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Abstract-This paper presents a neural network approach to the 
problem of color constancy. Various algorithms based on Land’s reti- 
nex theory are discussed, with an eye on neurobiological parallels, 
computational efficiency, and suitability for VLSI implementation. The 
efficiency of one algorithm is improved by the application of resistive 
grids and is tested in computer simulations; the simulations make clear 
the strengths and weaknesses of the algorithm. A novel extension to 
the algorithm is developed to address its weaknesses. An electronic sys- 
tem based on the original algorithm was built, using subthreshold an- 
alog CMOS VLSI resistive grids, that operates at video rates. The sys- 
tem displays color constancy abilities and qualitatively mimics aspects 
of human color perception. 

I. INTRODUCTION 

NYONE who has tried to take a picture of a friend or of a A vase of flowers under different lighting conditions has re- 

alized that our present technology for capturing images is 

flawed. While the color of skin or of a rose may look the same 

to us at high noon or at sunset, a film or video camera just does 

not see it that way. Color constancy is the ability of the human 

visual system to judge, preattentively zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, the reflectance of objects 

in the visual world under a range of different illuminants. Color 

constancy is not perfect: if the illuminant is strongly saturated 

(lacking in white), we make errors. However, for natural vari- 

ations, such as changing daylight conditions caused by varying 

cloud cover, we do rather well. 

While the problem of color constancy has been recognized 

for some time (Helmholtz commented on it [ l]), the computa- 

tional essence of the problem has been grappled with only re- 

cently. In this paper, we present a system that addresses this 

problem for video images. The idea for the system originated 

in consideration of mammalian neurophysiology and human 

psychophysics; its validity was tested in computer simulations 

and it was implemented using analog VLSI. The electronic sys- 

tem is the first real-time instantiation of Land’s retinex theory 

of color constancy for video imaging. 

In the following, we first describe the neurobiological and 
computational aspects of the problem. Next we describe various 

manifestations of Land’s retinex algorithm, improve on one of 

them by applying resistive grids, and propose a novel one. Re- 

sults of computer simulations of the improved Land algorithm 
and the new algorithm are presented. Finally we describe an 

electronic system which performs the improved algorithm at 

video rates. 
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11. NEUROBIOLOGICAL AND COMPUTATIONAL ISSUES IN 

COLOR CONSTANCY 

A.  Neural Computation of Color 

The only system which, at present, is capable of approxi- 

mating color constancy in real time is the nervous system. As 

such, all algorithms for color constancy should be judged in 

comparison with the CNS. The following is a necessarily sim- 

plified sketch of the neurobiology of color vision, a subject of 

continuing extensive research. 

We sense light with three classes of receptors, the cones (rod 

vision is not considered here). The three classes of cones have 

different spectral band-pass properties. They are called long, 

medium, and short (from the spectral bands that they are sen- 

sitive to), or colloquially, red, green, and blue. At the level of 

retinal ganglion cells, the output cells of the retina, the image 

has been transformed from three arrays of band-pass signals to 

three arrays of combinations of those signals. One set of outputs 

codes along the black-white axis of the color space, and the 

other two code along the red-green and yellow-blue axes. 

Cortical visual area V4, many synapses “upstream” from the 

retina, receives inputs from lower visual areas that work with 

color difference signals. In early investigations V4 was dubbed 

the color area [2] because the cells could only be excited with 
color. (This view is now modified, as it is known that V4 cells 

can also respond to orientation and binocular disparity [3]. Here, 

only the spectral properties of V4 cells are considered.) Cortical 

neurons in this visual area are especially interesting since they 

seem to be responsive to perceived color, rather than wave- 

length; that is, they are “color constant” according Zeki’s in- 

formal study [4], [5]. An example of his work is as follows. 

With white illumination, he centered a cell’s receptive field on 

one colored patch from a large field of many colored patches. 

A given cell responded only to a red patch, for example-yel- 

low or green patches produced no cell firing under white light. 

Next he centered the cell receptive field on a yellow patch, 

turned off the white light, and carefully constructed a new il- 

luminant such that the spectrum zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof light coming from the yellow 
patch was the same for this illuminant as the spectrum from the 
red patch under the white illuminant. To a human observer, the 

yellow patch still looked yellow, not red. Zeki found that the 

V4 cell did not fire when presented with the yellow patch which 

reflected red light, and so had discounted the illuminant. In con- 

trast, he found that cells in the first visual area are sensitive to 

wavelength alone and so responded like a photometer, firing 

identically to a red patch under white light and a yellow patch 

under red light. 

