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Abstract— Unmanned aerial vehicles (UAVs) are the future
technology for autonomous fast transportation of individual
goods. They have the advantage of being small, fast and not to
be limited to the local infrastructure. This is not only interesting
for delivery of private consumption goods up to the doorstep,
but also particularly for smart factories. One drawback of
autonomous drone technology is the high development costs,
that limit research and development to a small audience. This
work is introducing a position control with collision avoidance
as a first step to make low-cost drones more accessible to
the execution of autonomous tasks. The paper introduces
a semilinear state-space model for a commercial quadrotor
and its adaptation to the commercially available AR.Drone

2

system. The position control introduced in this paper is a
model predictive control (MPC) based on a condensed multiple-
shooting continuation generalized minimal residual method
(CMSCGMRES). The collision avoidance is implemented in the
MPC based on a sigmoid function. The real-time applicability
of the proposed methods is demonstrated in two experiments
with a real AR.Drone quadrotor, adressing position tracking and
collision avoidance. The experiments show the computational
efficiency of the proposed control design with a measured
maximum computation time of less than 2ms.

I. INTRODUCTION

The significance of unmanned aerial vehicles has been in-

creasing over the last decades by more and more civil appli-

cations such as maintenance applications, transportation, as a

toy, etc. The idea to use drones for fast transportation is par-

ticularly interesting for dynamically changing autonomous

transportation tasks of small goods, as in smart factories or

home delivery scenarios. As a further plus, no expensive

infrastructure is needed. The main problem up to today is

the high costs of professional drones that can be adapted

for autonomous flights in urban areas. This is mainly caused

by the ability to determine the precise position of the UAVs

and its security measures, e.g. avoiding obstacles via vision

sensors. As multi-rotor UAVs are typically capable of keeping

a steady position, they are particularly interesting from the

security point of view. The adaption of commercial low-cost

UAVs for autonomous flying is therefore an important way

to make this technology cheaper and therefore accessible.
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As a consequence, this work aims to autonomously control

the position of an AR.Drone while avoiding obstacles. The

AR.Drone comes with an inner controller that is stabilizing

the attitude. Furthermore it can be controlled through velocity

commands via WiFi which makes it easy to access with

a ground control station. The AR.Drone is chosen, because

these features are representative for most commercial low-

cost quadrotor systems.

Today there is a wide variety of quadrotor models and

control strategies. An overview of different designs and

quadrotor models is given in the thesis [13]. A widely applied

control algorithm is a position control approach realized as a

hover PID controller which is presented in detail in [8]. This

control strategy separates forward, sideward, upward and

heading by linearization of the system dynamics. The four

channels are then controlled independantly with PID con-

trollers. The influence of aerial disturbances on the control

behavior is analyzed in [16]. [9] describes the construction of

a mathematical drone model in a detailed and comprehensive

way. Furthermore a state estimator and a vision-based PID

position control are derived. More detailed information of

vision based quadrotor control strategies are given by [11].

A vision based fuzzy position control is presented in [15].

In [10] a backstepping controller is introduced. In [14] the

authors discuss a multiple surfaces sliding mode control for

quadrotors. A model reference adaptive control concept for

quadrotors is presented in [12]. It is based on the adaptation

of controller parameters based on linearized system dynam-

ics. This allows the controller to act in a bigger trust region

than conventional hover control.

An important project for quadrotor design and control was

the OS4 Project at the Swiss Federal Institute of Technology.

In the context of this project [2] is introducing a full

nonlinear quadrotor model. Based on the stabilization proof

via Lyapunov function, a hover PID-controller is derived

to stabilize the system around its nominal state. The disad-

vantage of this controller is its poor performance regarding

disturbance. A quadrotor LQR-controller was developed in

[3] and compared to the classical PID hover control. In

the experiment the LQR approach showed a less dynamic

behavior plus a steady-state error. The author came to the

conclusion that even if the LQR was expected to show better

results, the PID controller showed better performance in the

experiments and is therefore preferred. In [4] a backstepping

control is developed for the linear translational subsystem

and a sliding mode controller is derived for the attitude

subsystem of a quadrotor. The presented controlled system

shows a strong resistance towards disturbance, but introduces



high frequencies into the system controls, that are causing

sensor drift. More detailed information is given in [5]. Based

on this, [6] is presenting an integral backstepping controller

as further development. The result is a control law for the

full state model.

