
Sddhand, Vol. 21, Part 2, April 1996, pp. 147-184. © Printed in India.

A real-time interval logic and its decision procedure

Y S R A M A K R I S H N A 1+, L K DILLON 2, L E MOSER 1,
P M MELLIAR-SMITH 1 and G KUTTY 1

1 Department of Electrical and Computer Engineering, and
2Department of Computer Science, University of California, Santa Barbara,
CA 93106, USA
+Present Address: Computer Science Department, SUNY, Stony Brook, NY
11794-4400, USA

Abstract. Real-Time Future Interval Logic is a temporal logic in which for-
mula~ have a natural graphical representation, resembling timing diagrams. It
is a dense real-time logic that is based on two simple temporal primitives: in-

terval modalities for the purely qualitative part and duration predicates for the
quantitative part. This paper describes the logic and gives a decision procedure
for satisfiability by reduction to the emptiness problem for Timed Btichi Au-
tomata. This decision procedure forms the core of an automated proof-checker
for the logic. The logic does not admit instantaneous states, and is invariant
under real-time stuttering, properties that facilitate proof methods based on ab-
straction and refinement. The logic appears to be as strong as one can hope
for without sacrificing elementary decidability. Two natural extensions of the
logic, along lines suggested in the literature, lead to either non-elementariness
or undecidability.

Keywords. Interval logics; concurrent systems; real-time temporal logics;
hierarchical refinement.

1. Introduction

Specification and verification of concurrent systems is difficult in part because the many
possible alternative interleavings of activities generate a large number of cases that must
be considered. The presence of real-time constraints, and their interaction with constraints
on the interleavings, makes the problem even more difficult. Propositional temporal logic
(PTL) and the propositional/z-calculus are too low-level to capture abstract system re-
quirements easily without including extraneous details that can bias subsequent implemen-
tations. Interval logics aid the specification of concurrent systems by providing temporal

A preliminary version of this paper appears in the Proceedings of the 13th FST&TCS, LNCS 761, December 1993,
pp 201-220.

147

148 Y S Ramakrishna et al

modalities designed explicitly to ease the definition of temporal contexts and of properties
required to hold in such contexts.

Interval logics also permit natural graphical representations, which are usually more
intuitive and easier to understand than their textual counterparts. When expressed graph-
ically, interval logic formulae resemble the "back-of-the-envelope" timing diagrams that
designers typically draw to document and reason about temporal properties of their designs.
Interval logics, in their graphical representation, could serve to extend existing design and
documentation environments to the more challenging task of verification of concurrent
systems.

However, most known interval logics are either non-elementary or even undecidable. In
particular, the Interval Temporal Logic of Moszkowski (Halpern et al 1983) is provably
non-elementary and the Modal Logic of Time-Intervals of Halpern & Shoham (1991) is
undecidable. In~ Ramakrishna et al (1992) we presented an interval logic, called Future
Interval Logic (FIL), and a decision procedure for it. As far as we are aware, this is the first
and indeed the only interval logic known today, with an elementary decision procedure.
Examples illustrating the use of FIL in specification and verification appear in Dillon et al

(1992) and Kutty et al (1993). However, FIL is a "timeless" logic, with no quantitative
notion of time.

There are numerous applications, however, where a purely qualitative notion of time
is insufficient, because correctness depends crucially on real-time constraints between
events in a system. This has led to real-time extensions of temporal logics (Jahanian &
Mok 1986; Narayana & Aaby 1988; Alur & Henzinger 1989; Emerson et al 1990; Lewis
1990). The theory of timed-automata of Alur & Dill (1990) and Alur & Henzinger (1992)
has helped clarify fundamental issues regarding the decidability of real-time temporal
logics. These results have not, however, been applied to real-time extensions of interval
logics (Melliar-Smith 1987; Narayana & Aaby 1988; Razouk & Gorlick 1989) to establish
their decidability or to obtain "efficient" decision procedures.

In this paper we extend FIL to real-time. We associate the domain of non-negative reals
with a computation, and extend the language of FIL to allow statements about the durations
of intervals. This gives a relatively clean extension of FIL. Firstly, the extension is con-
servative. All tautologies of FIL are tautologies of this logic. Moreover, the tautologies of
RTFIL, restricted to the language of FIL, are precisely the tautologies of FIL. Secondly, the
extension does not sacrifice decidability. RTFIL is decidable by reduction to the emptiness
problem for Timed B~ichi Automata; this constitutes the main result of this paper. Finally,
the extension is adequate. RTFIL has the expressiveness needed for real-time reasoning.
We give an example of its use in Ramakrishna et al (1993), where a proof-checker based
on the decision procedure presented here is used to verify a simple real-time system.

Our work, like Barringer et al (1986) and Alur et al (1991) but unlike Narayana & Aaby
(1988), Emerson et al (1990), Jahanian & Mok (1986) and Razouk & Gorlick (1989), uses
a dense model of time. A dense time domain is preferable and to a discrete time domain for
specifying concurrent systems because independent events in asynchronous components
may occur arbitrarily close in time. It is not possible, therefore, to bound h priori the granu-
larity of the underlying time domain, as required for a discrete model. A dense time domain
is also preferable for carrying out hierarchical verification, since proofs remain valid under
refinement or abstraction. A dense time domain facilitates compositional specification and

A real-time interval logic and its decision procedure 149

verification of real-time systems, where a component's (timing) semantics must be inde-
pendent of (the timing granularity of) the environment in which it may operate. Dense time
is also required when a component interacts with the continuous world; hybrid systems are
a good example (Maler et al 1991). Numerous real world and process control applications,
thus, require a dense model of time.

Unlike most real-time temporal logics, RTFIL is insensitive to instantaneous states. 1
This semantics agrees with our intuition that a property of a system can be "observed"
only if it persists for some measurable amount of time. It may be counterproductive, when
specifying systems, to impose instantaneous requirements on behaviours. Specifications
whose only satisfying models contain instantaneous states obstruct the use of hierarchical
refinement in much the same way that the next operator obstructs hierarchical refinement
(Barringer et al 1986; Lamport 1991) in non-real-time temporal logics. In the case of
RTFIL, the absence of instantaneous states, in concert with its restricted syntax, results in
the property that, for any model whose valuation function is right-continuous, the valuation
function extended to an arbitrary RTFIL formula is also right-continuous. This property of
"temporal interpolation" is expected to facilitate proofs based on successive refinement or
abstraction, where the refinement mapping defining a predicate at one level may involve
an arbitrary RTFIL formula on predicates from an adjacent level.

This paper is organized as follows. Section 2 introduces Real-Time Future Interval Logic
(RTFIL) by means of a simple graphical formula. It then defines a textual syntax, intended
models, and semantics of RTFIL. Section 3 contains some preliminary definitions and
notation. The decision procedure is described in § 4 and its correctness is proved in § 5.
We present complexity results in § 6. In § 7 we discuss related work and conclude in § 8
with some open problems and on-going work.

2. The logic

We first provide a very informal introduction to RTFIL and illustrate the graphical repre-
sentation of formulae. RTFIL is a linear-time temporal logic. Thus, a formula is interpreted
on a linear trace of states, representing a possible execution of a transition system (or a
fragment of such an execution). Every trace has an initial state. Traces may, however, be
unbounded and may thus represent nonterminating behaviours. We assume that the states
of the transition system are continuously observed at all t ~ R (the set of non-negative
reals); thus, every trace of the system is a dense real-time trace.

The key constructs of RTFIL are the interval modality and the duration constraint.

Syntactically, an interval modality is constructed by means of searches and other (simpler)
RTFIL formulae. Semantically, an interval modality extracts a convex subset from a given
dense trace. This convex subset specifies the interval over which a property designated by
a nested formula holds. The duration constraint is expressed using the special predicate
Ion, and specifies rational lower and upper bounds on the length of an interval.

An interval is constructed using a pair of search patterns; searches are shown dashed
with arrowheads, and target formulae are left-justified below the arrowheads. The semantics

1 The decidability results presented here do not require this semantics.

150 Y S Ramakrishna et al

"-7 near

near

cross ~ cross

[)
green

len (3.5, 7]

Figure 1. An example specification in
Graphical Interval Logic.

of a search that starts at a point in the trace is that the search locates the earliest point in
the reflexive future where the target formula holds. When such searches are composed
sequentially into a search pattern, every subsequent search begins at the state where the
previous search ended. In case the target of a search is not satisfied at any point in the future
of the current point within the previous outer interval, the formula is assumed to be true
by default if the search is "weak" (shown by a single arrowhead) and false if the search is
"strong" (shown by a double arrowhead). Intervals are shown solid with square brackets
on the left and parentheses on the right. A formula drawn left-justified below the start of
an interval must hold at the first state of that interval, while a formula indented below an
interval must hold throughout the interval. In the graphical representation of an RTFIL
formula, the horizontal dimension shows progression through the trace (time progresses
from left to right) and the vertical dimension describes the composition of formulae from
sub formulae.

The example in figure 1 is a fragment of a road intersection specification. The state
predicates near, cross and green are true, respectively, when a car is near an intersection,
when it is crossing the intersection and when the signal along that direction is green. It
states that, if the signal is green whenever a car first approaches the intersection, it takes
more than 3.5 seconds but at most 7 seconds to complete the crossing.

Although graphical formulae such as that above are easier to read and understand than
their textual counterparts, the rest of the paper will use a textual syntax for convenience of
exposition.

2.1 Syntax

The sets of well-formed formulae (wffs), well-formed search patterns (wfsp), and well-
formed interval modalities (wfim) of RTFIL are defined relative to a finite set 7) of primitive
propositions by the following BNF grammar. We use f for a wff, p e 7:' for a primitive
proposition, 0 for a wfsp, I for a wfim and d e Q (the set of non-negative rationals) for a
duration, each possibly with a subscript.

f = t r u e I p I Ion(0, d] I - - ' f I f l A f2 I I f

l = [- 1 0) l[01)l[0110z)
O = ~ f l ~ f , O

Although in the syntax above, we do not use 0 to include the trivial search patterns, " - "
and "--+", in the sequel we shall use the meta-variable 0 to mean any search pattern, trivial
or non-trivial, unless explicitly noted otherwise.

A real-time interval logic and its decision procedure 151

()) [] ",near ~ [--+near I --+near, --+cross, ---~--,cross)(green ~ Ion(3.5, 7])

Figure 2. Textual equivalent of the graphical specification in figure 1.

We consider two special sets of well-formed strings when defining the semantics. The
first, the set of wfsp, will be denoted by srchp(P) , and the second, the set of wfim, will be
denoted by imod(7~). In addition, we shall call a wf fpure ly propositional if it is formed
by the following grammar:

f = true l P l - - , f l f l A f2

We use false as an abbreviation for --,true, f v g as an abbreviation for --,(--,f A --,g),
len(d, c~) as an abbreviation for --1 len(0, d], and len(dl, d2] as an abbreviation for
len(dl, ~) A len(0, d2]. The traditional temporal operators are defined by

d e f ---I r

O f = t ~ f l ~) f a l s e
defr _ . r

[3f = l ~ j l ~) f a l s e

f Uga=eY [---~(--f v g) [- +) g

and so on.
In FIL, the formula I f , I an interval modality and f a formula, has the semantics "if

the interval designated by I exists, then f holds at the initial state within that interval."
Syntactically RTFIL is just FIL extended with the timing primitives len(0, d] for d e Q,
the domain of durations. The formula I len(0, d] has the natural interpretation that if the
interval I exists then its duration is no more than d. Intuitively, len(0, d] asserts that the
duration of the remaining (suffix) interval is at most d time units. A search to len(0, d]
locates the earliest future point within the current interval, such that the duration of the
remaining interval is at most d. Consequently, over an interval of infinite duration len(0, d]
is never satisfied, e

A detailed description of the translation of graphical formulae to the textual syntax is
beyond the scope of this paper (details appear in Dillon et al (1994)). For purposes of
illustration, however, we note that the graphical formula given in figure 1 translates to the
textual RTFIL formula given in figure 2.

2.2 Models

The models on which we interpret RTFIL formulae are partial functions from the non-
negative reals R (the time domain) to states, which assign valuations to the primitive
propositions. We represent a model by a total function A4: R ~ 2 ~ U { l }, where 7 9 is the
set of primitive propositions and I represents undefined. 3 We require a model for RTFIL
to satisfy the following requirement of admissibility.

2The semantics of formulae containing wfim that involve timing primitives can be counterintuitive. Thus, while such
formulae are decidable in the logic at no extra cost, their use should probably be avoided.
3We assume that all functions and predicates, except equality, are strict, i.e. if any of its arguments is 2_ then the
result of a function or predicate is also 2_. For equality, however, we regard 2_=1 to be true and 2_= x and x =_L
to be false if x is not 2_.