Desimone and his colleagues [6] obtained results from V4 
cells that are in a sense supportive of Zeki’s observations. In a 

study of the “nonclassical” receptive fields of extrastriate vi- 

sual neurons, they found that V4 cells respond to white, and to 

many wavelengths, but have a maximal response at some wave- 
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length “analogous to a broad-band color filter, such as a piece 

of colored glass.” They found that V4 cells are suppressed by 
stimuli in a large (30” or greater) “silent surround”; the 

suppression is maximum at the wavelength most effective in 

exciting the cell center, and falls off as the surround stimulus 
wavelength is moved away from the most effective center stim- 

ulus wavelength. 

By comparing the color i i  the center of the receptive field 

with the color in a large area outside of the center, V4 cells 

judge zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArelative color. This is the presumed basis for color con- 

stancy. If the illuminant is red, for example, a reddish cast is 

added to all parts of the scene. Though the cell center may see 

red, its surround does as well, and so it will not respond. Thus 

the cell discounts the illuminant and contributes to color con- 

stancy. 

B. The Computational Essence of Color Constancy 

Under normal variations (e.g., noon versus sunset or clear 

versus overcast sky), the spectrum of daylight varies somewhat. 

The variation is limited enough that is can be represented with 

three spectral basis functions [7]. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA wide range of naturally oc- 

curring object reflectances can also be described with only three 

basis functions [SI. The light reaching a point on the retina, 

i.e., the set of three cone quantum catches, is just the product 

of the illuminant and the reflectance at a point in the world, to 

a first approximation (this is refined below). Thus, six un- 

knowns determine the light impinging on each point of the ret- 

ina, and only three data values, the quantum catches of the three 
cone classes, are available for further processing by the visual 

system. Yet we seem to be able to discount the illuminant and 

perceive the object reflectance [9]-[14]. This is the computa- 
tional problem of color constancy: How do we solve three equa- 
tions in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsix unknowns? 

Various models of color constancy exist in the literature [15]- 
[23]. Several authors [9], [16]-[18] have shown that if the three 

basis functions for reflectance, illumination, and cone absorp- 

tion are different, a color constancy algorithm must solve a ten- 

sor transformation from six unknowns to three knowns in order 

to find the reflectance from the cone signals with varying illu- 

mination. Each model makes assumptions to simplify the prob- 

lem more or less. Here, we focus on Land’s models since, 

through a powerful set of simplifying assumptions, he reduces 

the computational complexity of the color constancy problem 

tremendously [24], perhaps more than any other model. 

111. LAND’S RETINEX THEORY 

Land’s assumptions and various versions of color constancy 

algorithms based on them are discussed in this section. For each 

algorithm, the biological basis, computational complexity, and 

suitability for VLSI implementation are noted. 

A. Three Separate Lightnesses 

One of Land’s basic premises is that color constancy can be 

achieved by the computation of three separate designators or 
lightness values at each point, in three separate systems called 

retinexes. (Since he was not sure at first whether the computa- 
tion took place in the retina or in the cortex, he coined the term 

retinex.) Further, he emphasizes the ability of the nervous sys- 

tem to perceive reflectance even though the illuminant is vary- 

ing (albeit slowly) in space. 

The three lightness signals are assumed to be independent; 

Land does not state how this may occur, but Hurlbert and Pog- 

gio offer a derivation [24]. With this assumption, the color con- 

stancy tensor relation collapses to three independent equations. 

Within each channel i ,  the lightness 1; is the product of the il- 

luminant mi and reflectance p i :  

The log is taken to form a sum: 

I / ( x )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= log l , ( x )  = log m i ( x )  + logp; (x)  

= m / ( x )  + p [ ( x ) .  

Once the two variables that make up the color signal are sepa- 

rated, the second of the three main assumptions of retinex the- 

ory is applied, namely, that the illumination is slowly varying 

in space but the reflectance signal varies mostly at sharp edges. 

Implementations of retinex theory work with this assumption 

by removing the slowly varying component m ’ ( x )  to produce 

an image that depends only on reflectance p’ (x) .  Homomorphic 

filtering algorithms also use the logarithm to separate the com- 

ponents of the color signal in this way [25], [26]. The slowing 

varying component (the illuminant) is then separated by low- 

pass filtering via Fourier techniques. Retinex algorithms, in 

contrast, perform all operations in the spatial domain. Three 

implementations are presented. 

B. Early Implementations 

Land’s original scheme [19], [20] considers the color signal 

at a point in one color plane of an image relative to a spatial 

average signal computed along a set of paths from other points 

in the image to the point in question. The starting point of a 

particular path is chosen randomly, and the logarithms of the 

ratio of color signals at transitions encountered along the path 
are accumulated if the transition represents a reflectance change 

versus a change in shading. A threshold operation is used to 

make this distinction. This procedure is repeated for many paths 

and the resulting values are averaged. The resulting average of 

logs is the log of the lightness of the point divided by a measure 

of the spatially averaged lightness. For an infinite number of 

paths and no thresholding, this measure of the spatial average 

is the geometric mean [27]. Land claims that he gets good re- 
sults with 200 paths. Finally, the reported lightness is normal- 

ized to the lightest point in the image for this color plane. 