With the increasing development of fast computers, model

predictive control approaches have become real-time applica-

ble for fast systems. A LQR control, as e.g. presented in [3],

is equal to the analytical solution for an unconstrained linear

model predictive control problem and therefore familiar.

The big advantage of the model predictive approach is the

possible usage of constraints, which is particularly interesting

in this work for implementing security measures. A MPC

example with state constraints for quadrotors is simulated

in [18]. Details about collision avoidance for quadrotors and

various MPC methods for multiple drone coordination are

given in [17]. The most essential obstacle to apply MPC

on quadrotor systems, is the high computational burden

plus the quadrotor nonlinearity. Examples for especially fast

nonlinear MPC algorithms are Gauß-Newton methods [21] as

implemented in ACADO [19], or gradient methods as imple-

mented in GRAMPC [20]. Another particularly fast method

is the continuation generalized minimal residual method

CGMRES method as given in [23],[24],[25],[26],[27]. An

adaption of CGMRES for cooperative control tasks in real-

time is discussed in [7]. For this work, a condensed multiple

shooting CGMRES derivative has been applied, which of-

fers a compromise of higher numerical stability with fast

computation. This condensed multiple-shooting continuation

generalized minimal residual method CMSCGMRES was

developed under supervision of Prof. Dr. Toshiyuki Ohtsuka

and is presented in [28],[29],[30].

The first contribution of the presented paper is the in-

troduction of a semilinear analytical quadrotor model based

on velocity controls as described in section II. Second, the

proposed model is adapted to the commercial UAV AR.Drone

by identification in section II-A. Third, section III is propos-

ing the condensed multiple shooting continuation generalized

minimal residual method (CMSCGMRES) [28] as a real-time

applicable nonlinear model predictive control approach for

UAV applications. The advantages of CMSCGMRES are the

handling of nonlinearities and its very low computation time

combined with the possibility to introduce constraints. In sec-

tion III-A the proposed algorithm is experimentally validated

on a real AR.Drone under use of the presented model. The

final contribution is the combination of CMSCGMRES with

a sigmoid collision avoidance (CA) method, as described in

section IV. The resulting performance with a real AR.Drone

is shown in section IV-A. In section V the conclusion and

further developments are discussed.

II. SEMILINEAR HOVER CONTROL MODEL

In typical quadrotor applications, the UAV is internally

controlled by a hover controller as introduced in [8]. This

means it is driven around its nominal state, the hovering

position. Accordingly the controller reference is represent-

ing desired velocity in forward direction u f , sidewards us,

upwards uz and the angular velocity around the z axis uΨ.

Standard PID hover controllers are based on a linearization in

the hover position which is equal to a small angle approx-

imation of roll Φ and pitch Θ. The forward and sideward

movement of the quadrotor is therefore considered to be in

the xy-plane and can be mapped to the global coordinate

system via a Ψ rotation. This can be expressed in the state

space with the state vector

x(t) =
[

xW (t) ,yW (t) ,zW (t) ,ΨW (t) , ẋV (t) , ẏV (t)
]⊤

, (1)

which yields to a quasi-linear state-space model
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ẋV (t)cos(Ψ)− ẏV sin(Ψ)
ẋV (t)sin(Ψ)+ ẏV cos(Ψ)

az · z(t)+bz ·uz (t)
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as · ẏV (t)−bs ·us (t)
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Linear model.