152 Y S Ramakr i shna et al

DEFINITION 1
[ADMISSIBILITY] A function F: R ---+ X tO {J_} is

- f in i te ly variable iff, for any two elements tl < t2 in R, there are only finitely many
changes in F between tl and t2

- right cont inuous iff for any t ~ R, limt,~t+ F(t ') = F (t)

F is admiss ib le iffit is finitely variable, right continuous, dom F = { t 6 R I F (t) #_1_ } is
a left-closed right-open segment of R, and im F = { x ~ X [3t ~ R, F (t) = x } is finite.
The above definitions of finite variability and right continuity are stated relative to an
arbitrary valuation function on R in order that we can also use them with extended models
(see theorem 3 in § 3.2 below), and not just with models. Note that finite variability implies
discreteness, but finiteness of the image set is a stronger requirement. These definitions
are equivalent to the standard ones in the literature.

Intuitively, the domain of a model represents the interval (or "context") over which a
formula is evaluated. Finite variability ensures that a system performs only a finite number
of actions in any finite period of time and fight continuity guarantees that a property
can be observed only if it holds over an interval with a positive duration. Together these
conditions imply that corresponding to every proposition p there is a sequence to, tl
of time values, with limi~oo ti = oo, that partition the time domain R into half-open
segments [ti, t i+l) over which the valuation of p is constant. We call any model satisfying
the above properties an admiss ib le model . We write _/_~ for the everywhere undefined
model A-M: R ~ 2 p U { _1_ }, which satisfies dom(_l_~) = 0 and is (trivially) admissible.

An observation regarding the condition of fight continuity is in order. The semantics of
RTFIL can be generalized to admit models that are not fight continuous. However, as long
as the semantics are defined so as to be insensitive to instantaneous states, a formula will
be satisfiable in the more general class of models precisely if it is satisfiable in the class of
right continuous models. Moreover, the semantics of RTFIL are simpler to state and more
intuitive if formulae are interpreted over fight continuous models only.

An admissible model A4 satisfies an RTFIL formula if the formula is true when evaluated
at the initial state of At, where the valuation of formulae is defined below. If an admissible
model represents an entire behaviour of a system, then its domain will be all of R. (To
represent a terminating behaviour by such a model, the last state of the behaviour is
stuttered.) However, in general, the domain of an admissible model may be any left-closed
fight-open segment of R.

2.3 Semant ics

We now give a formal definition of the semantics of RTFIL, which have been explained
informally above. The semantics are a natural extension of the FIL semantics (see
Ramakrishna et al 1992). They are defined here with respect to a dense, rather than a
discrete, time domain. Moreover, the syntax of FIL does not contain timing primitives, so
that FIL formulae describe only constraints on the ordering of states.

The semantics make use of the "locator" function A for locating the result of a search
and the "constructor" function C for constructing the subinterval, given the current interval

A real-time interval logic and its decision procedure 153

and the states located by the searches. For brevity, we use R ± ' ~ to denote R U { _1_, oo }
below.

DEFINITION 2
The search-locator function

X: srchp(P) x (2 ~' U { ,1, })R x R ± ' ~ --+ R ±'°°

is defined by

- If 34 = ± M or t =_L then

x(o, <34, t)) =,1,

I f 3 4 ~-'1"~,1 and t : i l l then

A(- , (34, t))
X(--~, (34, t))

X(--~a, (M, t))

= t

= sup dom 34
1, if (M, t') g= a for all t' > t, t' ~ dora 34

= inf{t' I t' >_ t, (M, t') ~ a}, otherwise
A(--->a, O, (M, t)) = k(O, (A/l, k(--+a, (.M, t))))

The model-constructor function

C: imod(7 9) x (2 7, U { l })R x R --~ (2 7~ U { l })n

is defined by

C([01 I 02) , (J ~ , t)) = MA(OI,(.A4,t)),A(Oz,(M,t))

where 34t~ ,tz with tl, t2 6 R ±'°°, represents the subinterval model defined by

• A"[tl ,± = -A/[L,t 2 "~'-J-A,I

and 34q,t2 is the restriction of 34 to [tl, t2) if tl -¢_1_ and t2 ¢_1_.

DEFINITION 3
[SEMANTICS] The valuation of an RTFIL formula is defined at a point t 6 dora 34 in an

admissible model 34 E (2 ~' U { 1 })R using the satisfaction relation defined below.
If 34 = 1 M then

- (34, t) ~ f

If M #-t-M then

- (M, t) ~ true and (34, t) ~ false

- (34, t) ~ p , f o r p ~ 7 9 i f f p ~ 3 4 (t)

- (M, t) ~ --,f iff (.M, t) [¢:: f

- (A4, t) ~ f A g i f f (M , t) ~ f a n d (M , t) ~ g

154 Y S Ramakrishna et al

- (.A4, t) ~ Ion(0, d] iff t < s u p d o m M < t + d

- (.A4, t) ~ I f iff (.A4', inf dom A4') ~ f where A4' = C(l, (.M, t))

We say that f is true at t in .A4 iff (M, t) ~ f and that it is false otherwise.
A formula f is satisfiable iff there exists an admissible model

.A4 e (27, U {_1_ }) R such that domA4 = R and (M,0) ~ f . We then say that .M is a
satisfying model for f . A formula f is valid iff every admissible model M for which
dora .A4 = R is a satisfying model for f .

The theorem below follows from the definition of admissibility and from the semantics,
by induction on the structure of an RTFIL formula. The proof of this theorem is subsumed
by that of theorem 3, which appears in the next section.

Theorem 1. Let f be any RTFIL formula and let M be an admissible model. Then for

any t ~ R, (M, t) ~ f iffthere exists E > 0 such that for all t < t' < t + ~, (All, t') ~ f .

This theorem motivates the choice of Ion(0, d] and, by negation, Ion(d, c~) as timing
primitives. If, for instance, we had chosen Ion[d, c~) (with the intuitive semantics) as the
basic timing primitive then, if A4 is an admissible model with dom .M = [0, 1), we would
have (.A4, 0) ~ Ion[l, ~) although (AA, t) [¢= Ion[l, oo) for any t > 0, and theorem 1
would no longer be valid.

The significance of theorem 1 springs from the fact that it ensures that any refinement
mapping definable in RTFIL preserves admissibility. The absence of such a property would
make refinement proofs difficult, since a refinement mapping on a given level might pos-
sibly produce an inadmissible model at the next lower level. This means that, at every
stage, in order to apply further refinements, one would first have to prove that the pre-
vious mapping preserved admissibility. Moreover, it would overly restrict the applicable
mappings.

3. Preliminaries

This section introduces important concepts required by the decision procedure. In particu-
lar, it describes the timed automata used in deciding satisfiability and the various concepts
of reductions and clocks used in the construction of the automata for the decision procedure.

3.1 Timed Biichi automata and timed w-strings

The approach we use for our decision procedure is closely related to the procedure for
the untimed logic in Ramakrishna et al (1992). The first step in that procedure is the
construction of a Biichi Automaton (BA) for a formula, such that the formula is satis-
fied iff the automaton has a non-empty language. This is the basic automata-theoretic
approach (Wolper 1987). However, since RTFIL deals with real-time rather than only or-
der relations, the notion of automata on infinite strings is now extended to that of timed
automata on timed strings.

A real-time interval logic and its decision procedure 155

DEFINITION 4
[TIMED W-STRING] A timed w-string over the alphabet E is an infinite sequence
((~ i , t i)) iEw in (E × R) ~° such that (t i) i~w is an unbounded strictly monotonically in-
creasing sequence, with to > 0.

Observe that an admissible model for our logic identifies a timed string over the alphabet
27'. In fact, in some of our subsequent proofs we shall use this representation for RTFIL
models rather than the one we gave in the previous section.

The following definition of Timed BiJchi Automaton (TBA) is a special case of the TBA
described in Alur & Dill (1990).

DEFINITION 5
A Timed Biichi Automaton .4 is a tuple (E, S, C, p, S t , S v) where

- E is a finite input alphabet

- S is a finite set of states

- C is a finite set of clocks

- p: S x E --+ 2 s×2c×2.(c) is the transition function where ~ (C) , the set of clock

conditions, is the set of inequalities of the form c < t and c = t, for c ~ C and t ~ Q

- S I c__ S is the set of possible initial states

- S F c S is the set of accepting states.

The transition function p defines for each state s and input or a set of triples, where
each triple (s', C' , ok) ~ p(s , or) specifies a next state s', a set C t of clocks reset with
that transition and a set 4~ of clock conditions that must be satisfied at the moment of
the transition. We say that a clock assignment y E R c satisfies a set of clock conditions
4~ ___ ~ (C) iff the set of inequalities 4~[c +-- y (c)] obtained by replacing each clock variable
c in ~b by the corresponding value y(c) is satisfied. 4 If (s t, C' , 4)) ~ p(s , or), we say that

cr, C',4~ St . p allows the transition s
A run of .4 on an w-string cr = ((~ri, ti))i ~ (E × R) ~° is an w-string ~ (A , or) =

{(si, ~'i))i ~ (S x R c) °~ satisfying

- Initiality: so ~ S t, and for all c ~ C, y0(c) = 0

- Transitions: for each i, there is a set of clocks Ci c_ C and a finite set 4)i C ~ (C) of
clock conditions such that

cri,Ci,~i
- p allows the transition s i > si+ 1

- the inequalities in cki[c +-- y i (c) + ti - ti-1] are satisfied, where t-1 = 0

- Yi+l (c) = 0 for all c ~ Ci

- Yi+l(C) : y i (c) -k- ti -- t i - 1 for all c ~ C \ Ci

4As usual the empty set of conditions imposes no conditions and so is always satisfied.

156 Y S Ramakrishna et al

We write (so,)to) o0,~ (s 1 Yl) trl ' t l , > . . . when these conditions hold. Such a run is
accepting iff the set { i I s i e S F } is infinite. The language of a TBA is non-empty iff
there is a timed w-string over its alphabet on which it has an accepting run.

Intuitively, a TBA reads a timed E-string and makes transitions satisfying its transition
function. It has a finite set of clocks, which proceed at the same rate, and which it can reset
with a transition or compare with rational constants. Transitions must satisfy the associated
clock conditions for the input string to be consumed. The operational semantics of the run
shown above are that the automaton stays in state si at time t, ti-1 < t < ti. At time ti

it moves into state si+t resetting the clocks in Ci. The remaining clocks have meanwhile
advanced by the time spent in si. The semantics of the input string tr are that it is a model
A4~ such that for ti-1 < t < ti and i E o9, A4a(t) = ai. We say that the TBA .A consumes

a timed E-string when there exists a run of A on the string and that it accepts the string
when some such run is accepting.

We note for the sequel that a BA can be regarded as a TBA whose set of clocks is empty.
We take this as our definition of BA below. Because the set of clocks of a BA is empty,
its transition function is regarded as a function p: S x E ~ 2 s, and it ignores the timing
information on a timed og-string.

DEFINITION 6
[UNTIMIr~C] We define a polymorphic untiming function as follows

- When given a timed w-string (cri, t i)i~to, it returns the untimed w-string

untime((cri, ti)i~o~) = (tYi)iEo9

- When given a TBA A = (E, S, C, p, S t , SF), it returns the BA

untirne(A) = (E, S, p', S t , S t)

where the transition function p~: S x E --> 2 s is defined by

p'(s, = { s' I <s', c , p(s, }

Lemma 1. For a timed og-string cr and TBA A, i f .4 accepts tr then untime(A) accepts

untime(a).

Proof. The statement follows immediately from the definition of untiming. []

Observe that the admissibility requirement makes the acceptance criterion for our TBAs
slightly more restrictive than that in Alur & Dill (1990). However, it is not difficult to see
that, because of our more restricted edge conditions ~, if there is any accepting run of the
TBA by the less restrictive definition of Alur & Dill (1990), there is a also an admissible
model on which the TBA has an accepting run by our definition. 5 Thus, the emptiness
algorithm of Alur & Dill (1990) suffices for our purpose.

5The latter model is obtained by simply closing each interval of the former model on the left (and opening its
successor interval on the right) - that this does not violate any of the transition conditions in the course of an
identical run of our automaton on the latter model is easy to establish, using the fact that edge conditions are of the
form c = t or c < t only.

A real-time interval logic and its decision procedure 157

Theorem 2. Alur & Dill (1990) It is decidable whether the language of a TBA is empty.

