemma 10 we know that Au 

accepts untime(A4 f) .  If .At rejects, it must be because some clock condition, introduced 
as a result of the timing augmentation is not satisfied along the run. Before we proceed 
with the proof, we introduce some terminology. 

DEFINITION 22 
For a run of .At over an extended model .M f ,  a t imer thread cV'Z'd[ta, td) is a finite chain 

, y,I,d y,~,d~ 
of clocks ~cz~ , " " , cz  n I suchthat 

1. 77=271 

2. fora l l i  ~ { 1 , . . . , n -  1},77i+1 r--'77i 
y,Z,d 

3. a transition at time tb activates c z 

4. there is a strictly monotonically increasing sequence of time values (tl, . . . ,  t n - l )  with 
y,z,d y,Z,d 

tb < tl and tn- I  < te, such that a transition at time ti copies czi into czi+, , and no 
y,Z,d transition at any time strictly between t i and ti+ 1 deactivates cz~ 

Z,y,d 5. a transition at time te deactivates cz,  

A timer thread is incomplete if the deactivating transition at te also copies the last clock 
to another clock. 

A timer thread is useless if the transition at te deactivates the last clock without copying 
it and the remaining interval In does not collapse in the state following the transition. 

A timer thread is a complete useful thread if Zn has a collapsing reduction in the state 
following the transition at te. 

The intuition behind this terminology is as follows. A complete useful timer thread 
represents a successful verification of a timing constraint. A useless thread represents a 
verification that was started but was later abandoned, because the corresponding timing 
constraint was subsumed by another timing constraint whose verification was in progress. 
An incomplete thread represents a verification that is in progress and that may be either 
completed into a successful verification or abandoned in the future. The reader should 
observe that, with the transition function for .At defined in definition 20, if g = t ,  then 
every incomplete thread eventually completes usefully. On the other hand, incomplete 
u-threads may become useless. It is easy to see that each active clock in any run belongs 
to precisely one incomplete thread and, moreover, each incomplete thread correponds to 
precisely one active clock in any state. Also, threads may complete usefully or become 
useless as a run progresses, but they never fork or merge. Therefore, starting from an active 
clock and tracing back along the thread to which it belongs, one can locate its "ultimate 
ancestor", or the initial clock created for the verification of a timing constraint. The value 
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of the active clock indicates the time that the thread has been active since its ultimate 
ancestor was activated. 

P r o o f o f l e m m a  12 Cont'd.  We need to show that . A t ( f )  consumes the timed co-string 
(o-i, ti)i~o representing M y. We show that for all j 6 co, the TBA . A t ( f )  consumes the 
prefix (ai, ti)i=o ..... j - 1  in a run v j that ends in the state (aj, aj), where aj consists of the 
clocks that terminate the incomplete timer threads induced by r j . 

The base case of j = 0 follows immediately from the definition of initial states of .At. 
For the induction assume that the above holds for j .  

We first show that Pt allows the transition (aj, aj) aj,c~¢ (aj+l, a ~) where a t consists of 
all clocks activated by the transition and all clocks of aj not deactivated by the transition, 
C satisfies clauses 4.3 and 4.3 of definition 20 for the timing augmentation, and ~b satisfies 
clauses 4.3 and 4.3. Because of lemmas 10 and 11 all we need show is that aj does 
not contain a pair of active/%clocks representing two distinct incomplete timer threads 
cfl'I'd[ti(1), tj) and cfl'7:'d[ti(2), tj), with ti(1) 5~ ti(2), which merge at tj. The starting 
of a t -clock at ti(1) implies from definition 19, clause 2, that 2---, Ion(0, d] E ai(1) and 

2" Ion(0, d] ~ ai(1)+l. The semantics then imply that tj + x = ti(1) + d ,  where x represents 
the common suffix that will be timed by the thread following the merge at tj. Arguing 
similarly for the case of the second clock, we have tj + x = ti(2) + d, thus together 
contradicting the assumption that ti(1) 5 ~ ti(2). 

