
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States 34N 2 6 1995
Government. Neither the United States Government nor any agency thereof, nor any of their

employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or

process disclosed, or represents that its use would not infringe privately owned rights. Refer-

ence herein to any specific commercial product, process, or service by trade name, trademark,

manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views

and opinions of authors expressed herein do not necessarily state or reflect those of the

United States Government or any agency thereof.

0 $. I

A Real-Time MPEG Software Decoder

Using a Portable Message-Passing Library

Man Kam Kwong, P. T. Peter Tang, and Biquan Lin*

Mathematics and Computer Science Division

-4rgonne National Laboratory

Argonne, IL 60439-4844

Email: kwong, tang, blin@mcs . a n l . gov

Abstract

We present a real-time MPEG software decoder that uses message-

passing libraries such as MPL, p4 and MPI. The parallel MPEG de-

‘This work was supported by the Office of Scientific Computing, U.S. Department of

Energy, under Contract W-31-109-Eng-38.

Accordingly, the u. S. Government retains a
nonexclusive, royalty-free license to publish

or reproduce the published form Of this

contrtbution, or allow others to do 90. for

coder currently runs on the IBM SP system but can be easily ported

to other parallel machines. This paper discusses our parallel MPEG

decoding algorithm as well as the parallel programming environment

under which it uses. Several technical issues are discussed, including

balancing of decoding speed, memory limitation, 1/0 capacities, and

optimization of MPEG decoding components. This project shows that

a real-time portable software MPEG decoder is feasible in a general-

purpose parallel machine.

Keywords: Image processing, high-performance computing, video

compression, real-time system, message-passing library.

1 Introduction

Video compression is a crucial technique in coping with large amounts of dig-

itized video data. MPEG (Motion Pictures Expert Group) is an industrial

standard of video and associated audio compression for digital media storage

and transmission. An MPEG video system consists of an encoder and a de-

coder: the encoder compresses

and the decoder 'decompresses

a sequence of images (video) into a bitstream

the bitstream and displays the decompressed

2

video. Since a video sequence has to be displayed in real-time, an MPEG

decoder is required to perform over a billion operations per second. Usu-

ally, special hardware with signal processing chips is needed to implement an

MPEG decoder. This paper explores the possibility of using portable parallel

software environment to implement such a video decoder.

Although a hardware-based MPEG system can encode and decode video

sequences in real-time and the cost for the hardware will decrease dramat-

ically in the coming years, a software-based approach presents several ad-

vantages: First, it provides a simulation environment for designing the hard-

ware. In fact, a software simulation must be performed before designing

any hardware-based MPEG system, since it involves complex compression

algorithms. Second, a software-based approach provides flexibility to accom-

modate growing varieties of algorithms and specific applications. Third, a

software- based approach enables the use of a single general-purpose multipro-

cessor computer which, for many visual communication and image processing

tasks, is more economical than buying separate special hardware pieces. Our

investigation of a parallel software- based implementation of MPEG system

was motivated by these consideration.

3

Recently, several real-time software decoders have been implemented.

Rowe et al. [7] developed a portable MPEG-1 video decoder that can play

small-sized (160x 120) video in real-time. They used a SPARC 1+ to read

the bitstream and a SPARC 10 to decode and display the video. Some frames

may be dropped to accommodate network load and decoding speed. Tay-

lor [8] implemented an MPEG-1 encoder and decoder that works in real-time

using some special DSP processors embedded in parallel hardware. The draw-

back of this implementation is that it cannot be ported to a general-purpose

parallel machine without such DSP processors. Ghafoor et al. [I] studied

speedup with different numbers of processors on several parallel machines

including the nCUBE2 and Intel’s Paragon. But they did not incorporate

such parallel decoding processes with real-time and continuous video display.

Our parallel MPEG-1 parallel decoder has the following features. First it

is implemented in a general-purpose parallel machine (IBM SP) and can be

easily ported to other machines, since it uses a message passing library such

as MPL, p4 and MPI. Second, it can decode and display video smoothly in

real-time by means of a HIPPI (HIgh Performance Parallel Interface) frame

buffer. Third, the parallel MPEG decoder requires only 16 processors, which

4

are now available on many commercial parallel machines.