3.2 Subformuhe, reductions and extensions

The concept of subformula closure set, reductor set and reductions on interval formulae
for FIL were introduced in Ramakrishna et al (1992). The first is well-known in automata-
theoretic approaches in conventional temporal logics. The latter were introduced to simplify
the statement of the FIL decision procedure and correspond, roughly, to the so-called
rewrite rules used in the method of semantic tableaux.

The definitions that follow are straightforward extensions of those appearing in
Ramakrishna et al (1992) to take into account the presence of duration formulae, i.e. those
involving predicates of the form len(0, d].

The subformula closure sel(f) captures the idea that in deciding the satisfiability of
the formula f , one need only consider formulae in the set sel(f) . The formulae in the set
intuitively represent all the "verification conditions" arising in an on-line strategy to verify
if f is satisfied by an arbitrary model. As in Fischer & Ladner (1977) our closure is an
extended subformula closure, sometimes also called Fischer-Ladner Closure, in the sense
that sol(f) may contain formulae that are not syntactic subformulae of f .

Notation 1. Let I be an interval modality and let F be a set of formula~,. Then I. F denotes
the set of formula. ~ { I f I f ~ F}. If F is empty then so is I .F.

DEFINITION 7
[SUBFORMULA CLOSURE]
set such that 6

The subformula closure sel (f) of a formula f is the smallest

a) f E scl(f) .

b) true s sc l (f) and false ~ scl(f) .

c) f! ~ sc l (f) iff--,fl E scl(f) .

d) if f l A f2 ~ sc l (f) then f l ~ sc l (f) and f2 ~ scl(f) .

e) if [--+a, 01 [02)fl ~ scl(f) or [01 I --->a, 02)fl ~ scl(f)
then [01 [02)fl c sol(f).

f) if [--+a I 02)fl c scl(f) then if02 is not ~ then [- I 02)fl ~ scl (f) and if02 is
then f l ~ sol(f).

g) if any of [--+a, 01 I 02)fl, [01 I ~ a , 02)fl, [--+a I 02)fl, or [01 I ---~a)fl is in se l (f)
then a ~ scl(f) .

h) if[01 I 02)fl ~ sc l (f) then

- - if01 is not -- then [01 I --+)false e scl(f) , and

- if02 is not -+ then [02 I -+)false ~ scl(f) .

6As usual we identify ~ f l with fl , ~true with false and ~false with true.

158 Y S Ramakrishna et al

f def [--+P I --+P, --*q)~ len(0, 3]

fl a~I [- I --*p, --*q)~ Ion(0, 3]

f2 d_=ef [- I --*P, --*q) Ion(0, 3]

f3 d=e_I [--*P I --*q)-~len(0, 3]

f4 d=ef [--I--*P,--+q)false

f5 def [- I --*P, --*q)true

f6 de=f [-- I --*q)~ len(0, 3]

f7 d_e=f [-- I --*q) len(0, 3]

f8 d=ef [--*P, --*q I --*)false

f9 clef [-- I--*q)falso

fl0 d=e_f [-- I--*q)true

fll d=ef [-*q I--+)false
deI

f12 = [--*P I --,)false

f

fl, f2 f3

f4,f5 f6,J7

true

Figure 3. Example illustrating the subformula closure definition.

i) if [- I O)fl ~ sol(f) and f l is purely propositional
duration predicates are not purely propositional)

j) if [- 10)f l e sol(f) then [- I 0).scl(fl) c sol(f) .

then f l ~ sol(f) (recall that

Example 1. Let f be the formula [--->p I --+P, --+q)--' Ion(0, 3], where p, q ~ P and
let f l , " " , f12 represent the subformulae as shown in figure 3. Then s t (f) consists of
precisely the formulae f , f l , " " f12, P, q, true and all their negations. This is shown in
the figure in the form of a Hass6 Diagram, where a formula f ' (and its negation) is in the
subformula closure of another formula f " (or its negation) if either fP and f " are at the
same "node" (such as, for instance, f l and f2) or if f l is below fpr and reachable from it
(such as for instance f l 1 and fl) . We assume that at every node, a formula and its negation
are both present although, for clarity, we do not explicitly show the negation.

Consider now a model .M and t ~ R, such that the formulae p and [--,p I ---*P, --*q)--'
Ion(0, d] are both satisfied at (.A4, t). Clearly, the "search" to p starting at t will locate
the current point, so that, as a result~ the formula [- I --+q)" Ion(0, d] must also hold at
t. Moreover, the formula [- I --+q) Ion(0, d] must not hold at t, unless either q holds at t
(the interval "collapses") or q never holds for any t t > t (the search "fails"), i.e. unless q
or [--+q [--,)false also holds at t. This notion of a set of formulae forcing the truth of other
formulae is closely related to the concept of (finitary) "forcing" in descriptive set theory,
and motivates the following series of definitions, culminating with lemma 2.

DEFINITION 8
[REDUCTOrt S~,T] The reductor set r e d (f) of a formula f is the smallest set of wff,
not containing f , such that

- if f is of the form [-+a, Ol [02)fl, [--+a [02)fl, [01 I -+a, 02)fl

A real-time interval logic and its decision procedure 159

or [01 I ---~a)fl then a ~ r ed (f)

- if f is of the form " f l then red(f l) c_ r ed (f)

- i f f is of the form [01 I 02)fl then

- if01 is not - then [01 I ---~)false e r ed (f) and

- if02 is not ~ then [02 I ~) f a l s e ~ r ed (f)

- i f f is of the form [- I 02)fl then [- I 0z).red(A) _ red(f)
- if f is of any other form then r e d (f) = 0.

DEFINITION 9
[REDUCIBILITY] Let a and f be formulae. Then f is a-reducible iff a e r ed (f) .
Otherwise it is a-irreducible. If S is a set of formulae, then f is S-reducible iff it is a-
reducible for some a e S.

DEFINITION 10
[REDUCTION] Let a, f be such that a 6 r ed(f) . Then the wff f~ is an a-reduct of f ,
written f ' "<a f , iff one of the following holds

-- f is of the form [---~a, O1 I 02)fl or[01 I--+a, O2)fl and f ' i s [01] 02)fl

- f i so f the form[- -+alO2) f l and f i s [- 102)fl

- f is of the form [01 I ---~a)fl and f ' is true

- f is of the form [01 [02)fl, a is either [01 [---,)false or [02 I ~) f a l so , and f~ is true

- f i s o f t h e f o r m [- - - ~ a l ~) f l and f ' i s f l

- f is of the form " f l , f ' is --,f(and f (<a f l

-- f is of the form [- I 02)fl, a is [-] 02)b, f ' is [- I 02)f; and f (<b f l .

When f is reducible to f~ through a chain of reductions with respect to formula ~. in a
set S, we say f ' -<~ f .

Example 2. Continuing with example 1, figure 4 illustrates the definitions just given. In
the figure, if a formula f~ is reachable from a formula f " by a direct edge labelled with a
formula a, then f ' <a f ' . Thus, the fanout labels of a node f r are precisely the formulae in
r e d (f) . For instance, f is p-reducible but q-irreducible. Moreover, p transitively reduces
f to f6. This reduced formula is now q-reducible, so that truo -<*{p,q} f . Note also that f8
directly reduces f to true.

Observe that for a wff a, the parameterized reduction operator ~a on wff, has been
defined so that f ' "<a f guarantees that a ~ (f ' = f) and sel(f ') C sel(f) . This
is formalized in the next lemma, which helps motivate the construction of the untimed
automaton described in § 4.2.

Lemma 2. Let f , fr, a be formulte and A4 be a model such that (At, t) ~ a and f ' "<a f .

Then (At, t) ~ f iff (At, t) ~ f ' .

160 Y S Ramakrishna et al

f

true

f8, f12

Figure 4.

tions.
Example illustrating reduc-

Proof. The proof is by a case analysis of the reduction rule used in the reduction (defini-
tion 10). The presence of the last rule requires an induction. We use induction on the number
of applications of the last rule in the reduction. The base case involves an application of
one of the earlier rules, which can be proved easily using the semantics of FIL.

For the induction step, let f be [- [02)fl, a be [-] 02)b and fr be [- [02)f;. To
establish the forwards implication, assume that (.h4, t) ~ f , (M, t) ~ a and f r "<a f .
Using the semantics of the logic, it is clear that (A4 p, t) ~ f l , and (.M r, t) ~ b, where
A4 p = A4[t,x(02,(~,t))). But, by the definition of reduction, fl ~ ~b f l , so that by the induc-
tion hypothesis (.M r, t) ~ f ; . Again, from the semantics, we have (M, t) ~ [- [02)f(

as required. The backwards implication follows similarly. []

COROLLARY 1
Let (.M, t) ~ a for all a • S and let f ' <*s f " Then (At, t) ~ f iff (.M, t) ~ f ' .

Example 3. Observe, in ourrunning example, that p ~ (f = f l) , (P A q) =~ f and
f8 =~ f - Note also that, for a formula f , the formulae which are the (transitive) reducts
of f give rise to a complete lattice under the relation "is a reduct of."

We have so far represented models as mappings from R to the powerset of primitive
propositions. It is a useful abstraction for the description of the decision procedure and for
the subsequent correctness proofs to extend this mapping so that it provides valuations to
every formula in sel(f) .

DEFINITION 11
[MODEL EXTENSION] Given an admissible model M • (2~') R, its extension with
respect to an RTFIL formula f is the function .Mf: R --+ 2 s¢l(f) satisfying . A / f f (t) =

{fl I f l E s t (f) , (.hi, t) ~ fl}- We call A/l f an extended model, and each set A/If(t) an
extended state.

A real-time interval logic and its decision procedure 161

It is easy to see that for an arbitrary model, extension is well-defined and, thus, that
corresponding to every model there is a unique extension with respect to a given formula.
Moreover, every state .A/[f (t) in an extended model .A/[f is

- - consistent in the sense that for any formula f ' E sel(f) , f t ~ A4f(t) only if ~ f t ¢~
A4f (t)

- complete (up to elements in sel(f)) in the sense that for any formula f ' ~ sel(f) either
f t E .MY(t) or ~ f E .MY(t).

Theorem 3. Admissibility of models is preserved under extension.

Recall that the real-line is partitioned by any primitive proposition P into a sequence
of segments over which the valuation of P is constant. We may extend this concept to
arbitrary subsets of formulae in scl(f) , such that two points tl <_ t2 ~ R are in the same
equivalence class iff all points t such that t I < t < t 2 yield the same valuation for all
formula~ in the set. Intuitively, our proof of theorem 3 uses the fact that the partition of
the real-line induced by any RTFIL formula f , not involving duration predicates, is at
most as fine as the coarsest partition that refines the partitions induced by the formulae in
scl(f) \ {f, --,f}. Moreover, if every equivalence class belonging to one of a finite set of
partitions is left-closed and fight-open, then so is every equivalence class in the coarsest
partition that refines these partitions. For formulae containing duration predicates, we note
that there is at most one (right-continuous) change in the valuation of a duration predicate
in any finite segment of R, and no change in any infinite segment of R.

The proof of theorem 3 makes heavy use of the following lemma, the proof of which is
straightforward.

Lemma 3. Let X1 and X2 be finitely variable and right continuous functions from R to

finite subsets of a set S. Let P (bl , . . . , bn) be a boolean function of n variables bl , . . . , bn,

and let X l xn be elements of S. Then the functions 7

1. X: R ~ 2 s definedby X(t) = Xl(t) tJ X2(t)

2. B: R ~ {true, false} defined by B(t) = P[bi+--(xi E Xl(t))]i

are also finitely variable (FV) and right-continuous (RC).

Proof of theorem 3. Let A4 be an admissible model. Then dom .A/i f --~ dom At. Moreover,
since sol(f) is finite for any formula f , clearly A4f is image finite. It remains to prove that
J ~ f is fight-continuous and finitely variable. The proof is by induction on the inclusion
order induced by the subformula closure.

For the first of two base cases, we note that

{true, p} if p E .M/(t)

"A4P(t) = {true, --,p} otherwise

Finite variability and fight continuity of A4P then follows easily from that of .A4 for any
p ~ 7 ~.

7The abbreviation P [X i *-Yi]i denotes simultaneous substitution of Yi for xi, for every i.

162 Y S Ramakrishna et al

For the remaining base case, we note that sup dom .M ~ t for t ~ dom .M, so that, for
any t e dom(.M), d ~ Q,

{true, Ion(0, d]} if s u p d o m M - t < d
Mlon(°'dl(t) = {true, --, len(0, d]} otherwise

Thus there is at most one fight-continuous change in the valuation of .M lon(°'dl over
dom Mlon(°'d].