(2)

W is referring to the global world coordinate frame, while

index V indicates the vehicle coordinate frame. The origin

of V is equivalent with the origin of the quadrotor. The pose

of the coordinate frames can be seen in Fig. 1, where pitch

and roll are considered to be neglectable. xV ,yV are therefore

lying in the xW yW -plane, where xV is pointing to the front

of the UAV and yV to the left. The z-axis is aligned with the

world coordinate frame z . As shown in (2) the state-space

Fig. 1: Coordinate frame definition

model consists of a linearization around the hover position in

the vehicle-frame, as well as a nonlinear mapping of the x,y

vehicle frame components to the world coordinates. Using

the states xW ,yW ,zW ,ψW has the advantage of being able to

calculate the error to a world coordinate reference position.

A. Parameter identification

The used case considered for this paper is the commercial

quadrotor system Parrot AR.Drone 2.0. To identify the linear

model parameters az,aΨ,a f ,as,bz,bΨ,b f ,bs of (2), the step

response of the system is approximated with the given model.

The measurement of the quadrotor position is realized with

the motion capture system OPTITRACK1. The quadrotor

velocities are determined by a finite difference of the position

and subsequent filtering. Finally the velocities are mapped to

the vehicle coordinate frame via the inverse mapping of (2).

1Copyright 2016 NaturalPoint, Inc. All rights reserved.



Fig. 2: AR.Drone identification: Top to bottom: forward,

sideward, upward and yaw channel.

Figure 2 is showing the identification signals, with the

given control inputs, the processed (filtered) measurement

response (index m) and the model prediction (index p) for

the chosen model parameters a f = as =−0.5092,b f = bs =
1.458,az = 0,bz = 1,aΨ = 0,bΨ = 1.6. Considering ẋV and

ẏV in (2), the chosen model parameters yield to a tangential

approximation of the real systems behavior in the points of

control changes, as we linearize around the nominal state

(where the controls are 0). In the experiments, the Parrot

AR.Drone 2.0 has shown an indeterministic behavior in the

z axis. This is expected to be caused by the quality of the

ultrasonic sensor data that is used to estimate the altitude

for the internal controller. The final choice of using a simple

integrator with bz = 1 is representing the idea of a system

that reaches the reference in the z-axis very fast. Also ΨW

shows integration behavior under the typical limitation of

−π < zW ≤ π . Finally the AR.Drone model yields to
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−0.5092 · ẏV (t)+1.458 ·us (t)

















. (3)

III. MODEL PREDICTIVE POSITION CONTROL

More advanced commercial UAV applications face the

problem of navigation in urban environments. The difficulty

of urban navigation is to autonomously take into account

the movement constraints, that are represented by obstacles

or prohibited areas. An advanced control method to handle

such constraints is MPC. MPC is calculating optimal controls

online to minimize a given cost function within a receding

horizon. Combined with constraints and boundary values,

this represents an optimal control problem OCP. With state

vector x = [xW ,yW ,zW ,ΨW , ẋV , ẏV ] and control vector u =
[

u f ,us,uz,uΨ

]

, the OCP for a position control with the

nonlinear quadrotor dynamics (3) can be formulated as

min
u

J =
∫ t f

t0

(x∗−x)⊤ Q(x∗−x)+u⊤Ru dτ (4)

s.t.

ẋ(t) =















ẋV (t)cos(Ψ)− ẏV sin(Ψ)
ẋV (t)sin(Ψ)+ ẏV cos(Ψ)

1 ·uz (t)
0 ·Ψ(t)+1.6 ·uΨ (t)

−0.5092 · ẋV (t)+1.458 ·u f (t)
−0.5092 · ẏV (t)+1.458 ·us (t)















(5)

c ≤ (u− ū)2 − (umax − ū)2 : ∀u : umax = 1∨ ū = 0 (6)

x(0) =
[

0,0,0,0,0,0
]

(7)

Q = D{
[

1,1,1,10,0,0
]

}, R = D{
[

1.3,1.3,3.0,1.1
]

}.(8)

The cost function (4) is defined to become minimal for

reaching the target state x = x∗ and minimal input u = 0

subject to the given input constraints (6) that limit −1 ≤
u f ,us,uz,uΨ ≤ 1 and the initial state (7). To track the

position, Q is defined as diagonal matrix D with the entries

as given in (8). There are just relevant penalty entries for the

first 4 elements which penalize an error in xW ,yW ,zW ,ΨW .