Next we show that the run r j+l  of . A t ( f )  obtained by extending r j by the above 
transition consumes (ai, ti)i=o ..... j .  For this we need only show that the timing conditions 
required by clauses 6 and 7 of definition 20 are not violated. For the case of clause 6, 
consider an active a-clock in aj representing the timer-thread c ~'z'd [ti, tj). But the starting 
of an a-clock at ti implies from definition 19, clause 1, that ZIon(0, d] ~ ai+l.  The 
semantics then tell us that tj < ti + d. The value of the clock, tj - t i cannot then exceed 
d. The case of clause 7 is similar. 

Finally, we note that a r consists of the clocks terminating the incomplete timer threads 
induced by the run r j+l  . But this follows immediately from definition 22 for timer threads 
and the definition 19 for the clock operations. [] 

For the proof of lemma 14, the following simpler lemma is useful. 

Lemma 13. Let  r u and v e represent, respectively, the runs o f  .Au( f )  and .Ae ( f )  on some 

co-string a E (2sol(f)) C°. Then f o r  all i ~ co, r e C r u. 

Proof  We first make the following observation about the statement of the lemma. As we 
have seen, on any arbitrary w-string on which .Au has a run, it has a unique run. Moreover, 
as we show below in the proof of the next lemma, .Ae has a unique run on an arbitrary 
input. Thus the runs v u and r e are unique. 

The proof of the lemma follows by induction on the index i of the run, as follows: 
BASE CASE. Every Hintikka set has some element, thus r~ # 0; but r~ = 0. 
I N D U C T I V E  S T E P .  Assume that r e C rn u. We consider two cases. 
CASE 1 [r e = 0]. First note that a Hintikka set contains its basis, since it is closed under 
reductions, and every Hintikka set contains true ¢f E ( f ) .  From the transition conditions 
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of Ae, therefore, rne+l is a subset of the nth input which is r u. Further, by the transition 
conditions of Au, r~+ 1 contains all irreducible formulae in r u, so that re+l C ru+l. 
CASE 2 [r e 7~ 0]. Since re+j contains the irreducible subset of  r~ and ru+l contains all 
irreducible formula~ of r u, using the induction hypothesis, we have rne+l C r U + l  . [] 

Lemma 14. A e ( f )  accepts un t ime(3d f ) .  

Proof Observe, first, that Ae ( f ) is deterministic, and in every state has a ( unique) transition 

for every input letter from 2 sd(f) .  Thus, there is a unique infinite run of ,A  e o n  o r = 

(~Yi}iEoJ = u n t i m e ( M f )  that consumes or; call this run r e. Since r~ = 0, if r e is not 
accepting, then there is a largest i such that r e = 0. 

From the second transition rule for .de in definition 21 and the definition of reduction, we 
can conclude for any two consecutive states s 7~ 0 and t -¢ s of  .A e such that Pe (S, | )  = t ,  

that size(t) < size(s).9 By the well-foundedness of size, there is some j > i, such that for 
all k > j ,  ~r~ = crj ~ 0. Thus there is some formula --,[0 ] -+)fa lso  E crk for all k > j .  
Without loss of generality assume that 0 is -+a ,  O r. 

By the definitions of Pe and reducibility, then, a ~ o'k for all k > j .  Completeness of cr 
implies that --,a 6 cr~ for all k > j ,  whence the definition of an extension and semantics 
yield (3,'l, tj) ~ [---~a, 0 r I --+)false. 

But from the proof of lemma 10 we have rff = .Mf(tk), where r u = (crU)ieco denotes 

the infinite run of .4, on ~. By lemma 13, r [  C rff, so --,[--+a, 0 I ---~)false ~ .Mf ( t k ) .  