For the induction step, we consider two sample cases. The remaining cases are similar.
CASE 1. Consider M A^£2. We have

where

3AfIAf2(t) = .Mf l (t) u . M f 2 (t) U X (t)

{ f l A f 2 } i f f l E M f l (t) andf2E2t4f2(t)

X(t) = { ' (f l A f2)} otherwise

Clearly X is FV and RC by the second clause of lemma 3, since M fl and M f2 are. By
the first clause of lemma 3, so is Ad fl^f2

CASE 2. Consider now the case of M f with f = [---~a, Ol I --+b, 02)f f.

From the definitions of extension and subformula closure we have

4

M f (t) = U Adfi (t) tO Ma(t) U .A4b(t) U X(t)
i=1

with

X (t) =
{f}

{~f}

f l 6 M A(t), or
f2 ~ M fl (t), or

if a ~ Ma(t) and f3 ~ Mf3(t) , or
b ~ A4b(t) and f4 ~ A4f4(t), or
B(t)

otherwise

where

f l = [--+a, el I ---~)false

f2 = [~ b , 02 I ---~)false

f3 = [el I --+b, O2)f'

f4 = [~ a , 01 l 02)f '

and B(t) is a boolean condition defined by

3t' > t Yt ~' t < t" < t' ~ --,b ~ .Mb(t')'-,a ~ .Ma(t ")

B(t) = or

3t' > t Yt" t <_ t" < t' =~ -,b e .Mb(t")--,a e .Ma(t ~)

A real-time interval logic and its decision procedure 163

We now show that B(t) is itself RC and FV. By the induction hypothesis each of the
functions 340, Mb, A4f3 and Atf4 is RC and FV. Consider now an arbitrary point t E
dom M. We have the following possibilities. Either a ~ ./Ha (t) or b ~ Atb(t) or neither.
In the first two cases B(t) is false, and continues to be false at least up to (but possibly not
including) the least t' where neither a ~ Ata(t') nor b c Atb(tt). Consider therefore the
third case, for which --,a ~ Ma(t) and -,b ~ Mb(t). Now we have two cases depending
on whether there is any point t' > t where either a E Ata(tl) or b E Mb(tl).

- Assume not. Then clearly B continues to be false for all t I > t.

- In the alternative case, let t t > t be the least point such that either a ~ Ata (t ~) or
b E Atb(tt). Then B is false on [t, t ') if

~((a E Ma(t ') f3 E Mf3(tt)) V (b E Mb(t ') f4 E Atf4(t '))) ,

and otherwise B is true on [t, f) .

This establishes the RC of B.
Let Dj~aa represent the set of points at which Ata has a (left) discontinuity, and similarly

D~bforMb.Forasubse tSofRandt ~ R,letS $ t = {s E S I s < t }. The FV condition
fo r .A/[a is then equivalent to saying that DMa .~ t is finite for any t E R. By the induction
hypothesis Ata and M b are FV, so each of DMa and DMb has this property and, therefore,
so also does DMa U D~b, and afortiori any subset of DMa U DMb. As our argument
above for RC of B clearly shows, B is constant between any two consecutive points (in
the usual ordering) in DMo U DMb. Therefore, DR ~ DMO U DMb, giving FV for B.

Now, using lemma 3 we obtain RC and FV, first for X, and then for M f . []

Note that right continuity of Atf for an arbitrary f gives us theorem 1 as a corollary to
theorem 3.

The above theorem plays a crucial role in our completeness proof. The automata that we
build in the sequel operate on extended models. Satisfying models for f are obtained by
restricting the extended models accepted by the automaton for f to the set 7' of primitive
propositions.

Our definition of reductions yields the following property of extensions, which helps
motivate the construction of the untimed automaton in § 4.2.

Notation 2. In what follows, Z represents a string of zero or more interval modalities of
the form [-] 0), which we refer to as current modalities.

Lemma 4. Let A4 be an admissible model and fl E se l (f) be A t f (t)-irreducible. Let
t' ~ R be the least t r > t such that A t f (t) ¢ A t f (tt). Then

a) if f l is E[Ol l Oz) f 2 where O1 is not - then (At, t) ~ f l iff (At, t') ~ f l

b) if f l isE-',[Ol]Oz)f2 where Ol is n o t - then (At, t) ~ fl iffboth

(M, t') ~ f l and (At, t') V= 27false

c) if f l isZlen(O, d] and (At, t) ~ f l then (M, t') ~ Z--len(O, d] iff
(M, t ') ~= 2-false

1 64 Y S Ramakrishna et al

d) if f] is 77--, len(0, d] and (A/t, t) ~ f l then (All, t') ~ 77false.

Intuitively, in the first case, if 2-[01 I 02) can be constructed, it lies in the strict future of t
and, therefore, in the reflexive future of t/. In the second case, [01 I 02) can be constructed
within 77 (its surrounding context), so 2- cannot collapse at t/. For the third case 77 must
collapse at t / since its duration cannot increase in going from t to t I. Finally, for the last
case, 77 cannot collapse before its duration becomes less than d (at the earliest such point
77 len(0, d] must hold).

In the following proof, we say that "a search ---~a at t resolves at a point t / > t in a
• model M " when either

- t I = t and (.M, t) ~ a, or

- t ' > t, (.A/l, t I) ~ a and for all t" such that t < t" < t', (.A4, t f') ~ a.

Proof sketch oflemma 4. Proofs of each of the four clauses are sketched below.
[CLAUSE 1 .] We sketch only the proof of the forwards direction, the reverse direction

follows by similar arguments. From the definition of reductions, we know that since f l is
Mf(t)-irreducible, all searches in 77, 01 and 02 must resolve in the strict future of t and
not before t t. The semantics of searches immediately gives us (.M, t f) ~ f l . Note that
none of the searches in 77, 0l or 02 can "fail" since our definition of reductions ensures the
reducibility of f l to t rue in MY(t) in such a case.

[CLAUSE 2.] Once again, we shall sketch only a proof for the forwards direction.
For the forwards direction, the proof that the first consequent follows is essentially along
the lines of the last case• We show why the second consequent, (.M, t I) ~ 77false, also
holds. Assume for a contradiction that (M, t) ~ Z~[01 I 02)3°2, (A4, t f) ~ 77false and f l
is .A4f(t)-irreducible. As in the last clause, then, all of the searches in Z, 01 and 02 will
resolve in the strict future and not before t I. Since all modalities in 2? are current, the left end-
points of all these intervals are at t. With the above, (M, t f) ~ 77false implies that the right
endpoint of one of the intervals in 77 was located at t/. From the semantics, therefore, in fact
(M, t I) ~ 77ff for an arbitrary formula f l , and in particular, (.A4, t t) ~ 77101 I --+)false.
Now, since 77101 I 02)f is Mf(t)-irreducible, so also is 77101 I ---~)false. By the reverse
direction of clause 1 above, therefore, (.A4, 1) ~ 77[01 I ~) f a l s e . But 2-[01 I ---~)false
red(f1) thus contradicting the assumption of irreducibility of f l in .A/[f (t).

[CLAUSE 3.] From the semantics, we know that all searches in 77 resolve in the strict
future, not before t f. Thus the right endpoint of the instance of interval 77, cannot be before
t I. If it is at t f, then some search in 77 caused an interval to "collapse" at t t, so that from the
semantics (.A/l, t r) ~ 2-false and, therefore, also (.M, t') ~ 77--, len(0, d]. If not (i.e. if the
right endpoint is in the future of tf), assume that the right endpoint is located at some tl > 1 I,
then from the semantics, t] < t + d. Moreover, since the instance of interval Z beginning
at t / also ends at tl, surely the duration of that interval is also less than d, since from the
above tl < t I + d. In this case, both (A//, t I) [¢= 77--, len(0, d] and (.A/l, t f) ~ 77false.

[CT,AUSF~ 4.] The argument here is quite similar to the previous. The right end-point
of the instance of interval 77 starting at t ends either at t f or later• In the first case, there
must exist a point between t and t I at which an instance of the interval 77 (also ending at t ~)
has duration at most d. At this time (say, tl), we have (.A/l, tl) ~ 77 len(O, d], contradicting

A real-time interval logic and its decision procedure 165

Table 1. Example illustrating model extension.

[0, 1) [1, 4) [4, 7) [7, c~)

t r u e 1 1 1 1

p 0 1 1 1
q 0 0 0 1
f 1 1 0 1
f l 1 1 0 1
f2 0 0 1 1
f3 1 1 0 1
f4 0 0 0 1
f5 1 1 1 1
f6 1 1 0 1
f7 0 0 1 1
f8 0 0 0 0
f9 0 0 0 1
flo 1 1 1 1
f l l 0 0 0 0
f12 0 0 0 0

the assumption that t' is the first time greater than t at which the .A/If changes. Thus, we
need only consider the second case. In such a case, the instance of 77 starting at t ' cannot
collapse at t', giving us the result. []

Example 4. Let .M be defined by AA(t) = 0 for t ~ [0, 1), M(t) = {p} for t ~ [1, 7), and
3A(t) = {p, q} for t ~ [7, ec). The reader can verify that .Adf(t) is defined by the matrix
shown in table 1, where the fi are as defined in figure 3. In the table, a row denotes an
interval I of R. A formula appearing in a column is in JMf(t), t C I, iffthe entry in that
column is a 1 and its negation is in .Adf(t) iff the entry in that column is a 0. The example
also illustrates the ideas in lemmas 2 and 4.

Finally, we introduce the following notation that we use to describe the construction of
the eventuality automaton.

DEFINITION 12
[BASIS] Let f , f ' be formulae and let S be a set of formulae such that f ' <3 f and f '
is S-irreducible. Then f ' is a basis formula for f with respect to S, and is denoted by

f ' = (f) s .

Note that the basis formula for any formula with respect to a given set is unique. The
proof relies on the local confluence property of -< s and the absence of infinite descending
chains. This ensures global confluence by Newman's Diamond Lemma (Newman 1942).
It is useful to bear this in mind (and we shall implicitly assume this in our subsequent
exposition) although we do not require this property for any of our subsequent proofs.

166 Y S Ramakrishna et al

Example 5. For the case of example 4, for instance, f6 = (f)A4f(t) for t e [1, 7) and
true -- (f) ~ / (t) for t 6 [7, oo). Note also that f is irreducible at t e [0, 1) and is

(trivially) its own basis with respect to .A4f(t), t 6 [0, 1).

3.3 Interval reductions, clocks and conditions

In Example 4 there are no formulae involving nested interval modalities. However, in
general, a formula may involve nested modalities, so that for ease in describing our con-
structions, we require the more general machinery below.

Roughly speaking, the essential "real-time" unit of manipulation by the TBA is a timed
current interval formula of the form:/Ion[0, d] or 2--, Ion[0, d], where 2- = [-101) [-102) . . .
[-IOn) is a string of zero or more current interval modalities. For the case of such formulae,
we also need the concept of an interval-reduct. Interval reduction is a relation on strings
of current interval modalities and is parameterized by a set of formulae.

DEFINITION 13
[INTERVAL REDUCTION] Let 2- and 2-' denote strings of current interval modalities and
let S be a set of RTFIL formulae. Then 2-' is an interval reduct of 2- with respect to S iff
2-'true -~ 2-true. We represent this by 2-' r-* s 2- and we say that 2 is S-reducible.

Note that 2-' above may be the "empty" sequence of modalities (which we suppress), which
is irreducible with respect to any S. We shall simply say "2-' is a reduct of 2" instead of
"2-' is an interval reduct of 2-" when there is no confusion.

Among the possible reductions on an interval modality is a special kind of reduction
called a collapsing reduction. A collapsing reduction may trigger the checking of clock
conditions on a transition that was just taken, and so our procedure must treat it differently
from a non-collapsing reduction. This will become clear later when we describe the TBA
construction.

DEFINITION 14
[COLLAPSING REDUCTIONS] Let 2- = I i12. . . In and 2-i = I~I~.. . l~m be such that
Z' C~ 2- and m < n. Then 2-' is a collapsed reduct of 27 and the corresponding operation

is a collapsing reduction, written C~s .

The important property of interval reductions that we require for the sequel is as follows.
Suppose .M is ac~,issible, t e R and 2- is .MY (t)-irreducible. Suppose further that there is
a next (least) time t' > t such that ./~f (t r) ~ J~f (t). Then 2 is)k/If (t')-reducible to 2" if:/
is of the form 2-1 [- I ~a)2-2 or Z1 [- I ~ a , 0)2-2 where 2-1a e MY(t1). Intuitively, then,
2- is equivalent to the syntactically simpler formula 2-' when evaluated at t'. Moreover, the
reduction of 2- in J~ f (t I) is collapsing in the case that 2- has the first form. Essentially,
this means that, if the interval 2- is evaluated at time t, it will "end" at time t' and, if it is
evaluated at t', it will be empty.