Accordingly R in (8) is representing the diagonal control

penalty matrix to minimize the control action and therefore

the energy consumption. The values of R,Q are chosen

experimentally to achieve a smooth and fast flight behavior.

To create a feedback of the system, after the solving of the

OCP and applying the control, the horizon [t0, t f ] is shifted

and now solved in respect to the new initial value provided

by measurements of the real system. Accordingly the OCP

(4)-(7) has to be solved at each control update interval,

which is challenging for fast systems like quadrotors. As

discussed in the introduction, within this work a fast nonlin-

ear MPC solver CMSCGMRES is used. This is a condensed

multiple-shooting version of the CGMRES by Ohtsuka [23]

that represents a newton-type method under use of Hessian

approximation via forward difference method. Algorithmic

details are given in [28],[29] and [30]. CMSCGMRES is

capable of nonlinear optimization and offers low computation

times, as well as constraint handling. This makes it partic-

ularly suited for UAV applications. The reason for using a

nonlinear MPC solver to control a semilinear system is the

possibility to directly extend the results to more nonlinear

systems, e.g. nonlinear models, a drone with a manipulator,

etc. Furthermore the nonlinear mapping between vehicle

and coordinate frame can be directly calculated within the

optimization. The performance of CMSCGMRES with the



proposed AR.Drone model is evaluated experimentally in the

following section.

A. POSITION CONTROL EXPERIMENT

To validate the proposed CMSCGMRES position control,

introduced in section III, the quadrotor is moved in a square

in the xy-plane in 5 phases. Phase 1 to 5 are initiated

by a change of the tracked state as given in table I. The

reference states represent corners of the square, starting from

its initial position. Phase 5 is moving the drone subsequently

to the center. The behavior of the AR.Drone in phase 1

to 5 is illustrated simplified in Fig. 3. As expected the

AR.Drone is executing a square movement from phase 1 to

5. The corresponding trajectory plots are given in Fig. 5. The

movement between the corner point is shown transparent in

Fig. 3 for means of visualization.

Phase Time State Task

Initial: x∗(0s) =[-1, 1,1,0,0,0]⊤ Keep initial position

1: x∗(8.4s) =[-1,-1,1,0,0,0]⊤ Reach point in square

2: x∗(13.4s) =[ 1,-1,1,0,0,0]⊤ Reach point in square

3: x∗(18.4s) =[ 1, 1,1,0,0,0]⊤ Reach point in square

4: x∗(23.4s) =[ 1,-1,1,0,0,0]⊤ Reach point in square

5,6,7: x∗(28.4s) =[ 0, 0,1,0,0,0]⊤ Reach center/Disturbance

TABLE I: Tracked points of the position control experiment

To validate the stability in case of more complex distur-

bances, an impulse is applied on the AR.Drone around the

z-axis in phase 6 and 7. The corresponding drone behavior

is shown simplified in Fig. 4. As desired, the drone is

stabilizing Ψ and the position in the resulting compensation

circle. Within Fig. 4 the drone transparency is decreased with

the proceeding time to demonstrate the speed of the system.

Fig. 3: AR.Drone position control:

The system trajectory is given in Fig. 5. The plots are

showing forward, sideward, upward and yaw channel and the

computation time for a control update interval of ∆t = 0.1s.

Fig. 4: AR.Drone stabilization under disturbance:

Fig. 5: AR.Drone position control trajectory:

Top to bottom: forward, sideward, upward and yaw channel,

computation time with max(tc)≈ 1ms.



The CMSCGMRES solver is parametrized with a horizon

time T = 1s, nhor = 10 samples per horizon, the forward

difference approximation interval h = 1ms, a maximum of

itmax = 10 iterations and a continuation parameter of α = 10.

Furthermore the control limitation constraints (6) are treated

with the CGMRES package internal interior point constraint

handling method. This method is using slack variables to

model inequality constraints and slack variable penalties in

the cost function (details in [26]). For this experiment all

slack penalties are set to rslack = 0.001. As can be seen

in phase 6 and 7, this constraint handling technique has

to be adapted for high disturbances as |uΨ| > 1 by e.g.

using higher rslack. As Ψ ≈ 0 up to phase 5, the vehicle and

world frame can be considered to be aligned. This allows to

directly relate vehicle frame velocity to world frame position.