By the definition of extension and semantics, then (.M, tk) g= [ ~ a ,  O r I -+)false ,  a 
contradiction. [] 

5.2 Soundness 

The proof consists of  showing that given a (timed) string in the language of An,  one can 
construct a satisfying model for f .  Let (~i, ti)iEo) be a string in the language of Am, and 
let M r be defined by 

Mr( t )  = { f l  E s e l ( f )  I f l  C cr i, t ~ [ti-1, ti) } 

where we have assumed t_ l --- 0. Moreover, let M be defined by 

.M(t) = { p E 791 P E M ' ( t )  ] 

To prove the lemma, we want to show that (.M, 0) ~ f .  

Lemmal5.  Foranyt  E R a n d f l  ~ scl( f ) ,  f l  E .Mr(t) /ff( .M, t) N fl-  

Proof. For a given t, we induct on the inclusion order induced by scI on the formulae in 
sol ( f ) .  Let t ~ [ti - l, ti ) as defined above. 

BASE CASE. Consider a primitive proposition p ~ 7 9. For the forwards direction, let 
p ~ .Mr(t), so p E M( t ) ,  whence the semantics give us (3,t, t) ~ p. For the backwards 
direction, let (j'vt, t) N p, so p E M( t ) ,  so p ~ M'( t) ,  by construction~ 

9For a set of formula: F, let size(F) = EfeFsize(f). 
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INDUCTIVE STEP. Assume that the lemma holds for all f l  ~ scl(fl)  where sel(f/)  C 
scl(fl).  We can show then by a case analysis of the structure of the f l ,  that the lemma then 
holds for f l  also. The details are routine and extremely tedious and are therefore skipped. 
However, we illustrate below a sample case to illustrate the argument. 

Consider the case of f l  = [01 [ 02)f2. Assume for the forwards direction that f l  
MP(t). We have two subcases depending on whether or not f l  is A/g(t)-reducible. 

SUBCASE 1 [REDUCIBLE]. By our construction, f l  is ai-reducible. Let f~ ea i  and 
F C ai be such that f~ - ~  f l .  Then since ai is Hintikka, f~ e ai, so by construction 
f~ ~ .MP(t) as well as F C M~(t). Now as the subformula closure of all the reductors 
and reducts of a formula f are strictly contained in scl(f) ,  the induction hypothesis and 
Corollary 1 give us the result. 

SUBCASE 2 [IRREDUCIBLE]. By construction, f l  6 tri is ai-irreducible. By our 
earlier observations, since tr = (ai)ieco is accepted by .Au ( f ) ,  we may consider a to be the 
run of.Au on a. By the transition conditions of.Au, f l  ~ aj for all j ,  i _< j _< k where k is 
the least index greater than i such that f l  is ak-reducible. To see that such a finite k must 
exist, use the acceptance criteria for .Ae along with the fact that both -'[0l [ -+) f2 ~ ai and 
-'[02 I -+)f2 ~ tri, since f l  is ai-irreducible. At index k, we use an argument identical to 
Subcase 1 above to establish that (A4, tk-1) ~ fl .  Using the fact that f l  is irreducible in 
the intervening period, allows us to use the induction hypothesis on red( f l )  and (k - 1 - i )  

applications of lemma 4 to conclude that (A4, t) ~ f l .  
The backwards direction is similar. For some more details, we refer the reader to 

Ramakrishna (1993). [] 

The soundness lemma follows since f is in .Ad f (0). 

6. C o m p l e x i t y  

Let f be an RTFIL formula of size n and depth k, and let T be the size of the encoding 
of largest finite timing constant appearing in f .  By lemma 5, Isel(f)l = O(nk). Clearly, 

.Au(f) and Ae(f)  can have at most 2 °(nk) states each. The timing augmentation can 
introduce up to O (n 2k) clocks. Following the elimination of copying actions, thus, .At ( f )  

(and consequently also .Am(f)) can have at most 20(n2k'k'l°gn) states and O(n 2k) clocks. 
The final emptiness check has a complexity of O (C!. (S + E)2 T'l°g r) ,  where C is the size 
of the clock-set, S and E are the number of states and edges in the TBA, and T is the size of 
the binary encoding of the constants appearing on the edge conditions of the TBA (Alur & 
Dill 1990). The overall complexity of the decision procedure is thus 20(n2k2k'l°gn+T'l°g T). 