Example 6. Continuing with Example 4, the modality [- I --+q) collapses at all t e
[7, cx~). The modality [- [--+p, -+q) reduces to [- [--+q) at t e [1, o~) and collapses at

A real-time interval logic and its decision procedure 167

t 6 [7, ~) . In each case the "set" with respect to which the collapse or reduction occurs
is .A/If(t) , fo r the appropriate t.

We also use reductions on intervals to keep track of the "remaining searches" of an
interval as it is timed by an active clock of the automaton.

The clock closure and clock condition sets defined below represent the clocks and associ-
ated conditions required by a TBA during the satisfiability procedure. Thus, while deciding
a formula f , the automaton A (f) never needs any timers other than those in c locks(f)
and the conditions appearing on its transitions are contained in the set c lkconds(f) .

DEFINITION 15
[CLOCK CLOSURES] Given a formula f its clock closure set, denoted clocks(f) , is the
smallest set satisfying the following conditions:

ald 1. i f2 len(0 , d] ~ sc l (f) then c z' ' ~ d o c k s (f)

2. if CzJ 'el ~ clocks(f) and 2-2 r-~ 2-1, for S c_ sci(f) , then cz'z z'cl E clocks(f)

3. if c~'t z'cl ~ clocks(f) then c~zl z'a e clocks(f)

DEFINITION 16
[CLOCK CONDITION SET] Given a formula f , its clock condition set, clkconds(f) is
the set of conditions of the form

a,Z,d - c < d for all c = czl e clocks(f)

fl,~,d
- c = d for all c = czt ~ clocks(f)

Intuitively, a-clocks enforce upper-bound constraints and/3-clocks enforce lower-bound
constraints. States in the TBA for a formula will contain "clock-activity sets," which

×zd
indicate the clocks that are active. The clock Czl ' (where y is either a or/3) will be made
active at a state within an instance of an interval 7~ when it is necessary to time 77, and 21
is the interval that remains to complete the instance of 2-.

Example 7. Let f be [--+p I -+P, ---~q)" Ion(0, 3]. Then clocks(f) contains the clocks,
c[__+p.__.~q)Ct'[---~P'---~q)'3, c ct'[--*p'---~q)'3[._.~q) , c[__+q)~'[--+q)'3, and their 13 counterparts. 8 The clock condition

associated with c a,[---~q),3 fl,[-+q),3 is c t 3. = C[~q) is c < 3 and with its r-counterpart c' = c[._+q) =

As in Ramakrishna et al (1992), let the number of logical connectives and primitive
propositions in an RTFIL formula be its size, and the depth of nesting of interval modalities,
plus one, be its depth. The following lemma is straightforward.

Lemma 5. For an RTFIL formula f of size n and depth k, [sol(f)[= O(n k) and

[clocks(f)t = O (n 2k).

8We are using the abbreviation [0) for [- I 0).

168 Y S Ramakrishna et al

4. Decision procedure

We now have most of the formal machinery required to describe the construction of the
TBA -Am(f) corresponding to a formula f , whose satisfiability is being checked. The
construction of Am is described in four steps.

In the first step, we construct a BA -Au (f) containing timing assertions in its states.
This construction is similar to the construction of the local automaton for the untimed case
Ramakrishna et al (1992). Intuitively, the automaton produced in this first step ensures
that all timing-independent safety conditions are satisfied and also checks some simple
consistency conditions relating to real-time. The BA -Au (f) accepts the untiming of any
timed string corresponding to a model of f , but may also accept other strings, since it does
not fully take into account the real-time constraints imposed by f . The states of -Au (f)

are annotated by timing assertions that encode these constraints.
The second step is the heart of the construction. This step constructs a TBA, At (f), from

-Au (f) in such a manner that all timing assertions, of the form 2- Ion(0, d] and 2--, Ion(0, d],
annotating the states of-Au (f) are encoded as timer related actions of the TBA. Each state
of the TBA .At (f) has a set of"active clocks," a subset of clocks(f) , that is uses to enforce
the timing assertions. The edges of .At (f) have timer resetting and comparison actions.
.At (f) , thus, ensures that all timing based properties are handled properly, in addition to
the timeless safety conditions. In this connection, it is useful to note that a time-bounded
liveness property is really a safety property; the time bound must not pass before the
liveness property is satisfied. That the requisite time must eventually pass - - the condition
of non-Zenoness - - is an implicit liveness condition.

In order to take care of the timeless liveness conditions, we construct the eventuality
automaton .Ae(f) in the third step of the construction of .Am. The eventuality automaton
is a pure BA, without any timers. It is constructed in essentially the same manner as for
FIL (Ramakrishna et al 1992).

The final automaton.Am (f) is a product of.At (f) and.Ae (f) . The formula f is satisfiable
iff the TBA .Am (f) accepts some timed string. We use the procedure by Alur & Dill (1990)
to solve the emptiness problem.

An interesting aspect of RTFIL is reflected in this construction. The local automaton
.At (f) might consume non-Zeno runs, but .Am (f) does not. This is because, in RTFIL,
unlike for instance MITL (Alur et al 1991), there is an implicit liveness condition asso-
ciated with every timing constraint, namely, the right endpoint of an interval satisfying
the timing constraint is eventually found. This allows us to, in effect, dispense with the
"progressiveness check" that Alur & Dill (1990) require while checking the emptiness of
the final TBA.

4.1 Hintikka sets

Most constructive decision procedures use sets of formulae to construct the "components"
of a canonical model for a given formula. The formulae in the sets, like the states in
the model extensions above, give a complete characterization of that component of the
model in terms of not only the atomic formulae (primitive propositions), but also more

A real-time interval logic and its decision procedure 169

complicated formula~. Following tradition (Smullyan 1968; Emerson 1990) we call such
a set of formulae a Hintikka set for an RTFIL formula.

DEFINITION 17
[HINTIKKA SET] A Hintikka set for a formula f

following conditions:
is a subset s of sol(f) satisfying the

1. for all

2. for all

3. for all

4. for all

f l ~ scl(f) , f | ~ s iff " f l ~ s

Ztrue ~ sc l (f) such that Etrue is s-irreducible, Etrue ~ s and :/:false ~ s

len(0, d] ~ sel(f) , --, len(0, d] ~ s

Ef l ~ sc l (f) such that 2-fl is s-irreducible, 2-fl c s iff2---,fl ¢~ s

5. for all Z(f l A f2) ~ se i (f) such that 77(fl A f2) is s-irreducible,
Z(f l A f2) 6 S iff 2-fl C S and 2-f2 6 s

6. for all 27fl c sol(f) such that f l is purely propositional and Z f l is s-irreducible,
7:fl 6 s iff f l c s (note that len(0, d] is not propositional)

7. for all Z--'[-102)fl ~ sol(f) such that Z--'[-102)fl is s-irreducible,
2---,[-102)fl E s i f fZ[- lO2)- ' f l ~ s

8. for all f l , f2 ~ sc l (f) such that fl <~ f2, f l ~ s iff f2 ~ s

The set of all Hintikka sets for f is denoted H (f) .
As a result of the first rule, Hintikka sets are complete and consistent in the sense ofp 160.

However, they may contain temporal inconsistencies that may make them unsatisfiable. The
completeness proof for our decision procedure uses the fact that if a set is not Hintikka then
it is unsatisfiable. Thus, it suffices to consider Hintikka sets in the automaton construction,
as we shall see shortly.

Lemma 6. Any complete subset of sol(f) that is not Hintikka is not satisfiable.

Proof Assume that s is a complete subset of sol(f) that is not Hintikka. We use a case
analysis on the condition in definition 17 that s violates. Consider for instance the last
condition. Assume that fl ~s f2, f l 6 s but f2 ¢~ s. Since s is complete, --'f2 6 s. Let M
be a satisfying model for s. Then (M, 0) ~ fl and for all a 6 s, (A4, 0) ~ a, so that by
Corollary 1, (3//, 0) ~ f2. But --'f2 ~ s and, thus, (M, 0) ~ --'f2, a contradiction. The
case of f l ¢~ s and f2 c s is similar.

Arguments for the remaining cases can be done in a similar manner using the semantics
of the logic to exhibit a contradiction. []

It follows that each state J~f (t) of the extended model J~f is Hintikka. However, not
every w-sequence of Hintikka sets is the extension of a model, because the consecufion of
states in the sequence might be unsatisfiable.

Example 8. When M f is constant throughout the interval [q, t2), let M f [q, t2) denote its
value in that interval. In Example 4, it is clear that the sets S1 = M f [0, 1), S 2 -~- jk/[f [1 ,4) ,
$3 = A/If[4, 7), $4 = M f [7 , ~) are Hintikka. In this case the conjunction of forrnula~ in

170 Y S Ramakrishna et al

a Hintikka set is satisfiable. However, consider the set $5 = (SI \ {- 'f l l}) tO {flÂ}. This
set is Hintikka by our definition above, but is not satisfiable, because the conjunction of
~f8 and f l 1 cannot be satisfied in any model. Such "temporal conflicts" are detected by
the consecution and acceptance conditions of .Ae(f) and .At (f) , as will become clear in
the sequel.

4.2 Untimed construction

Having obtained the candidate states for .Au (f) as Hintikka sets above, we must now
connect them together appropriately. Compared to FIL Ramakrishna et al (1992), the
only new feature now is the presence of formube of the form 2- Ion(0, d] and 2---, Ion(0, d].
Reductions on such formuke in a given state are essentially as before. However, consecution
of two different states imposes further conditions on the timing assertions that these two
states may contain, in addition to the reducibility of non-current interval formulae from
one state to the next.

DEFINITION 18
[UNTIMED CONSTRUCTION] .Au(f) is the BA with

- Input alphabet 2 sol(f)

- State set H (f)

- Non-deterministic transition function Pu defined on H (f) × 2 sel(f) such that Pu allows
i

s ~ t i f f

1. i = s

2. if I[01102)fl e s is s-irreducible and 01 is not - ,
then 2[01102)fl • t

3. if 2--,[01102)fl • s is s-irreducible and 01 is not - ,
then Z--,[O1 I 0 i f 1 • t and 2"false ~ t

4. i f / len(0, d] • s is s-irreducible, then if 2---, len(0, d] • t then 2- has a collapsing
reduction in t

5. if 2---, len(0, d] • s is s-irreducible, then 2-false ¢' t

- Accepting state set H (f)

- Initial state set {s • H (f) I f • s}

The first transition rule ensures that the automaton consumes only Hintikka sets. The
remaining transition rules reflect the conditions stated in lemma 4. Observe that Pu is
reflexive, allowing the automaton to (non-deterministically) stay in state s whenever input
with i = s.

Example 9. Consider the Hintikka sets SI , • - . , S4 of the last example, and.JL~ f of Example
4. If we feed u n t i m e (M f) to Au (f) as an untimed w-string, then the resulting run is shown
in figure 5. The vertices represent states of the automaton and the edge labels represent
letters of the input string. Note that the automaton Au (f) has many other states and

A real-time interval logic and its decision procedure 171

SI $2 $3 $4

S1 " $2 S3 - - - " $4

Figure 5. A run of .Au for example 9.

transitions, but for brevity only those in the locus of this run are shown. The reader can
verify that the transition conditions given above are satisfied for each transition shown.

4.3 Timing augmentation

The timing augmentation systematically examines each state of the automaton built above,
starting from an initial state, adding activity indicators to its states and clock conditions
to its transitions, and splitting states when necessary. State-splitting occurs when different
paths from an initial state to some state of .Au(f) require different sets of timers to be
active. The resulting automaton is the required local TBA.

The augmentation is described in two steps. First, we replicate the states of .Au (f) ,

pairing the replicas with subsets of clocks(f) , to obtain the states of At (f) . Intuitively,
for (s, as) ~ H (f) × 2 ci°ckstf), the clock-activity set as represents the clocks that are
active in this replica of the state s of Au (f) . We then define the transition function of
.At (f) to permit only "legal" transitions between the states produced by this replication
process. While this style of exposition clarifies the underlying mechanics, it is generally
more expedient to perform a breadth-first traversal of .Au (f) , adding clock-activity sets to
its states and splitting states as required. Although the worst-case behaviour of this latter
augmentation procedure may be as bad as the na'ive method of the description, in general,
the latter procedure never creates many unreachable replicas.