The system response to position changes shows a typical

damping of D ≈
√

(2) which is equivalent to a minimization

of the integrated position error. This matches the definition

of dominating position tracking in the cost function (4).

Therefore the CMSCGMRES approach is validated for the

developed system model (3).

The advantage of the proposed MPC solver combined with

the used model is the low computation time of max(tc)≈ 1ms

as shown in the bottom of Fig. 5. Furthermore the computa-

tion time is not changing particularly in case of disturbances

as with comparable gradient method approaches. The video

of the experiment can be downloaded via [1].

IV. MODEL PREDICTIVE COLLISION AVOIDANCE

Avoiding collisions is essential for security reasons. A

typical collision avoidance (CA) therefore keeps the UAV

in a desired distance ddes from the quadrotor postion ~xq to

an obstacle position ~xO. The problem can be formulated as

inequality (9) which can be translated with c ≤ 0 into a con-

straint (10). To avoid the expensive square root computation

in (10), it is advantageous to use the quadratic form (11)

instead. (11) represents equivalent roots to (10) as ddes is

always positive.

ddes ≤
√

(~xO −~xq)
⊤ (~xO −~xq) (9)

c ≤ ddes −
√

(~xO −~xq)
⊤ (~xO −~xq) (10)

c ≤ d2
des − (~xO −~xq)

⊤ (~xO −~xq) (11)

As CMSCGMRES is based on the solution of OCP (4)-

(8) optimality conditions, the optimality of the inequality

constraints has to be solved at each time instance, which

leads to a higher computation time. A different approach

is to approximate the switching behavior of an inequality

constraint with a sigmoid function

sig(x) =
b

1+ e−ax
. (12)

Parameter b in (13) is determining the maximum value of

the sigmoid and a is affecting the sharpness of the switching

behavior. Inserting the right hand side of constraint (11) into

(12) leads to an approximation of (11) by an additional OCP

cost term JCA to (4).

JCA =
b

1+ e
−a

(

d2
des−(~xO−~xq)

⊤(~xO−~xq)
) (13)

The parameter b, JCA can be adapted to the other system

costs (4). Accordingly b has to be chosen big enough to

have dominating costs JCA to ensure that CA is prioritized in

relation to trajectory tracking. Fig. 6 is showing the influence

Fig. 6: Sigmoid distance cost function JCA with b = 1

of the parameter a which is affecting the sharpness of the

switching behavior. For increasing a values (Fig. 6 from left

to right), the switching behavior is approximated better, but

the system becomes more ill-conditioned and therefore more

difficult to solve. d is representing the distance |~xO−~xq| and

ddes the desired distance that should be kept. If the UAV is in

the prohibited area d < ddes (top area in Fig. 6), the system

function is dominated by (13) which means, that the solver

tries to preferably minimize JCA (13) and therefore increases

the distance d to the obstacle. The validation of the proposed

sigmoid CA is shown in the following section IV-A.

A. COLLISION AVOIDANCE EXPERIMENT

For the experimental validation JCA (13) is parametrized

with a= 6 and b= 3 which have been chosen experimentally.

Furthermore to show an avoidance more dominant in the xy-

plane, the z-axis tracking penalty is increased to qz = 3. In

the experiment the quadrotor is tracking a position on the

opposite side of an obstacle. Accordingly the CA is forcing

the AR.Drone from the direct connection trajectory onto a

curve that surrounds the given obstacle. Fig. 7 is showing an

example of such an CA-movement.

Fig. 7: AR.Drone collision avoidance: The trajectory of the

quadrotor is deviated by an obstacle, depicted as stand in

the center point of the circle. The circle radius of r = 1m is

illustrating the keep out area. As desired, the drone trajectory

is subject to ‖~xO −~xq‖2 ≥ ddes = 1.