The main source of the blow-up is due to the large number of clocks. Note, however, that 
usually the number of clocks will be much less than that indicated by the large upper-bound 
because timing conditions in specifications will generally involve relations between a few 
simple predicates rather than long sequences of events. As a result the overall complexity 
will be closer to 20(nk+C'k logn+T.log T), where C is the number of clocks introduced in 

the timing augmentation. Comparing this with the 2 °(nk) upper-bound for FIL, the price 
for real-time is seen to be an additional factor exponential in the number of timers and the 
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constants appearing in the specification. However, the decision procedure is still doubly 
exponential (deterministic time), essentially the same as for the timeless logic FIL. In fact, 
by combining the PSPACE-containment of the emptiness problem for TBAs (Alur & Dill 
1990) with the EXPSPACE-encoding of the automaton constructed in the last section, it 
can be shown that RTFIL is in EXPSPACE. lo 

The procedure given can be adapted in a straightforward manner to obtain a model- 
checking algorithm for RTFIL having the same complexity with respect to input formula 
and linear in the size of the input model (for instance, in the form of a fair-transition 
system). 

Analogous to the result in Ramakrishna et al (1992) we can show that if we bound 
the largest constant appearing in a formula and the largest depth of nesting of interval 
modalities, then this bounded version of satisfiability for RTFIL is PSPACE-complete in 
the size of the formula. This result is more indicative of the type of scaling behaviour one 
would expect for the logic. 

7. Related work 

The idea of bounding the duration of intervals was first articulated by Melliar-Smith in 
an early paper on real-time interval logic (Melliar-Smith 1987). Subsequent proposals for 
real-time interval logics appear in Narayana & Aaby (1988) and Razouk & Gorlick (1989). 
However, none of these proposals provided decision procedures for the logics presented. 
In fact the logic of Razouk & Gorlick (1989) is so powerful that it is highly undecidable. 
The logics of Narayana & Aaby (1988) and of Melliar-Smith (1987) allow the expression 
of the forbidden "punctuality" construct of Alur et al (1991), so that they can be shown to 
be undecidable if interpreted over a dense time domain. 

Consider an extension of RTFIL by allowing searches of the form --+ + d for d ~ Q. 
The semantics of such a search is that it locates a point t t in the future of the point t where 
the search began such that t I = t + d. It thus allows relatively natural expression of many 
real-time constructs. However, it is not difficult to show that this simple extension (with no 
other restrictions) makes the resulting logic undecidable (Ramakrishna 1993). The proofs 
of undecidability of all these logics follow essentially along the lines of Alur et al (1991 ), 
by reduction from the halting problem for two-counter Minsky machines. 

Another possible extension is to consider backwards searches, for instance ~---f. We 
have shown that even in the absence of real time, this construct leads to non-elementariness 
(decidability of the logic with backwards searches, but without real-time, follows by trans- 
lation to S 1S). The proof of non-elementariness (Ramakrishna 1993) is by reduction from 
the non-emptiness of complement problem for extended star-free regular expressions. 

Decidable dense real-time logics are relatively rare because a dense real-time logic must 
tread a fine line between expressiveness and undecidability. The logics RTFIL and MITL 
(Alur et al 1991) adopt different compromises, and neither, we believe, is as expressive 
as the other. MITL appears to have no direct way of expressing RTFIL formulae that 

10However, the best lower-bound we have is the PSPACE lower-bound for FIL. We refer the reader to Ramakrishna 
(1993) for related comments.  
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constrain the length of an interval defined between the endpoints of a sequence of (more 
than two) searches. Correspondingly, RTFIL cannot express the MITL construct p LOq, 

which requires q to occur within the time bounds denoted by I (while not constraining its 
occurrence outside that interval), and p to hold until that occurrence.11 