For expositional reasons, we allow the transitions of .At(f) to copy the value of a
y , z ,d _y , I ,d

clock Cl into a clock c2 provided that cl has the form Cz~ , c2 has the form cz2 , and

22 C* 2-1. Thus, in addition to clock resetting actions, we allow restricted copying actions.
This method of description clarifies the underlying reasoning better than a direct encoding
into a conventional TBA. A slightly unnatural clock-naming scheme would allow us to
rename the clocks in .At(f) while eliminating the copying actions on its transitions. For
instance, it is easy to see that instead of the copy action c2 ~ Cl, a "shadow clock" Cl,2
could be started simultaneously with cj and used in place of c2 following the copy action.
This simple-minded scheme, however, increases the number of clocks quadratically and
increases the number of states by a factor exponential in the number of clocks. A slightly
more sophisticated scheme, taking account of properties of interval reductions, allows us
to encode copy actions without increasing the number of clocks, while keeping the number
of states essentially the same. Note for this that the clocks form a natural partial order under
the copying relation. We give details of this construction in the next subsection.

Note also that clock-activity sets are not mentioned in the definition of TBAs given
earlier or in the original definition in Alur & Dill (1990). It is easy, however, to modify the
definition of TBAs and the emptiness algorithm in Alur & Dill (1990). to handle clock-
activity sets in a straightforward manner; see Dill (1989), for instance, where a similar
concept is used.

1 72 Y S Ramakr i shna et al

Below we formalize the operations of clock activation and deactivation, which we use
in our construction of the TBA .At.

DEFINITION 19
[CLOCK OPERATIONS] The transition (s, as) i,c,~ (t, at) of .At(f) activates the clock c
iff one of the following holds

ct,Z,d
1. c = c z , I l e n (O , d] ~ t, 2" is irreducible in t, and 271on(0, d] ~ s only if 2- is

reducible in s
fl 2"d , . , -

2. c = c z ' ' , .L Ion(0, d] ~ s, 2- len(0, d] ~ t, and 27 is irreducible in both s and t

y,I ,d y,~,d
3. c = cz2 ¢ as, 2-2 is irreducible in t, cz~ ~ as, 2-1 is irreducible in s, 272 [-~ 271, and

this reduction is not collapsing

y,:Ld The transition deactivates clock c iff c = czl is in as and 271 is reducible in t.
We now define the automaton .At (f) .

DEFINITION 20
[TIMING AUGMENTATION] Let.Au (f) be an untimed automaton such as obtained above.
Then its t iming augmentat ion, denoted .At (f) , is the TBA with:

- State set H (f) x 2 d°eks(f)

- Input Alphabet 2 s¢l(f)

- Clock Set clocks(f)

- Non-deterministic transition function Pt defined on (H (f) × 2 el°eks(f)) × 2 sd(f) such

that Pt allows the transition (s, as) i,c,¢> (t, at) iff

1. S -~ t is allowed by Pu

2. at consists of all clocks that are activated by the transition and all clocks of as that
are not deactivated by the transition

transition activates C2 by the third rule of definition 19, Cl = c ~ z 'd 3. if the and

= cYz2 z 'd are the clocks in this rule, and F = /~ , then for all c~ = c~zi z 'd ~ as C2

such that I~ ~ 2-1, it is not the case that 22 t-~ I~

4. C contains the reset action "c +- 0" iff the transition activates c by either the first
or the second rule of definition 19

5. C contains the copy action "c2 +-- Cl" iff the transition activates c2 by the third
F,z,d y,:~,d rule of definition 19, Cl = Cz~ and c2 = cz 2 are the clocks in this rule, and if

= or, then for all c; = czlZ'd ~ as such that 772 r-; 77' 1 we have ZI r-; 2-; Y

ot,I,d 6. ~ contains the clock condition c < d iff c = czl ~ as

7. ~ contains the clock condition c = d i f f c = c~z~ z 'd ~ as and 2-1 has a collapsing
reduction in t

A real-time interval logic and its decision procedure 173

S1 $2 $3 $4

~ S 1 ~ $ 2 ~ c < = 3 S 3 ~

~ S I ' " $ 2 ' " $ 3 ' > $ 4 '
c ~-- O; c'~-- 0 c<=3; c'=3

F i g u r e 6 . A run of .At as in example 10.

, a , 2 , d ,
- Initial state set { (s, as) }s,as suchthat f e sandas = Ic z Ia,z,d suchthat771en(0, d] e

s and 7? is s-irreducible

- Accepting state set H (f) × 2 cl°cks(f)

The intuition behind the augmentation procedure is as follows. Rule 4.3 ensures that
any model of .At(f), when untimed, is accepted by .Au(f). Rules 4.3 and 4.3 ensure that
the appropriate clocks get started whenever there is a new upper- or lower-bound condition
to verify, and that conditions are remembered until discharged. Rules 4.3 and 4.3 ensure
that the upper- and lower-bound timers are compared with their prescribed limits when the
ends of intervals are reached. Rule 4.3 frees up timers for reuse. The condition for u-clocks
in the last part of that rule states that if there are two running instances of an interval that
reduce to the same one, the older instance continues to be timed for the upper-bound. Rule
4.3 guarantees that such a condition will not arise for/%clocks.

Example 10. Recall example 9, where we illustrated an accepting run of .Au (f). Figure 6
shows the corresponding accepting run of .At (f) on our now familiar .MY. The states of
.At(f) shown in the figure are S' 1 = ($1,0), S~ = ($2, 0), S~ = ($3, {c, c'}), S,~ = ($4, 0),

a [--+q) 3 t fl [--~q) 3 where c = C[~q) " and c = C(~q) " are the clocks of Example 7. The edge labels also
indicate associated clock conditions and/or clock actions.

Although the role of clock c is superfluous in the run shown above, in general it may be
required.

4.3a Eliminating copying of clocks Notice that the only clause in the transition con-
ditions of .At that requires copying of one clock's value into another is clause 5. In the
following we describe how such copying actions can be eliminated in order to obtain
a conventional TBA. First of all, we note that we may rename the timers in c locks(f)

y.z,d is replaced by a unique clock c~ 'z'a, i e {1 , . . . , m} where so that each clock c z,
m = I { 77' I 77' C* 77 } I. Further, we associate with each state a tagging function, which
associates with each clock active in that state an element of { 77' I 77' r--* 2 }. The essen-
tial idea is that, instead of copying one clock c value into another c' on a transition, we
simply update the tag function on c in the next state. The tag function, thus, keeps track
of the remaining suffix of the interval being timed by a clock. This will not work in case
a transition also resets the active clock, following a copying action, since the old value
would get "clobbered." In such a case, (i.e. if the transition also resets the source clock of
a copy action), we simply pick an inactive clock, with the same superscript (perhaps with
the lowest subscript among those available) and activate it. It is not difficult to see that in

174 Y S Ramakrishna et al

every such case an inactive clock will always be available. This takes care of all cases of
copying. When a clock's tag collapses, indicating the end of an interval, it is compared
with its upper or lower bound as appropriate, and returned to the pool of inactive clocks.

We need only show that the number of clocks suffice, i.e. there is always a clock of the
required kind available, when we want to pick an inactive one. But this is clear from the fact
that for a clock with superscript 77 there cannot be more than [{ Z t [77~ E* 77] I copies ever
required, since there will never be more than that many instances of the interval 27 active
simultaneously. We have thus eliminated all copying actions while keeping the number of
clocks the same as before. However, in comparison with our original construction which
involves copying between clocks, there is an increase in the number of states, because of
the association of active clock sets and tag functions with states. In fact, the total number

of states in the resulting TBA is now bounded above by]H (f)[• 2 ° (n2kkl°g n).

4.4 Eventuality automaton

This is essentially the same as the construction in Ramakrishna et al (1992) to which we
refer the reader for more details and intuition.

DEFINITION 21
[EVENTUALITY AUTOMATON] Me(f) is the BA with

- Input Alphabet 2 st(f)

- State Set 2 E(f), where E (f) is the subset of sc l (f) that contains all formulae of the
form--,[0 I --~)false

- Deterministic transition function Pe defined on 2 E(f) x 2 sel(f) such that s -~ t satisfies

1. t = {fl ~ E (f) • i I f] is i-irreducible} when s = 0

2. t = {(fl)i E E (f) I f l ~ s} when s # 0

- Accepting state set {0}

- Initial state set {0}

Note, in particular, that Me(f) handles only unbounded liveness conditions. Time-
bounded liveness conditions are handled by the combination of Me(f) and .At(f); Me(f)

ensures that the required state is eventually reached (without regard to real-time) and
.At (f) ensures that the related timing constraints are met when the state is reached. A
similar "communication" (via the "input" string) also occurs in the purely untimed case
of FIL while dealing with eventualities that are bounded within intervals (Ramakrishna
et al 1992): for checking an eventuality within a bounded context, the local automaton
checks that the context does not end before the eventuality is found, a pure safety property;
the eventuality automaton checks that the right end-point of the enclosing context does

eventually occur, a pure liyeness property.

Example 11. In our running example, we have E (f) = {'-'f8, ~ f l l , ~f12}" As in the
previous two examples, we illustrate the accepting run of Me(f) on .A4 f in figure 7. The
states shown are 0, E1 = {'-'f8, " f l l , -"f12}, and E2 = {-'fll}.

A real-time interval logic and its decision procedure 175

$4 S1 $2, $3

S!
, . E1 " E 2

Figure 7. A run of .Ae for example 11.

Note how .Ae(f) is always one step "behind" .Au (f) : Au (f) is non-deterministic, while
Ae(f) is fully deterministic, allowing precisely one transition on any input. Note also
that both automata do not cycle, in the terminology of fundamental mode asynchronous
automata; i.e. on any input stream consisting of precisely one input letter, there is at most
one state change.

4.5 Combining the automata

The decision procedure is now straightforward. We construct .Au (f) and augment it using
the timing construction to obtain At(f) . We then take the product of .At(f) with the
eventuality automaton .Ae (f) , where .Ae is run on the untiming of the input string. Finally,
we check the emptiness of the resulting timed automaton .Am (f) , using the emptiness
algorithm of Alur & Dill (1990). We thus have our main theorem.

Theorem 4. [DECISION PROCEDURE] Given an RTFIL formula f , it is decidable

whether or not f is satisfiable.

The main lemma required in the proof of theorem 4 is

Lemma 7. The language of.Am (f) is empty iff f is not satisfiable.

Proof The proof follows from the Completeness and Soundness lemmas below. The proofs
of the two lemmas follow the usual format of playing off the semantics of formula ~. against
the allowed runs of the automaton, and are sketched in the next section.

Lemma 8. [COMPLETENESS] Let f be an RTFIL formula and A4 a satisfying model for

it. Then .All f is accepted by .Am(f) .

Lemma 9. [SOUNDNESS] Let f be an RTFIL formula, A4' a timed string accepted by

Am(f), and A4 the restriction of A4' to the primitive propositions. Then A4 ~ f .

The construction for our decision procedure shows, once again, that RTFIL is invariant
under finite infinitesimal timed stuttering. This was stated and proved directly in theorem 1,
but is further clarified by noting that the local TBA .At (f) has a reflexive transition relation
with the self-loops containing edge conditions of the form c < d only and no clock actions.

176 Y S Ramakrishna et al

5. Proof of correctness

We devote the next two sections to proving the Soundness and Completeness lemmas.

5.1 Completeness

Throughout this section we assume that .MY is the extension of a satisfying model .M for f ,
as stated in the Completeness Lemma. Moreover, we use the timed w-string representation
for .MY. It is easy to see that admissibility of .MY implies that there is a timed w-string
representation for it. Note that any of the uncountably many representations suffices for
our purposes. However, for convenience, we use a "canonical" representation, with .Mf
represented by the timed w-string (cri, ti)i~oJ defined inductively as follows (let t_ 1 = 0):

~i m . M f (ti-1)

ti =inf({{t > ti-1 I .M}f (t) ~ .Mf(ti_l)} U {[ti-1] + 1})

The proof of the Completeness Lemma follows from lemmas 12 and 14. Proofs or these
lemmas make use of several intermediate lemmas.

Lemma I 0 . . A u (f) accepts untime(.Mf).

Proof. Observe first that since all states of .Au (f) are accepting, we need only show that
there is an infinite run of .Au that consumes (cri)i~o~ = untirne(.Mf). Since each state cri
is Hintikka, it is a state of .Au. By clause 1 in the definition of Pu (see definition 18), ~u
CAN CONSUME the input symbol cri iff it is in the state cri. Thus, if .Au has an infinite
run consuming .M y , that run is unique. That it has an infinite run is shown by induction
on the length of the run.
BASE CASE. Since (.M, 0) ~ f , we have f ~ .MY(o) and, therefore, f ~ cr 0. Thus cr0
is an initial state of .Au.