Fig. 8: AR.Drone position control collision avoidance

The corresponding trajectories for multiple trajectory

changes are depicted in Fig. 8. Each of the three depicted

section is representing a change in the target position. As

the main displacement is in y direction, the time difference

between the x and y action is caused by first just moving in

y-direction until the CA sphere would be violated. Then the

x-axis is deployed to initiate the CA curve. When reaching

the Obstacle avoidance sphere the quadrotor is pushed away

from the sphere which leads to an oscillating movement, until

a feasible path is found. These oscillations are caused by a

wrong prediction due to the model missmatch, and can be

treated by using a more precise model, further smoothening

the sigmoid and reducing the control action. As for the posi-

tion control of section III, the advantage of the combination

of sigmoid collision avoidance with CMSCGMRES is the

low computation time of max(tc) = 1.6ms. For this scenario

the computation time is significantly higher than without

collision avoidance due to the implementation. The position

of the obstacle is not directly given to the cost function.

Instead they are implemented as additional states to be also

able to provide obstacle dynamics in a future step that allows

more efficient avoidance of moving obstacles. According to

the larger state vector, also the computation time is increased.

To sum up, Fig. 7 and 8 are validating the efficiency of the

proposed combination of CMSCGMRES with a sigmoid CA,

as the obstacle is avoided and a very low computation time is

achieved. The video footage of the experiment is accessible

online [1].

V. CONCLUSION AND FURTHER WORK

The presented work is proposing a CMSCGMRES control

approach for commercial low-cost multi-rotor systems, to

control the global UAV position while avoiding obstacles.

For this purpose, a semilinear UAV state space model is

presented. Its parameters are identified by a simple step re-

sponse analysis, as shown for the AR.Drone. The given model

suits most commercial multi-rotor systems with an internal

controller that receives velocity commands. To use the MPC

only for the outer position control loop is advantageous, as

the UAV internal controller can typically not be switched

off and furthermore provides basic attitude stability. For the

position control, this work is proposing the CMSCGMRES

algorithm, as it represents a MPC for nonlinear systems with

very low computation times combined with the ability to

handle constraints. This also allows an extension to more

nonlinear models, respective systems in future.

Section III-A shows a real AR.Drone position control

scenario [1], which validates the stability of the proposed

algorithm and its efficiency with a maximum computation

time of max(tc) ≈ 1ms. The resulting position trajectory

shows a typical damping of D ≈
√

2 which validates the

domination of the position tracking in the MPC cost function.

The position control is also stabilizing the AR.Drone under

more complex disturbances (involving Ψ), with the remark

that the input limitation constraint handling of uΨ has to be

adjusted accordingly.

To be able to avoid obstacles, section IV presents a

collision avoidance, that models the inequality constraint of

keeping a minimum distance to an obstacle with a sigmoid

function. The corresponding measurements with the real

AR.Drone validate this approach [1]. Furthermore they state

the computational efficiency in combination with CMSCGM-

RES with a maximum computation time of max(tc)≈ 1.6ms.

For the real AR.Drone CA experiment, the computational

load on a standard computer is with
max(tc)

∆t
≈ 1.6ms

100ms
≈ 1.6%

very low. As this paper focuses on the control and not the

sensing part of the quadrotor, all states in the experiments

are measurements via a motion capture system. The low

computational load of the proposed controller aims to allow

the execution of other computationally expensive algorithms

besides.

This refers e.g. to simultaneous localization and mapping

(SLAM) or obstacle detection via vision, to substitute the

motion capture system with onboard sensors in a further step.



Future work will also include the introduction of different

constraint handling techniques for the CMSCGMRES solver.

Subject to these, the stability of the proposed algorithm shall

be proven analytically based on [24], [21], [22]. For the

application of multiple quadrotors within limited space e.g.

smart factories, multi UAV control is crucial. This will be ad-

dressed by first developing central MPC solutions which will

then be decentralized in the final step. The presented work

will be continued to automatize commercial UAV systems,

to further reduce development costs for autonomous UAV

systems and to open this field of research and development

to a wider audience in future.
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