The division by the average lightness and subsequent nor- 

malization imply the third main assumption of Land’s theory, 
that the spatial average reflectance in each lightness channel is 

constant for all images. The retinex algorithm, then, operates 

under a gray world assumption. It is possible to defeat the al- 

gorithm by placing a strongly colored patch in a very simple 

scene so that the average reflectance is not gray [27]. 
This algorithm and variants of it can produce nice results (see, 

for example McCann’s images in [28]). However, the proce- 

dures are cumbersome and it is difficult to see how the nervous 

system could carry them out. Further, the computational com- 

plexity, though reduced by assuming three separate lightness 

channels, is still daunting. For each point in the image, much 

of the rest of the image must be traversed by one of the paths 
to obtain the correct lightness. In other words, for an N X N 
image, on the order of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN4 calculations are required. In a VLSI 

implementation, each pixel would have to be connected with 

many other pixels. 

Horn [15], [22] utilizes the Laplacian operator to compare 

lightness across edges. The Laplacian of the image is then 
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thresholded, to remove the slowly varying illuminant. Finally, 

the inverse Laplacian is performed. Analytically, this is done 

by convolving with the Green’s function for the Laplacian, 

(1 /27r) log ( r ) .  In a resistive grid framework, the Laplacian is 

inverted via a feedback network. In a digital implementation, 

the Poisson equation is solved iteratively via Gauss-Siedel 
elimination. Several variants of this implementation exist ifi the 

literature (e.g., [23] and [29]). 
Marr [30] has proposed a scheme in which the nervous sys- 

tem may carry out this implementation, and the resistive grid 

framework is suitable for analog VLSI implementation since 

only nearest-neighbor connections between pixels are required. 

The undesirable spatial connectivity of the previous implemen- 

tation is converted to the time domain. That is, the time re- 

quired for the feedback network to settle is sufficient for infor- 

mation to cross the entire image space through the nearest- 

neighbor connections. T o  our knowledge, no one has attempted 

to build chips based on this algorithm. 

C. Recent Implementations 

In 1986, Land published an alternative to the algorithm de- 

scribed above [21]. This implementation involves computing an 

average weighted by distance from the point in question, and 

subtracting the log of this average from the log of the lightness 

of the point in question. This idea came from Land after his 

collaboration with Livingstone and Hubel [31] and Zeki [2] and 

has a strongly biological flavor to it. That is, the operator he 

uses looks like a cortical “nonclassical” receptive field, with a 

narrow center and a huge surround [6], [32]. 
In practical terms, the algorithm corresponds to subtracting 

from an image a blurred version of itself. The distance weight- 

ing (type of blurring) Land proposes vanes as 1 / r 2 ,  so the op- 

eration is a center minus surround operation, where the sur- 

round is the center convolved with a 1 / r 2  kernel: 

Hurlbert arrived at the same sort of operation analytically [24] 
with a Gaussian kernel: 

I ; ~ , , , ( X ,  y)  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= l i ( x ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy )  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/,‘(I, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(4) 

where U is large enough that the kernel extends across most of 

the image. Except for the different kernels, the only difference 

between the two procedures is that Hurlbert’s involves taking 

the log of the lightness of the surrounding points before rather 

than after averaging. She claims that in practice there is little 

difference between the two procedures [33]. 
This type of retinex algorithm, then, has a biological basis 

and sound computational underpinnings. But the complexity is 

too great. Since the required surround is so large, such a con- 

volution across an N zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX N pixel image entails on the order of 

N4 operations. On a chip, this corresponds to explicit connec- 

tions from each pixel to most if not all other pixels. 

A similar operation can be camed out much more efficiently 

by switching from a convolution to a resistive grid calculation. 

The operations are similar since the weighting of neighboring 

points (Green’s function) in a resistive grid decreases in the 

limit as the exponential of the distance from a given location 

on a resistive grid. With this type of kernel, the operation in 

each retinex (color channel) is 

( 5 )  

where X is the length constant or extent of weighting in the grid 

[34]. Since the calculation is purely local, the complexity is 

reduced dramatically from O ( N “ )  to O ( N * ) .  On a chip, a local 

computation corresponds to connections only between nearest- 

neighbor pixels. So, in this novel retinex implementation, since 

a resistive grid is used to form the spatial average (i.e.,  to blur 

the image for subtraction from the original), the complexity is 

reduced to tractable levels, and the algorithm is appropriate for 

implementation in analog VLSI. 