The remainder of this paper is organized as follows. Section 2 discusses

our parallel MPEG-1 decoding algorithm. Section 3 describes our implemen-

tation environment, including the system configuration and message-passing

libraries used. Section 4 discusses several technical issues faced in imple-

menting the decoder. Section 5 presents our testing results. Finally, Section

6 summarizes the project and points out some future research and imple-

mentation topics.

2 Parallelization of the MPEG Decoder

MPEG is a video coding standard established by the Motion Pictures Expert

Group of the International Standards Organization. Version 1 of MPEG

(or MPEG-1) is primarily designed for digital storage such as CD-ROM at

transmission speeds up to 1.5 Mbits/second. MPEG-2 is designed as a generic

standard to support a variety of applications including high-definition TV,

digital cable TV, and video-on-demand. Both MPEG-1 and MPEG-2 use

discrete cosine transform coding, motion estimation and Hoffman coding

5

techniques to compress video data. This paper is mainly concerned with

MPEG- 1.

The syntax of an MPEG bitstream is organized into several layers: video

sequence layer, group of pictures (GOP) layer, picture layer, slice layer, mac-

roblock layer, and block layer. An upper layer encapsulates a lower layer,

and each layer conveys information for some specific functions. For example,

the video sequence layer contains information for an entire video sequence

such as video size, bit rate, and default quantization matrices; the picture

layer contains information such as picture coding type and temporal refer-

ence for non-intra coded pictures; the macroblock layer deals with motion

estimation and compensation; and the block layer contains information on

DCT coefficients.

There are three types of MPEG picture frames: intra-coded (I) frame,

predictive-coded (P) frame and bidirectionally predictive-coded (B) frame.

An I-frame is coded by using information only from itself. A P-frame is coded

by using motion compensation from a past I-frame or P-frame. A B-frame

is coded by using motion compensation from a past and/or future I-frame

or P-frame. The group of pictures (GOP) layer is intended to assist random

6

access to the sequence. A GOP contains at least one I-frame? and it may

contains some P-frames and B-frames. In the bitstream, the first frame in a

GOP must be an I-frame, and the reference frames (an I-frame or a P-frame)

by a P-frame or a B-frame are coded ahead so the the bitstream can be

decoded and displayed on-the-fly. But in display order, the first displayed

frame in a GOP needs not be an I-frame; it may use an I-frame or a P-frame

in the preceding COP. In general, a GOP is a relatively independent unit and

can be decoded in parallel if we add the sequence header and the previous

GOP information. Our parallel algorithm is based on this observation.

Figure 1 is the diagram of the parallel MPEG decoder. The parallel

MPEG decoder consists of a distributor, a number of decoders, and a col-

lector. The distributor cuts a sequential MPEG bitstream into segments.

Each segment contains sequence header, the preceding COP (which may be

referred to by the current GOP), the current GOP, and the sequence end

code. The distributor also dispatches the cut segments to decoders in turn.

Each decoder receives and decodes segments, dithers the decoded frames into

the ARGB format (the display format for HIPPI), and sends frames to the

collector. The number of decoders is scalable to accommodate different CPU

7

speeds. In our system, 14 to 18 SP nodes (each roughly equivalent to a

RS/6000 model 370 workstation) are sufficient to achieve real-time decoding

(30 frames/second). The collector collects decoded frames in order and sends

them to a HIPPI frame buffer for real-time display.

Figure 1. The Basic Model of Parallel MPEG Decoder

3 System Environment and Parallel Program-

ming Libraries

The parallel MPEG decoder was developed on IBM SP system using message

passing parallel libraries. In this section, We describe system environment

and parallel software tools.

8

SP. The SP is an IBM POWERparallel system that can provide high-

performance CPU and 1/0 power with scalability and flexibility on a UNIX

operating system. The current SP2 system can be scaled from 2 to 512 nodes,

each node is essentially an RS/6000 model 370. The nodes are connected by

internal high-performance switch. In the Mathematics and Computer Science

Division of Argonne National Laboratory, 128 nodes are currently installed;

each node is equipped with 128 MBytes of memory and 125 MFlops. The

peak performance for switching between nodes is 35 MBytes/sec bandwidth

and 63 psec latency. In our parallel MPEG decoding system, only 16 to 20

nodes are required to achieve real- time performance.