In effect, RTFIL defines events in relation to other events, and then imposes real-time 
constraints on their relative occurrence. In contrast, MITL first defines real-time inter- 
vals and then requires events within those intervals, possibly in relation to other events. 
Thus, it appears that MITL may be better suited for synchronized real-time systems, where 
the synchronization is by real-time, whereas RTFIL may be more appropriate for asyn- 
chronous real-time systems. A natural question, then, is whether there is a reasonable 
combination of the two logics that retains decidability. We conjecture that the answer is 
in the affirmative, and a decision procedure for the combination would follow from a suit- 
able "composition" of the procedures for the two logics. This is the case, for instance, for 
FIL and PTL(S, H), where such a "combined" decision procedure follows from purely 
automata-theoretic methods (Ramakrishna 1993). 

The Duration Calculus (Chaochen et al 1991) differs from RTFIL in that it treats intervals 
as primitive. It is well-suited to describing and reasoning about cumulative behaviour, a 
feature especially useful for hybrid systems. The operator f in that logic, for instance, 
allows one to bound the duration of a (fragment of a) computation for which a predicate 
holds. This ability to integrate over non-convex intervals, combined with the "non-local" 
character of the logic makes it very expressive. However, as shown in Chaochen et al 

(1993), over dense time the simplest real-time fragment of the calculus is undecidable, 
and even without real-time the simplest fragment is non-elementary. We are currently 
investigating an extension of RTFIL with ageing operators, inspired by the f operator of 
the Duration Calculus. 

8. Conclusion 

We have presented a real-time interval logic RTFIL which conservatively extends the 
timeless logic FIL. The logic extends FIL in a natural way to allow real-time specification, 
without sacrificing decidability. We have presented a formal semantics for the logic and 
have given a decision procedure for it. That RTFIL involves an additional exponential factor 
proportional to the number of clocks and the constants appearing in the specification should 
come as no surprise for those familiar with other dense-time logics. 

A prototype RTFIL theorem-prover based on a tableau-theoretic analogue of the decision 
procedure given in this paper has been implemented and used to verify some simple real- 
time systems. However, further work is required before the system can become the basis 
of a practical verification system for real-life examples. Apart from the use of efficient 
data-structures, such as binary decision diagrams for state-encoding, efficient heuristics, 

11 In each case, the introduction of auxiliary predicates mitigates the problem. Note also that the logic TPTL (Alur & 
Henzinger 1989), with "freeze" quantification, can express the RTFIL property given earlier. Unfortunately, TPTL 
is undecidable when interpreted over a dense time domain. We must add, however, that MITL extended with past 
operators c a n  express this property, although apparently less succinctly (see Ramakrishna 1993). This logic has a 
decidable validity problem. 
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such as those used in Alur et al (1992) will need to be used in order to reduce the space 
requirements for the verification. Since our procedure is automata-theoretic, it can directly 
benefit from any advances in verification technology based on co-automata. 

We are also devising a proof calculus for the logic in the style of the natural deduction 
calculi that are now gaining popularity in many applications. The success or failure of 
an "expensive" logic such as RTFIL would depend crucially upon whether one is able to 
obtain a clean proof system. We consider our decision procedure an important first step 
in this direction. For instance, our reduction and transition rules can be seen as a form of 
"rewrite rules" for a tableau proof system. The incorporation of timers in a formal manner 
into such tableaux, however, presents non-trivial difficulties. One approach might be to use 
time variables with such operations as resetting, assignment, comparison and difference, 
to simulate the role of timers. However, such an approach is probably far too low-level 
to be useful. On the other hand, some appropriate mixture of automated inference within 
such a proof system, along with user assistance at crucial points, may be feasible. 

Finally, from a more theoretical standpoint, there are interesting expressiveness ques- 
tions regarding RTFIL and some other decidable real-time logics. The apparent duality 
between our approach and that of other real-time temporal logics, as outlined in the previ- 
ous section, clearly merits further study. Another interesting direction involves identifying 
a natural decidable fragment of parametric RTFIL, in the sense of Alur et al (1993). 

We thank Rajeev Alur for useful discussions, and for helpful comments on the conference 
version of the paper. 
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