16ut.,(x, y )  = I ; ( X ,  y )  - l ; ( x ,  y )  8 

IV. SIMULATION RESULTS 

A.  Simulations of the Retinex Algorithm 

Tools for simulating Land’s most recent algorithm were de- 

veloped and used to process both black and white images and 

color images. First, Hurlbert’s results for one-dimensional black 

and white images were confirmed. A large spatial sample was 

obtained around each pixel by convolving with a filter whose 

weights drop off exponentially as the distance from the center 

pixel. This surround value was subtracted from the center pixel 

value. As Hurlbert and Poggio report [33], this scheme handily 

removes illumination gradients. Next, the simulation was ex- 

tended to two dimensions with similar results and tremendous 

increase in run time, owing to the O ( N 4 )  complexity of the 

Gaussian convolution needed to form the spatial average for 

subtraction. For 128 X 128 pixel black and white images, the 

simulation took over an hour on a Sun 4 workstation. 

Next, the same results were arrived at much more efficiently 

by switching from a convolution to a resistive grid calculation. 

The resistive grid simulation runs in a minute rather than an 

hour, since the calculation is purely local. With resistive grid 

code, color images were simulated next (Fig. 1( a )  and (b) ) .  

Specifically, in color simulations of the Land algorithm, 512 
X 512 pixel images are subsampled to 128 X 128 resolution. 

Our frame grabber captures 8 bits each of R ,  G, and B.  Within 

a color plane, the 8 bit pixel values are converted to floating 

point numbers and the log is taken. These values are then treated 

as input currents to a resistive grid; Kirchhoffs current law is 

used in local calculations to simulate the spread of the input 

across the grid. Several iterations are usually required for the 

voltages to settle down. (We stop the simulation when the dif- 

ference in the node voltages across the grid between two itera- 

tions is less than one tenth of 1 % of the maximum pixel value. 

About one hundred iterations are usually sufficient to meet this 

criterion.) Next the settled net values are subtracted from the 

log of the input values. Finally, the minimum of the corrected 

values in the three planes is found and subtracted from all val- 

ues in the three planes, and all values are scaled up so that the 

maximum of all values in the three planes is set to the maximum 

value of our frame buffer, 255: 

Ro(x,  y )  - min(min(R), min(G), min(B)) 

max(max ( R ) ,  max (G) ,  max(B)) - min(min ( R ) ,  min(G), min (B))’ 
ROut(x, Y )  = 255 . 
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MULTIPLICATION 

DERNATTm 

RESlSTriE 

GRIDS 

(C) (d) 

Fig. 1 .  (a) The Land algorithm. The three color camera outputs are 
smoothed on three separate resistive grids, labeled R ,  G ,  and B .  The 
smoothed signal is subtracted from the camera output. (b) Resistive grid 
for smoothing images. (c) Extended Land algorithm. The magnitude of the 
local spatial derivative is smoothed for each color channel on the resistive 
grids labeled dR, dG, and dB and used to modulate the strength of the 
smoothed image before subtraction from the original. (d) The scheme for 
computing edginess. The average of the magnitudes of the local derivatives 
serves as the input to a resistive grid. 

This last step is a form of gain control and is crucial; without 

it, all colors would tend to gray since the subtraction of the 

blurred image is a compressive operation. Note that it is the 

only step that requires operations across the three color planes. 

All prior steps proceed independently within each color plane. 

We go to this trouble since there are some images in which there 

is little or  no information in a given channel. For example, in 

forest scenes there is not much signal in the blue channel. Nor- 

malizing independently in each channel for such a scene would 

artificially expand the pixel values in the blue channel, causing 

noise to be accentuated and generally changing the image color 

globally in the wrong way. 

Fig. 2 shows the results of simulations of the Land algorithm. 

At top are three images obtained directly from the video cam- 

era. For images ( a )  and ( b )  the color output controls of the 

video camera were adjusted to match skin color and a color card 

fairly well under ordinary fluorescent illumination. One image 

(top left, ( a ) )  was captured under this illuminant; it will be 

called the (camera) corrected or  fluorescent image. The fluores- 

cent lights were then turned off, and the same subject was il- 

luminated with incandescent light. A second image (middle top, 

(b) )  was captured without correcting the camera color settings 

under this new illuminant; it will be called the uncorrected or  

incandescent image. While colors in the scene looked a bit 

shifted to the red to us in the room when the second image was 

taken, they were not as bad as those captured by the camera- 

the second image is unacceptable. The skin color is too red, the 

background is lost in darkness, and the shadows are very deep. 

Unfortunately, in these respects it resembles many amateur 

video images taken indoors. 

The middle row of images in Fig. 2 show the result of apply- 

ing the retinex operation to the original images. The corrected 

image (middle left, ( d ) ,  corresponding to ( a )  above it) is some- 

what improved in terms of contrast enhancement. Note, for ex- 

ample, the highlights in the hair that are not visible in the orig- 

inal. The color is less saturated (i.e. less pure, more washed 

out, more gray) but hue is well preserved. The uncorrected im- 

age is strikingly improved (center image, ( e ) ,  corresponding to 

(b) ) .  Skin color is more muted, the,shadows across the face are 
softened, and detail is visible in the background. While color 

correction is not perfect, it is significant. The contrast enhance- 

ment inherent in this algorithm is at least as significant. 