MPL. MPL is IBM’s message-passing library for the high-performance

switch. It is easy to parallelize a standard C program by calling a few

message-passing functions in the MPL library. In our implementation of

the MPEG decoder, fewer than 10 MPL functions are used. A list of MPL

message-passing functions can be found in [3].

p4. p4 is one of the most popular message-passing systems that can run

on a wide variety of parallel systems and workstations. One of the imped-

iments to widespread use of parallel computers is lack of standard software

9

tools; users have to use specific software tools provided by vendors. p4 is an

early effort to build a “common language” for these machines. Currently, it

has been installed in most major parallel machines and workstations We im-

plemented the parallel MPEG decoder using p 4 library; and the performance

is almost the same as that using MPL library.

MPI. MPI (Message Passing Interface) is a standard for message-passing

system established by a broadly based parallel computing group including

vendors, library developers, and users. MPI was completed in the spring of

1994 and is now awaiting public comments. An excellent book on MPI for

newcomers as well as for experienced parallel researchers and programmers

is [2]. One version of our parallel MPEG decoder was implemented with the

MPI message-passing system.

HIPPI. HIPPI (HIgh Performance Parallel Interface) is, as its name

says, a high-performance 1 /0 interface. At Argonne, a HIPPI frame buffer

developed by Input Output Systems Corporation is connected by a HIPPI

channel to the IBM SP2 system. The image can be displayed from the HIPPI

frame buffer at high resolution (1280x 1024) or low resolution (640x512).

TCP/IP and IPI-3 protocols are currently used for the connection. The peak

10

transmission performance is 40 MBytes/sec. Our parallel MPEG system

delivers 30 frames/sec. at low resolution.

4 Implementation Issues for the Parallel MPEG

Decoder

In this section, we discuss several technical issues in our implementation

of parallel MPEG decoder. These issues must be taken into account when

porting the parallel MPEG decoder into other machines.

Parallel Models. Figure 1 is a simple parallel MPEG decoding model.

We also studied several more complicated parallel models to accommodate

different CPU speeds, memory capacities, and transport protocols. Here we

give some examples:

Token iWode2. Asynchronic message passing between nodes makes tasks

more independent of each other. For example, in p4, the p 4 3 e n d () function

will return without waiting until an acknowledgment is received, so that the

calling process can continue work on other calculations such as decoding. If

this function is used, some decoders may keep sending decoded frames to

11

the collector where they must be wait in the buffer. This procedure will

cause overflow if the buffer size is small. A scheduling algorithm is needed

to overcome this drawback. A simple scheduling policy is to pass a token

among each decoding node and to allow only the node holding the token to

send the frames. Once it finishes sending, it releases the token to the next

decoding process. This model is called a token model.

Scolable Model. Another way to overcome the memory limitation of the

collector is to build a hierarchical buffering for the collector. For example,

we can add a first-layer buffering processor for every three decoders and a

second-layer buffering processor for every first-layer buffering processors and

so on. This model enables decoding processes to be scaled to any number.

The disadvantage of this model is that it introduces many overhead.

Parallel I /O iModel. Display speed and stability can be dramatically

improved if we can let the collector’s output (sending to the HIPPI frame

buffer) in parallel with its input (receiving from decoding nodes). At the

current stage, the time for displaying one frame is bounded by the sum of

the time for receiving it from a decoding nodes and the time for sending it to

the frame buffer. Moreover, an instable transmission rate between a decoding

12

node to the collecting node will affect the display rate. This effect will be

removed if a parallel 1/0 mechanism is implemented. A synchronization

scheme is currently used to reduce the instability of transmitting frames

from decoding nodes to the collecting nodes.

Load Balance. Load balance is an important issue in parallel com-

puting. Several strategies are used in the parallel MPEG decoder. Since

the decoding speeds for I-frames, P-frames and B-frames are different and a

future reference frame will be delayed to display in MPEG codings, the de-

coding rate will vary significantly if we sent a frame as soon as it is decoded.

Instead, we send frames when all frames in this GOP are decoded. There-

fore, the decoding loads among decoders are almost balanced assuming each

GOP requires the same decoding time. We also must balance the CPU speed

and transmission capacities to achieve real-time performance. For example,

if a routine that transforms a YUV format to ARGB format is put in the

decoder, the transmitted data from decoding nodes to the collecting nodes

will be reduced by 2.67 times. But by doing so, the collector must transform

the format. This process is feasible only if the collector has a very high CPU

speed.