INDUCTIVE STEP. We need to show that cri + 1 ~ Pu (ai, cri). Assume not. Then cri :~ cri+ 1,
since Pu allows self-loops. This means that ti+l is the least t I satisfying t t > ti and
.Mf(ti) ~ .Mf(tt). But then the assumption that the transition ~ri) ~ri+t violates one
of the last four transition requirements of Pu. But using the definition of extension, this
contradicts lemma 4. []

Lemma 11. Ira timed w-string (cri, ti)ie~o is accepted by .At, then the acceptance run is
unique.

Proof. From the definition of the transition function of At, the BA .Au must accept the
untimed string (ai}i. From the proof of lemma 10, the run of.Au on (cri)i must be unique.
Recall that the state of At consists of two components: a Hintikka set and a set of active
clocks. From the above, it is clear that the "Hintikka component" of the run of At on
(cri, ti)i is unique. What remains to be shown is that the "clock component" is also unique.

To see that this is indeed the case, we note from definition 19, that the clocks that are
active in the state following a transition are uniquely determined by the Hintikka component
of the states adjoining the transition, and the clocks that are active in the state prior to the

A real-time interval logic and its decision procedure 177

transition. Moreover, the clocks that are active in the initial state are uniquely determined
by the Hintikka component of the state. Since the Hintikka component is unique and
determined, so also is the clock component, and the result follows. []

L e m m a 1 2 . . A t (f) accepts .All f .

Proof. Assume for a contradiction, that it does not. From lemma 10 we know that Au

accepts untime(A4 f) . If .At rejects, it must be because some clock condition, introduced
as a result of the timing augmentation is not satisfied along the run. Before we proceed
with the proof, we introduce some terminology.

DEFINITION 22
For a run of .At over an extended model .M f , a t imer thread cV'Z'd[ta, td) is a finite chain

, y,I,d y,~,d~
of clocks ~cz~ , " " , cz n I suchthat

1. 77=271

2. fora l l i ~ { 1 , . . . , n - 1},77i+1 r--'77i
y,Z,d

3. a transition at time tb activates c z

4. there is a strictly monotonically increasing sequence of time values (tl, . . . , t n - l) with
y,z,d y,Z,d

tb < tl and tn- I < te, such that a transition at time ti copies czi into czi+, , and no
y,Z,d transition at any time strictly between t i and ti+ 1 deactivates cz~

Z,y,d 5. a transition at time te deactivates cz,

A timer thread is incomplete if the deactivating transition at te also copies the last clock
to another clock.

A timer thread is useless if the transition at te deactivates the last clock without copying
it and the remaining interval In does not collapse in the state following the transition.

A timer thread is a complete useful thread if Zn has a collapsing reduction in the state
following the transition at te.

The intuition behind this terminology is as follows. A complete useful timer thread
represents a successful verification of a timing constraint. A useless thread represents a
verification that was started but was later abandoned, because the corresponding timing
constraint was subsumed by another timing constraint whose verification was in progress.
An incomplete thread represents a verification that is in progress and that may be either
completed into a successful verification or abandoned in the future. The reader should
observe that, with the transition function for .At defined in definition 20, if g = t , then
every incomplete thread eventually completes usefully. On the other hand, incomplete
u-threads may become useless. It is easy to see that each active clock in any run belongs
to precisely one incomplete thread and, moreover, each incomplete thread correponds to
precisely one active clock in any state. Also, threads may complete usefully or become
useless as a run progresses, but they never fork or merge. Therefore, starting from an active
clock and tracing back along the thread to which it belongs, one can locate its "ultimate
ancestor", or the initial clock created for the verification of a timing constraint. The value

178 Y S Ramakrishna et al

of the active clock indicates the time that the thread has been active since its ultimate
ancestor was activated.

P r o o f o f l e m m a 12 Cont'd. We need to show that . A t (f) consumes the timed co-string
(o-i, ti)i~o representing M y. We show that for all j 6 co, the TBA . A t (f) consumes the
prefix (ai, ti)i=o j - 1 in a run v j that ends in the state (aj, aj), where aj consists of the
clocks that terminate the incomplete timer threads induced by r j .

The base case of j = 0 follows immediately from the definition of initial states of .At.
For the induction assume that the above holds for j .

We first show that Pt allows the transition (aj, aj) aj,c~¢ (aj+l, a ~) where a t consists of
all clocks activated by the transition and all clocks of aj not deactivated by the transition,
C satisfies clauses 4.3 and 4.3 of definition 20 for the timing augmentation, and ~b satisfies
clauses 4.3 and 4.3. Because of lemmas 10 and 11 all we need show is that aj does
not contain a pair of active/%clocks representing two distinct incomplete timer threads
cfl'I'd[ti(1), tj) and cfl'7:'d[ti(2), tj), with ti(1) 5~ ti(2), which merge at tj. The starting
of a t -clock at ti(1) implies from definition 19, clause 2, that 2---, Ion(0, d] E ai(1) and

2" Ion(0, d] ~ ai(1)+l. The semantics then imply that tj + x = ti(1) + d , where x represents
the common suffix that will be timed by the thread following the merge at tj. Arguing
similarly for the case of the second clock, we have tj + x = ti(2) + d, thus together
contradicting the assumption that ti(1) 5 ~ ti(2).

Next we show that the run r j+l of . A t (f) obtained by extending r j by the above
transition consumes (ai, ti)i=o j . For this we need only show that the timing conditions
required by clauses 6 and 7 of definition 20 are not violated. For the case of clause 6,
consider an active a-clock in aj representing the timer-thread c ~'z'd [ti, tj). But the starting
of an a-clock at ti implies from definition 19, clause 1, that ZIon(0, d] ~ ai+l. The
semantics then tell us that tj < ti + d. The value of the clock, tj - t i cannot then exceed
d. The case of clause 7 is similar.

Finally, we note that a r consists of the clocks terminating the incomplete timer threads
induced by the run r j+l . But this follows immediately from definition 22 for timer threads
and the definition 19 for the clock operations. []

For the proof of lemma 14, the following simpler lemma is useful.

Lemma 13. Let r u and v e represent, respectively, the runs o f .Au(f) and .Ae (f) on some

co-string a E (2sol(f)) C°. Then f o r all i ~ co, r e C r u.

Proof We first make the following observation about the statement of the lemma. As we
have seen, on any arbitrary w-string on which .Au has a run, it has a unique run. Moreover,
as we show below in the proof of the next lemma, .Ae has a unique run on an arbitrary
input. Thus the runs v u and r e are unique.

The proof of the lemma follows by induction on the index i of the run, as follows:
BASE CASE. Every Hintikka set has some element, thus r~ # 0; but r~ = 0.
I N D U C T I V E S T E P . Assume that r e C rn u. We consider two cases.
CASE 1 [r e = 0]. First note that a Hintikka set contains its basis, since it is closed under
reductions, and every Hintikka set contains true ¢f E (f) . From the transition conditions

A real-time interval logic and its decision procedure 179

of Ae, therefore, rne+l is a subset of the nth input which is r u. Further, by the transition
conditions of Au, r~+ 1 contains all irreducible formulae in r u, so that re+l C ru+l.
CASE 2 [r e 7~ 0]. Since re+j contains the irreducible subset of r~ and ru+l contains all
irreducible formula~ of r u, using the induction hypothesis, we have rne+l C r U + l . []

Lemma 14. A e (f) accepts un t ime(3d f) .

Proof Observe, first, that Ae (f) is deterministic, and in every state has a (unique) transition

for every input letter from 2 sd(f) . Thus, there is a unique infinite run of ,A e o n o r =

(~Yi}iEoJ = u n t i m e (M f) that consumes or; call this run r e. Since r~ = 0, if r e is not
accepting, then there is a largest i such that r e = 0.

From the second transition rule for .de in definition 21 and the definition of reduction, we
can conclude for any two consecutive states s 7~ 0 and t -¢ s of .A e such that Pe (S, |) = t ,

that size(t) < size(s).9 By the well-foundedness of size, there is some j > i, such that for
all k > j , ~r~ = crj ~ 0. Thus there is some formula --,[0] -+)fa lso E crk for all k > j .
Without loss of generality assume that 0 is -+a , O r.

By the definitions of Pe and reducibility, then, a ~ o'k for all k > j . Completeness of cr
implies that --,a 6 cr~ for all k > j , whence the definition of an extension and semantics
yield (3,'l, tj) ~ [---~a, 0 r I --+)false.

But from the proof of lemma 10 we have rff = .Mf(tk), where r u = (crU)ieco denotes

the infinite run of .4, on ~. By lemma 13, r [C rff, so --,[--+a, 0 I ---~)false ~ .Mf (t k) .

By the definition of extension and semantics, then (.M, tk) g= [~ a , O r I -+)false , a
contradiction. []

5.2 Soundness

The proof consists of showing that given a (timed) string in the language of An, one can
construct a satisfying model for f . Let (~i, ti)iEo) be a string in the language of Am, and
let M r be defined by

Mr(t) = { f l E s e l (f) I f l C cr i, t ~ [ti-1, ti) }

where we have assumed t_ l --- 0. Moreover, let M be defined by

.M(t) = { p E 791 P E M ' (t)]

To prove the lemma, we want to show that (.M, 0) ~ f .

Lemmal5. Foranyt E R a n d f l ~ scl(f) , f l E .Mr(t) /ff(.M, t) N fl-

Proof. For a given t, we induct on the inclusion order induced by scI on the formulae in
sol (f) . Let t ~ [ti - l, ti) as defined above.

BASE CASE. Consider a primitive proposition p ~ 7 9. For the forwards direction, let
p ~ .Mr(t), so p E M(t) , whence the semantics give us (3,t, t) ~ p. For the backwards
direction, let (j'vt, t) N p, so p E M(t) , so p ~ M'(t) , by construction~

9For a set of formula: F, let size(F) = EfeFsize(f).

180 Y S Ramakrishna et al

INDUCTIVE STEP. Assume that the lemma holds for all f l ~ scl(fl) where sel(f/) C
scl(fl). We can show then by a case analysis of the structure of the f l , that the lemma then
holds for f l also. The details are routine and extremely tedious and are therefore skipped.
However, we illustrate below a sample case to illustrate the argument.

Consider the case of f l = [01 [02)f2. Assume for the forwards direction that f l
MP(t). We have two subcases depending on whether or not f l is A/g(t)-reducible.

SUBCASE 1 [REDUCIBLE]. By our construction, f l is ai-reducible. Let f~ ea i and
F C ai be such that f~ - ~ f l . Then since ai is Hintikka, f~ e ai, so by construction
f~ ~ .MP(t) as well as F C M~(t). Now as the subformula closure of all the reductors
and reducts of a formula f are strictly contained in scl(f) , the induction hypothesis and
Corollary 1 give us the result.

SUBCASE 2 [IRREDUCIBLE]. By construction, f l 6 tri is ai-irreducible. By our
earlier observations, since tr = (ai)ieco is accepted by .Au (f) , we may consider a to be the
run of.Au on a. By the transition conditions of.Au, f l ~ aj for all j , i _< j _< k where k is
the least index greater than i such that f l is ak-reducible. To see that such a finite k must
exist, use the acceptance criteria for .Ae along with the fact that both -'[0l [-+) f2 ~ ai and
-'[02 I -+)f2 ~ tri, since f l is ai-irreducible. At index k, we use an argument identical to
Subcase 1 above to establish that (A4, tk-1) ~ fl . Using the fact that f l is irreducible in
the intervening period, allows us to use the induction hypothesis on red(f l) and (k - 1 - i)

applications of lemma 4 to conclude that (A4, t) ~ f l .
The backwards direction is similar. For some more details, we refer the reader to

Ramakrishna (1993). []

The soundness lemma follows since f is in .Ad f (0).

6. C o m p l e x i t y

Let f be an RTFIL formula of size n and depth k, and let T be the size of the encoding
of largest finite timing constant appearing in f . By lemma 5, Isel(f)l = O(nk). Clearly,

.Au(f) and Ae(f) can have at most 2 °(nk) states each. The timing augmentation can
introduce up to O (n 2k) clocks. Following the elimination of copying actions, thus, .At (f)

(and consequently also .Am(f)) can have at most 20(n2k'k'l°gn) states and O(n 2k) clocks.
The final emptiness check has a complexity of O (C!. (S + E)2 T'l°g r) , where C is the size
of the clock-set, S and E are the number of states and edges in the TBA, and T is the size of
the binary encoding of the constants appearing on the edge conditions of the TBA (Alur &
Dill 1990). The overall complexity of the decision procedure is thus 20(n2k2k'l°gn+T'l°g T).