One drawback of this algorithm, however, is apparent in these 

images, namely, color induction across edges. Close examina- 

tion of image ( e )  of Fig. 2 reveals that the (black) border of 
the CIE diagram poster has been tinged with red above and to 

the right of the horseshoe-shaped diagram and tinged green be- 

low the diagram. The discoloration decreases with distance from 

the edge of the diagram. The unwanted color, overlaid on the 

black border, is the complementary color of the area on the 

other side of the edge: induced red abuts the green region on 

the right and induced green abuts the red region on the bottom. 

Red and green are complementary colors. From these facts one 

may conclude that color induction across abrupt edges is inher- 

ent in the algorithm. Consider, for example, a point in the black 

border area just adjacent to the CIE diagram on the right side 

of the poster. Its surround is strongly weighted green by the 

nearby region of the color diagram. This (mainly green) sur- 

round is subtracted from the black center to yield black plus 

green’s complement, red. (Along with the red value, the blue 

value is raised over the green channel in this region. So in this 

sense, it could be said that green’s complement is red plus blue. 

What we perceive, however, is mostly the complement to green, 

which is more red than blue.) A black border point further from 

the color edge is less induced to red since the green area is 

further away, and thus weighted less in forming the surround. 

Image ( d )  is similarly distorted but the distortion is less notice- 

able by inspection. This effect is quantified below. 

Color induction is not mentioned in any of the studies of 

retinex theory except the most recent one by Land [21]. In this 

paper, he notes induction in terms of Mach bands, a well-known 

phenomenon in psychophysics. Fig. 5 of that paper shows how 

“spill-over’’ of the surround is responsible for a relatively dark 

region in the light region adjacent to a dark-light edge and a 

complementary, relatively light region in the dark area near the 

edge. Normally one hears only of Mach bands along the ach- 

romatic (black-white) lightness axis. Whether color Mach bands 

are visible is controversial. However, it suffices to say that we 

do not perceive effects as strong as the effects produced by the 

Land algorithm with video camera inputs; we do not see, for 

example, a green halo surrounding a red ball placed against a 

gray background. 

Another limitation of the Land algorithm is revealed by the 

images in the right column of Fig. 2 .  At top (image ( c ) )  is the 

output of a video camera shot of a still life in which a large 

portion of the scene is composed of just one color. This is a 

common situation; often half of an image is filled with sky or 

foliage. The scene was deliberately captured under dim illu- 

mination, to study the contrast enhancement capabilities of this 

algorithm. At middle right (image ( f  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA)) is the result of retinex 

processing. Although the shadows were softened considerably, 

much of the image is gray, not green. This illustrates how the 

gray world assumption can go wrong. Since we are subtracting 

a blurred vervion of the image from the original image, in this 

case we are subtracting green from green, leaving gray. 
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Fig. 2. Results of simulations. At top are the original images. In the middle row are the results of retinex processing. At bottom 
are the results after applying the extension to the retinex algorithm. 

The upshot of all of this is that the Land model is too simple 

in at least two ways. First, it embodies but a simplification of 

a static aspect of visual processing that psychophysicists call 

simultaneous zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcontrast [14], [35]-[37]. (In this sense it could 
also be called the Cornsweet model, the Jameson and Hurvich 

model, o r  even the Mach model as all of these researchers have 

pointed to simultaneous contrast as a mechanism for color con- 

stancy.) Land’s model of simultaneous contrast is insufficient 

in that it ignores edge information and thus suffers from induc- 

tion across borders. While retinex proponents point to cortical 

visual area V4 as being a site of surround suppression in color 

processing, they do  not cope with the fact that V 4  cells respond 

well to edges [3], [6]. Second, the model suffers from overre- 

liance on the gray world assumption. As we shall see below, 

edge information can also help with this problem. 

B. An Extension to the Retinex Algorithm 

A modification of the retinex algorithm was applied next to 

the same color images (bottom row of Fig. 2 ) .  The magnitude 

of the spatial derivative is smoothed on a second resistive grid, 

to yield a measure of “edginess”; this measure is used to weight 

the surround before subtraction from the center (parts ( c )  and 

( d )  of Fig. 1). In other words, while for a retinex simulation 

we have 

output zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= center - surround 

l ,L.,(x, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP) = l , ’ (x ,  P) - l , ’ (x,  Y) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

( 7 )  

(8)  

to ameliorate induction effects and lessen reliance on the gray 

world assumption, we need to modify the surround weight from 

point to point. In particular, if edginess is given a value close 
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to 0 in homogeneous regions such as the black border of the 

poster in the left images, and is given a value close to 1 in more 

detailed regions such as the colored shirt, we have a better for- 

mulation as follows: 

output zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= center - surround . edginess. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 9 )  

In this relation, the surround is effectively zeroed in smooth 

areas before it is subtracted, so that induction is diminished- 

more of the original color is retained. 