13

Reducing Overhead. In our prototype implementation, one GOP with

its preceding GOP is sent to each decoder. This process causes one GOP

overhead for each transmission from distributor to decoder. The overhead

can be reduced by transmitting several consecutive GOPs with one preceding

GOP. But this modification will increase latency. The overhead can also be

reduced by restricting bitstream in encoding process. If every GOP is started

with an I-frame in the display order, one no longer needs to add a preceding

GOP when distributing segments to decoders.

Local Optimization. Numerous coding optimizations were used in im-

plementing our parallel MPEG decoder. These optimizations included use of

local copies of variables to avoid memory references; as many register vari-

ables as possible; bit operations instead of arithmetic operations, and in-line

expansions instead of function calls. Also, a fast dithering algorithm from

YUV format to HIPPI’s ARGB format is used.

14

5 Experiment Results

We tested our parallel MPEG decoder for two standard video sequences:

“flower garden” (Figure 2) and “tennis” (Figure 3) . The testing result are

summarized in Table 1. Note that the time is an approximation based on a

segment containing GOPs with six frames. The testing was conducted in the

system environment described in Section 3.

Figure 2. Flower Garden Image Figure 3. Tennis Image

15

Total Number of Processors

Overall Speed

Latency

Image Size

Number of GOPs

Number of Frames

Bit-rate from Disk to Distributor

Bit-rate from Distributor to Decoder

Time from Decoder to Collector

Time from Collector to HIPPI

Time for Dithering a Frame

Time for Decoding a Segment (Fig. 1)

Time for Decoding a Segment (Fig. 2)

16

30 frames /sec.

about 10 sec.

352x240

26

150
-~

3.16 MB/sec.

17 MB/sec.

0.0112 sec./frame

0.0167 sec./frame

0.135 sec.

2.48 sec.

1.95 sec.

Table 1. Key Statistics of Parallel MPEG Decoder

16

6 Conclusions

In this paper, we developed a real-time software MPEG decoder using portable

parallel processing tools. Compared with a hardware-based approach, the

software-based approach provides a better environment €or exploring video

compression algorithms. In addition, the software approach enables flexibility

and portability in applications. A future research topic is to investigate par-

allel video data distribution and management algorithms and parallel MPEG

encoding schemes by using portable message passing libraries.

7 Acknowledgments

We thank our colleagues E. Lusk and W. Gropp for many discussions on using

the p4 and MPI message-passing systems at their early stages, T. Pierce for

his help for efficiently using the SP2 1/0 subsystem, and S. Bradshaw for

allowing us to use and modify his HIPPI display program.

17

References

[l] Arif Ghafoor, J. Yang, and S. Baqai, “Coarse-grained Parallel Algorithm

and Implementation for MPEG- 1 Decoder,” Proceedings of the Work-

shop on Wavelets and Large-Scale Image Processing, Argonne National

Laboratory, 1994.

[2] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable Parallel

Programming with the Message-Passing Interface, MIT Press, 1994.

[3] IBM, High-Performance Parallel Interface User’s Guide and Program-

mer’s Reference Manual, AIX version 3.2, May 1993.

[4] IBM, IBM A IX Parallel Environment Parallel Programming Subroutine

Reference Release 2.0, June 1994.

[5] ISO/IEC Committee Draft 11172-2, Coding of Moving Pictures and As-

sociated Audio for Digital Storage Media at upto 1.5 Mbits/s, ISO/IEC

JTCl/SC29 WG11, Nov. 1991.

[6] R. Butler and E. Lusk, User’s Guide to the p 4 Parallel Programming

System, Technical Report ANL-92/17, Argonne National Laboratory,

Oct. 1992.

18

[7] L. A. Rowe, K. D. Patel, B. C. Smith and K. Liu, “MPEG Video in

Software: Representation, Transmission, and Playback,” SPIE Proc. of

High-speed Networking and Multimedia Computing, pp. 134-144, Feb.

1994.

[8] H. H. Taylor, D. Chin, and A. W. Jessup, “An MPEG Encoder Imple-

mentation on the Princeton Engine Video Supercomputer,” IEEE Proc.

of Data Compression Conference, pp. 420-429, 1993.

19