The main source of the blow-up is due to the large number of clocks. Note, however, that
usually the number of clocks will be much less than that indicated by the large upper-bound
because timing conditions in specifications will generally involve relations between a few
simple predicates rather than long sequences of events. As a result the overall complexity
will be closer to 20(nk+C'k logn+T.log T), where C is the number of clocks introduced in

the timing augmentation. Comparing this with the 2 °(nk) upper-bound for FIL, the price
for real-time is seen to be an additional factor exponential in the number of timers and the

A real-time interval logic and its decision procedure 181

constants appearing in the specification. However, the decision procedure is still doubly
exponential (deterministic time), essentially the same as for the timeless logic FIL. In fact,
by combining the PSPACE-containment of the emptiness problem for TBAs (Alur & Dill
1990) with the EXPSPACE-encoding of the automaton constructed in the last section, it
can be shown that RTFIL is in EXPSPACE. lo

The procedure given can be adapted in a straightforward manner to obtain a model-
checking algorithm for RTFIL having the same complexity with respect to input formula
and linear in the size of the input model (for instance, in the form of a fair-transition
system).

Analogous to the result in Ramakrishna et al (1992) we can show that if we bound
the largest constant appearing in a formula and the largest depth of nesting of interval
modalities, then this bounded version of satisfiability for RTFIL is PSPACE-complete in
the size of the formula. This result is more indicative of the type of scaling behaviour one
would expect for the logic.

7. Related work

The idea of bounding the duration of intervals was first articulated by Melliar-Smith in
an early paper on real-time interval logic (Melliar-Smith 1987). Subsequent proposals for
real-time interval logics appear in Narayana & Aaby (1988) and Razouk & Gorlick (1989).
However, none of these proposals provided decision procedures for the logics presented.
In fact the logic of Razouk & Gorlick (1989) is so powerful that it is highly undecidable.
The logics of Narayana & Aaby (1988) and of Melliar-Smith (1987) allow the expression
of the forbidden "punctuality" construct of Alur et al (1991), so that they can be shown to
be undecidable if interpreted over a dense time domain.

Consider an extension of RTFIL by allowing searches of the form --+ + d for d ~ Q.
The semantics of such a search is that it locates a point t t in the future of the point t where
the search began such that t I = t + d. It thus allows relatively natural expression of many
real-time constructs. However, it is not difficult to show that this simple extension (with no
other restrictions) makes the resulting logic undecidable (Ramakrishna 1993). The proofs
of undecidability of all these logics follow essentially along the lines of Alur et al (1991),
by reduction from the halting problem for two-counter Minsky machines.

Another possible extension is to consider backwards searches, for instance ~---f. We
have shown that even in the absence of real time, this construct leads to non-elementariness
(decidability of the logic with backwards searches, but without real-time, follows by trans-
lation to S 1S). The proof of non-elementariness (Ramakrishna 1993) is by reduction from
the non-emptiness of complement problem for extended star-free regular expressions.

Decidable dense real-time logics are relatively rare because a dense real-time logic must
tread a fine line between expressiveness and undecidability. The logics RTFIL and MITL
(Alur et al 1991) adopt different compromises, and neither, we believe, is as expressive
as the other. MITL appears to have no direct way of expressing RTFIL formulae that

10However, the best lower-bound we have is the PSPACE lower-bound for FIL. We refer the reader to Ramakrishna
(1993) for related comments.

182 Y S Ramakrishna et al

constrain the length of an interval defined between the endpoints of a sequence of (more
than two) searches. Correspondingly, RTFIL cannot express the MITL construct p LOq,

which requires q to occur within the time bounds denoted by I (while not constraining its
occurrence outside that interval), and p to hold until that occurrence.11

In effect, RTFIL defines events in relation to other events, and then imposes real-time
constraints on their relative occurrence. In contrast, MITL first defines real-time inter-
vals and then requires events within those intervals, possibly in relation to other events.
Thus, it appears that MITL may be better suited for synchronized real-time systems, where
the synchronization is by real-time, whereas RTFIL may be more appropriate for asyn-
chronous real-time systems. A natural question, then, is whether there is a reasonable
combination of the two logics that retains decidability. We conjecture that the answer is
in the affirmative, and a decision procedure for the combination would follow from a suit-
able "composition" of the procedures for the two logics. This is the case, for instance, for
FIL and PTL(S, H), where such a "combined" decision procedure follows from purely
automata-theoretic methods (Ramakrishna 1993).

The Duration Calculus (Chaochen et al 1991) differs from RTFIL in that it treats intervals
as primitive. It is well-suited to describing and reasoning about cumulative behaviour, a
feature especially useful for hybrid systems. The operator f in that logic, for instance,
allows one to bound the duration of a (fragment of a) computation for which a predicate
holds. This ability to integrate over non-convex intervals, combined with the "non-local"
character of the logic makes it very expressive. However, as shown in Chaochen et al

(1993), over dense time the simplest real-time fragment of the calculus is undecidable,
and even without real-time the simplest fragment is non-elementary. We are currently
investigating an extension of RTFIL with ageing operators, inspired by the f operator of
the Duration Calculus.

8. Conclusion

We have presented a real-time interval logic RTFIL which conservatively extends the
timeless logic FIL. The logic extends FIL in a natural way to allow real-time specification,
without sacrificing decidability. We have presented a formal semantics for the logic and
have given a decision procedure for it. That RTFIL involves an additional exponential factor
proportional to the number of clocks and the constants appearing in the specification should
come as no surprise for those familiar with other dense-time logics.

A prototype RTFIL theorem-prover based on a tableau-theoretic analogue of the decision
procedure given in this paper has been implemented and used to verify some simple real-
time systems. However, further work is required before the system can become the basis
of a practical verification system for real-life examples. Apart from the use of efficient
data-structures, such as binary decision diagrams for state-encoding, efficient heuristics,

11 In each case, the introduction of auxiliary predicates mitigates the problem. Note also that the logic TPTL (Alur &
Henzinger 1989), with "freeze" quantification, can express the RTFIL property given earlier. Unfortunately, TPTL
is undecidable when interpreted over a dense time domain. We must add, however, that MITL extended with past
operators c a n express this property, although apparently less succinctly (see Ramakrishna 1993). This logic has a
decidable validity problem.

A real-time interval logic and its decision procedure 183

such as those used in Alur et al (1992) will need to be used in order to reduce the space
requirements for the verification. Since our procedure is automata-theoretic, it can directly
benefit from any advances in verification technology based on co-automata.

We are also devising a proof calculus for the logic in the style of the natural deduction
calculi that are now gaining popularity in many applications. The success or failure of
an "expensive" logic such as RTFIL would depend crucially upon whether one is able to
obtain a clean proof system. We consider our decision procedure an important first step
in this direction. For instance, our reduction and transition rules can be seen as a form of
"rewrite rules" for a tableau proof system. The incorporation of timers in a formal manner
into such tableaux, however, presents non-trivial difficulties. One approach might be to use
time variables with such operations as resetting, assignment, comparison and difference,
to simulate the role of timers. However, such an approach is probably far too low-level
to be useful. On the other hand, some appropriate mixture of automated inference within
such a proof system, along with user assistance at crucial points, may be feasible.

Finally, from a more theoretical standpoint, there are interesting expressiveness ques-
tions regarding RTFIL and some other decidable real-time logics. The apparent duality
between our approach and that of other real-time temporal logics, as outlined in the previ-
ous section, clearly merits further study. Another interesting direction involves identifying
a natural decidable fragment of parametric RTFIL, in the sense of Alur et al (1993).

We thank Rajeev Alur for useful discussions, and for helpful comments on the conference
version of the paper.

The research was partially supported by NSF/DARPA grant CCR-9014382.

References

Alur R, Dill D 1990 Automata for Modelling Real-Time Systems, Proc 17th ICALP, LNCS 443,
pp 322-335

Alur R, Henzinger T 1989 A really temporal logic. Proc. 30th FOCS, pp 164-169
Alur R, Henzinger T 1992 Back to the future: Towards a theory of timed regular languages. Proc.

33rd FOCS, pp 177-186
Alur R, Feder T, Henzinger T 1991 The benefits of relaxing punctuality. Proc. lOth PODC,

pp 139-152
Alur R, Itai A, Kurshan R P, Yannakakis M 1992 Timing verification by successive approximation.

Proc. 4th CAV, LNCS 663, pp 137-150
Alur R, Henzinger T, Vardi M Y 1993 Parametric real-time reasoning. Proc 25th STOC, pp 592-

601
Barringer H, Kuiper R, Pnueli A 1986 A really abstract concurrent model and its temporal logic.

Proc. 18th POPL, pp 173-183
Chaochen Z, Hoare C A R, Ravn A P 1991 A calculus of durations. Inf. Process. Lett. 40:269-276
Chaochen Z, Hansen M R, Sestoft 1993 Decidability and undecidability results for the duration

calculus. Proc lOth STACS, LNCS 665, pp 58-68
Dill D 1989 Timing assumptions and verification of finite-state concurrent systems. Proc. Int.

Workshop Automatic Verification Methods for Finite-State Systems, LNCS 407, pp 196-212

184 Y S Ramakrishna et al

Dillon L K, Kutty G, Moser L E, Melliar-Smith P M, Ramakrishna Y S 1992 Graphical specifi-
cations for concurrent software systems. Proc. 14th ICSE, pp 214-224

Dillon L K, Kutty G, Moser L E, Melliar-Smith P M, Ramakrishna Y S 1994 A graphical interval
logic for specifying concurrent systems. ACM Trans. Software Eng. Methodol. 3:131-165

Emerson E A, Mok A, Sistla A P, Srinivasan J 1990 Quantitative temporal reasoning.Proc. 1st

CAV, LNCS 531, pp 136-145
Emerson E A 0000 Temporal and modal logic. In Handbook of theoretical computer science.

Volume B. Formal models and semantics (ed.) J van Leeuwen (Cambridge: MIT Press) pp 789-
840

Fischer M J, Ladner R E 1977 Propositional modal logic of programs. Proc. 9th ACM STOC

pp 286-294
Halpern J, Shoham Y 1991 A propositional modal logic of time intervals. J. Assoc. Comput. Mach.

38:935-962
Halpern J, Manna Z, Moszkowski B 1983 A hardware semantics based on temporal intervals.

Proc lOth 1CALP LNCS, pp 278-291
Jahanian F, Mok A 1986 Safety analysis of timing properties in real-time systems. IEEE Trans.

Software Eng. 12:890-904
Kutty G, Ramakrishna Y S, Moser L E, Dillon L K, Melliar-Smith P M 1993 A graphical interval

logic toolset for verifying concurrent systems. Proc. 4th CAVLNCS 697, pp 138-153
Lamport L 1991 The temporal logic of actions. DEC SRC Tech. Report 79
Lewis H 1990 A logic of concrete time intervals. Proc. 5th LICS, pp 380-389
Maler O, Manna Z, Pnueli A 1991 From timed to hybrid systems. Proc. REX Workshop "Real-

time: Theory in practice." LNCS 600, pp 447-484
Melliar-Smith P M 1987 Extending interval logic to real-time systems.Proc. Conf. Temporal

Logic in Specification, Altrincham, England, LNCS 398, pp 224-242
Melliar-Smith P M 1988 A graphical representation of interval logic.Proc. Int. Conf. on Concur-

rency, Hamburg, FRG, LNCS 335 (Berlin: Springer-Verlag) pp 106-120
Narayana K T, Aaby A A 1988 Specification of real-time systems in real-time temporal interval

logic.Proc 9th IEEE RTSS, pp 86-95
Newman M H A 1942 On theories with a combinatorial definition of "equivalence." Ann. Math.

43:223-243
Ramakrishna Y S 1993 Interval logics for temporal specification and verification. Ph D disserta-

tion, Dept.of Electrical and Computer Engineering, University of California, Santa Barbara
Ramakrishna Y S, Dillon L K, Moser L E, Melliar-Smith P M, Kutty G 1992 An automata-theoretic

decision procedure for future interval logic. Proc. 12th FST&TCS, LNCS 652, pp 51-67
Ramakrishna Y S, Melliar-Smith P M, Moser L E, Dillon L K, Kutty G 1993 Really visual temporal

Reasoning.Proc. 14th Real-Time Systems Symposium, Rayleigh-Durham, pp 262-273
Razouk R R, Gorlick M M 1989 A real-time interval logic for reasoning about executions of

real-time programs. Proc. ACM SIGSOFT'89, 3rd TAV, SIGSOFT SE Notes 114:10-19
Schwartz R L, Melliar-Smith P M, Vogt F 1983 An interval logic for higher-level temporal

reasoning. Proc. 2rid PODC, pp 173-186
Smullyan R M 1968 First-order logic (Berlin: Springer-Verlag)
Wolper P 1987 On the relation of programs and computations to models of temporal logic. Proc.

Conf. Temporal Logic in Specification, LNCS 398, pp 75-123