Parts (c) and (d) of Fig. 1 show how edginess is computed 

and used. The 512 x 512 image is again sampled at a low res- 

olution. The magnitude of the first spatial derivative, labeled 

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa - b 1 ,  is computed between points; the average of the ab- 

solute value of the four local spatial derivatives are fed as a 

current into each node of the grid. The output voltage of this 

resistive grid is multiplied with the surround value read out from 

the first resistive grid. This modified surround is then subtracted 

from the camera output, to yield a color-corrected signal. Sig- 

nifying the averaged magnitude of local spatial derivatives as 

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal, ' (x, y ) ( ,  the mathematical expression for the resistive grid 

smoothing of that quantity is the convolution of it with an ex- 

ponential distance weighting function, so the complete expres- 

sion for the extended algorithm is 

The bottom figures of Fig. 2 show images processed with this 

extended retinex algorithm. The color induction is much less 

noticeable upon inspection in the middle and left images, and 

color is returned to the palm frond at bottom right. The ex- 

tended algorithm effectively varies, point by point, the degree 

of subtraction of the blurred version of the image from the orig- 

inal. In detailed areas, edginess is high, so the subtraction is 

carried out as for the original algorithm. In smooth areas, how- 

ever, the degree of correction (weight of surround subtracted) 

varies as the distance from the nearest edgy area. In smooth 

areas, more of the original image "passes through," and so 

there is less color correction. Color constancy will be worse for 

such areas. For example, in Fig. 2(h) the skin tone is redder 

than in Fig. 2(e). The extended algorithm, then, is a working 

compromise between color constancy via strict application of 

the gray world assumption and no color constancy at all. 

Some of these results are quantified in Fig. 3. A horizontal 

and a vertical line through the images in places that show in- 

duction artifacts were selected (Fig. 3(a) and (b)). The green 

intensity at each pixel in each line was subtracted from the red 

intensity at the pixel to show the value of the red-green axis of 

color at the pixel in the original images, in the images processed 

with the retinex algorithm, and in the images processed with 

the extended retinex algorithm. Concentrating on the black bor- 

der area of the poster, note that for the original images (thick 

lines) the pixel value is zero in these regions-red and green are 

balanced in the achromatic, black region. A shift from zero here 

results from induction. At the top of the poster border, red is 

strongly induced in the retinex-processed image (dashed line at 

pixels 10-30 of plots (e) and ( f  ) of Fig. 3). It is induced by the 

neighboring green area (pixels 30-SO). The extended retinex 

algorithm produces less induction (thin line). Similarly. green 

is induced in a black region next to the reddish face area after 
retinex processing in a region crossed by the horizontal line 

(pixels SO-70 of plot (d)).  The extended algorithm (thin line) 

is not much better than the original retinex algorithm (dashed 

line) in this instance. 
Other resistive grid methods for color correction have been 

explored in simulation. If at each point of input to a grid com- 

puting the surround for subtraction, the input resistance is mod- 

ulated by the local spatial derivative, a surround is formed that 
consists of areas "filled in" or interpolated between edgy re- 

gions. Here the local spatial derivatives form an input confi- 

dence [38], [39]. Mach bands are lessened in this algorithm in 

comparison with the Land algorithm, but the degree of smooth- 

ing required to form good surrounds varies from image to im- 

age, so the algorithm is not as robust as the extension detailed 

above. We have also tried varying the lateral resistances ac- 

cording to local spatial derivatives, with disastrous results; 

variation of the lateral resistances strongly disturbs current flow 

in the grid, segmenting the image into discrete areas [40], [41]. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
As a result, subtraction of the grid outputs leads to patches of 

gray in most smooth areas of the input image. In other words, 

variation of the lateral resistance by local values is more appro- 
priate for segmentation than for normalization. We have not 

tried to vary the input or lateral resistances according to 

smoothed edginess, though it may be more comparable to the 

extended method discussed above. 
These results are anecdotal and limited in nature, but they 

show the strengths and weaknesses of Land's algorithm and al- 

low us to see ways to improve the algorithm. The extension 

explored, modulation of the surround by a measure of edginess 
calculated by smoothing the magnitude of the spatial derivative 

on a second resistive grid, is easy to implement in VLSI. 

v. VLSI IMPLEMENTATION OF THE RETINEX 

ALGORITHM 

From the simulation results, it appears that the Land algo- 

rithm and simple extensions to it may be effective in color cor- 

rection. We have implemented the Land algorithm in analog 

CMOS VLSI. Fig. I (  a )  shows the outline of a system of video 

camera color correction based on Land's algorithm. The three 

color outputs of a video camera (labeled red, green, and blue 

here) are fed onto three separate resistive grids built from 

subthreshold analog CMOS VLSI. Each 48 by 47 node resistive 

grid was built using 2 pm design rules and contains about 60 000 

transistors. 

Since a single chip can contain only a small grid (roughly 50 
by SO), the 525 x 525 video image must be sampled at a low 

resolution with appropriate video switching and sample-and- 

hold circuitry. Perhaps the most novel aspect of this design is 

in its sample-and-hold architecture. A horizontal line of NTSC 

video is about 50 ps in duration; 48 horizontal pixels must be 

fed with the video input averaged onto a capacitor over 1 ps. 
However, the data must be held for input to the resistive grid 

for the field duration, which is about 16 ms for NTSC video. 

Thus the sample time and the hold time differ by over four or- 
ders of magnitude. The crucial design feature of these chips is 

that a two-stage sample-and-hold scheme is used. At the bottom 

of the chip, 48 capacitors are charged up at the line rate. Fol- 

lowers broadcast these voltages into the array, where the cur- 

rently selected row of nodes reads the 48 values and integrates 

them into a second sample-and-hold circuit. This second circuit 

is a follower-connected transconductance amplifier, set to run 

in the subthreshold range, feeding a capacitor. Five video lines 

r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
7;-- 
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Flg. 3. Quantification of airnulation result\. At top ( ( a )  and (b ) )  are binary rcpreaentations of the Images In the left two columns 
of Fig. 2 .  As in  Fig. 2,  the fluorescent~illunlinated image is at left ( a )  and the incandescent-illuminated ~ n ~ a g e  is at right (b) .  A 
horizontal and vertical line of pixels was selected through each image. in  areas where the color induction efects of  the color 
correction algorithms are notable. At bottom ( ( c ) - ( f ) )  are plots of  the red pixel value minus the green pixel value along the 
selected lines for the original image (Fig. 2(a) and (b) ,  thick line). the retinex-processed images (Fig. 2 (d)  and (e), dashed 
line), and the images processed with the extended Land algorithm (Fig. 2 (  g ) and ( h ) .  thin line). See text for details. 

are integrated by each of the 47 rows of the resistive grid in subthreshold range. The grid consists of n-type transistors in- 

each field of the video frame 1421. terconnecting the input nodes; a “horizontal resistor” bias cir- 

The circuit details within each pixel are similar to those of cuit at each node sets the gate bias of the interconnect transis- 

the analog retina [34]. A current proportional to the node sam- tors so that the resistance is linear regardless of the transistor 

ple-and-hold capacitor voltage is injected into the grid with a source voltage. These bias circuits are also set to run in the 

follower-connected transconductance amplifier run in the subthreshold range. The output of each node is a follower-con- 
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nected transconductance amplifier, run above threshold, which 

produces a current proportional to the node voltage. This cur- 
rent is sensed and transformed to a voltage by an off-chip cur- 

rent sensing amplifier. Current steering identical to that used in 

the analog retina directs one node output at a time to the sense 

amp. 

Fig. 4 shows the ability of the system to correct skin color 

under a common variation in lighting. At top are the two orig- 

inal images. At left is an image under fluorescent lights, with 

the camera corrected for this illuminant; skin color looks nor- 

mal. In the right image, the illuminant is incandescent light, 

but the camera is still set up for fluorescent light; the skin color 

is too red. At bottom are the outputs of the system after a 

smoothed version of the image is subtracted. Though the image 

at bottom right is more red than the one at bottom left, the color 

difference is less between the bottom images than between the 

top images. The system-corrected images are of a poorer quality 

than the camera images, because of switching noise, cross-talk, 

etc. The point is that the color is more constant for the pro- 

cessed images than for the camera.' 

Conventional methods are capable of this level of correction. 

Many video cameras have an ambient light sensor attachment, 

which is used to sense the illuminant; a global subtraction of 

the global value corrects skin color as well as our system. In 

fact, simply averaging the red, green, and blue signal over a 

video frame and subtracting this average will work with richly 
colored scenes such as these (i.e.,  with scenes for which the 

gray world assumption is valid). The strength of this algorithm 

and its value as a model of the biology lie in its use of a spatially 

varying average for subtraction. This feature enables it to en- 

hance contrast, soften shadows, and reproduce color shifts that 

are observed by humans. Our electronic system is not very good 

at shadow softening and contrast enhancement, for three rea- 

sons. First, we are not taking the log of the video signal before 

processing, so we are not taking advantage of as much of the 

signal as we are in the simulations. Second, the noise in the 

surrounds produced by nonidealities in the analog CMOS fab- 

rication technology distorts the image in dark areas. Third, the 

resolution of the surround is much lower than the resolution of 

the original image (50 x 50 versus 512 x 512). However, we 

are able to reproduce one aspect of human color perception with 

this electronic system, an aspect that illustrates the spatially 

varying nature of the color normalization: color darkening in 
light regions of a scene and color lightening in dark regions, as 

shown in Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 .  
Fig. 5 shows three set of images of color bars. At top are the 

video camera outputs under fluorescent light, fluorescent and 

blue light, and fluorescent and green light. The middle row of 

images shows the corrected system output for identical lighting 

conditions as the top three images. The bottom row of images 

are the direct output of the resistive grids, with no smoothing. 

The color constancy among images in the middle row is im- 

pressive compared with the top and bottom rows. These images 

also show the spatial aspect of the color correction. The red bars 

in these images are cut from the same piece of paper. Note that 

in the top row the red bar next to the white bar looks darker 

'In preparing the final images for Fig. 4 ,  the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAscene zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdependence of color 
constancy was discovered. In order to obtain the level of constancy of Fig. 
4(d), the subject had to be placed between a dark region and a bright re- 
gion. By accident rather than design, this is how the subject was arranged 
in parts (b), (e),  and (h) of Fig. 2 .  This further weakness of the Land 
algorithm may not have been discovered without a real-time system. For 
further details, see [43]. 

than the red bar next to the black bar. When the red bars are 

examined in isolation the color is identical. This is easiest to 

see by cutting two holes in a piece of paper so that one hole lies 
over the top red bar, and the other hole lies over the bottom red 

bar. In isolation the colors are identical, but the perception is 

influenced by nearby colors; this is simultaneous contrast [ 141, 
[35]-[37].  In the color-corrected images of the second row, the 
red bar in the light region appears darker than the red bar in the 

dark region, even when viewed in isolation. This demonstrates 

that the system is using local information to perform the cor- 

rection; this is the first system to show these color effects with 
video images. 

The bottom row of Fig. 5 shows images of the same color 

bars taken from the resistive grid outputs, under the same light- 

ing conditions as the top two rows. (The smoothing is set to 

zero here, to show the bars clearly; for correction, the image is 

smoothed greatly, so that the resistive grid outputs are an un- 

interesting blur.) As expected, the color varies as the lighting 

is changed just as in the video camera images (top row). The 
two-hole test described above reveals that the top and bottom 

red bars in this row of images are identical in color. 

In summary, our real-time system, which forms a blurred 

version of the image on resistive grids for subtraction from the 

original, demonstrates color constancy and simultaneous con- 

trast effects. Other effects produced by Land's retinex algo- 

rithm, such as color Mach bands, have been observed with the 

electronic system, but are not shown here. 

VI. CONCLUSION 

Land's retinex theory is a model for our natural ability to see 

color as roughly constant as the lighting varies widely. The neu- 

robiology and psychophysics of color constancy support the 

plausibility of his model; computational analysis of the problem 

shows that his is an elegant solution. We have applied resistive 

grid processing to his model, greatly reducing its complexity. 

Through computer simulations we have explored the strengths 

and weaknesses of the retinex theory; we have developed an 

extension of it that lessens its weakness. Impressed with its 

strengths, we have implemented the retinex algorithm using an- 
alog VLSI. The system, based on three resistive grids, is ca- 

pable of color correction and displays color shifts that qualita- 

tively mimic those of human perception. The system operates 

at video rates, and as such is the first of its kind. With further 
development, systems such as this, designed to implement the 

retinex algorithm and simple extensions to it, would be useful 

in a variety of video applications. 

Is this system a neural network? Even though there are no 

weights, thresholds, energy surfaces, o r  the like in its architec- 

ture and operation, we feel that it is. We were led to this prob- 

lem after exploring the nonclassical receptive fields of cortical 

cells that process visual motion [32]. We turned to psycho- 
physics to understand the problem and to computational theory 

to understand the models proposed to solve it. Finally, after 

computer simulation, we had the confidence to build the sys- 

tem. It is neural in the sense that it is a realization of the premier 

model of how the brain accomplishes color constancy. In the 

introduction, we pointed out that our present technology for 

capturing images is flawed-it is too simple. By studying the 

brain we have been able to build a system that does it better. 
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Fig. 4.  Skin color correction with an electronic implementation of the Land algorithm. At top are the camera outputs under (a) 
fluorescent and (b) incandescent light. The camera was adjusted to report colors well under fluorescent light. The bottom images 
show the output of the color correction system for (c) fluorescent and (d) incandescent illuminants. The skin tone in the bottom 
images changes less for the two conditions than the camera images. 

Fig. 5 .  Color constancy results from the electronic system, The top images are the video camera outputs, the middle images 
are the color-corrected outputs. and the bottom images are the outputs from the three resistive grids with no smoothing. The 
color bars are lit with fluorescent light in the left column. Narrow-band blue light is added in the middle column. and narrow- 
band green light is added in the right column. 
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