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 
Abstract— This paper proposes a real-time nonlinear model 

predictive control (NMPC) strategy for direct yaw moment control 

(DYC) of distributed drive electric vehicles (DDEVs). The NMPC 

strategy is based on a control-oriented model built by integrating 

a single track vehicle model with the Magic Formula (MF) tire 

model. To mitigate the NMPC computational cost, the 

continuation/generalized minimal residual (C/GMRES) algorithm 

is employed and modified for real-time optimization. Since the 

traditional C/GMRES algorithm cannot directly solve the 

inequality constraint problem, the external penalty method is 

introduced to transform inequality constraints into an 

equivalently unconstrained optimization problem. Based on the 

Pontryagin’s minimum principle (PMP), the existence and 
uniqueness for solution of the proposed C/GMRES algorithm are 

proven. Additionally, to achieve fast initialization in C/GMRES 

algorithm, the varying predictive duration is adopted so that the 

analytic expressions of optimally initial solutions in C/GMRES 

algorithm can be derived and gained. A Karush-Kuhn-Tucker 

(KKT) condition based control allocation method distributes the 

desired traction and yaw moment among four independent 

motors. Numerical simulations are carried out by combining 

CarSim and Matlab/Simulink to evaluate the effectiveness of the 

proposed strategy. Results demonstrate that the real-time NMPC 

strategy can achieve superior vehicle stability performance, 

guarantee the given safety constraints, and significantly reduce the 

computational efforts. 

Index Terms— continuation/generalized minimal residual 

algorithm; direct yaw moment control; distributed drive electric 

vehicle; nonlinear model predictive control.  

I. INTRODUCTION 

DEVS have recently attracted enormous attention and they 

have gradually become promising candidates for future 

transportation, owing to their advantages including high 

reliability, fast drive response, good flexibility [1]. By 

reasonably arranging the output torque of the in-wheel motors 

(IWM), an external yaw moment can be generated and applied 

for yaw motion control so as to improve the vehicle handling 

stability, especially in critical driving conditions [2]. This is 

commonly named as DYC. Nevertheless, the inherent 
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nonlinearity and over-actuated feature in DYC of DDEVs also 

bring the great challenge of strategy design.  

The literature presents several interesting contributions. In 

[3], the authors designed a linear quadratic regulator (LQR)-

based DYC strategy, whose tire cornering stiffness information 

was estimated online. To improve the robustness of a classical 

LQR, Ref. [4] developed a robust LQR controller featuring a 

gain scheduling mechanism. With varying vehicle speed, this 

control strategy can adaptively change the state feedback gains 

so as to reduce the tracking error dynamics. To tackle 

uncertainties on vehicle parameters, a model-based feedforward 

and feedback controller in [5] was designed for correcting the 

errors between reference vehicle states and the real ones. In [6], 

the authors investigated a modified composite nonlinear 

feedback (CNF) strategy for path-following and DYC, 

including a nonlinear feedback contribution for accelerating the 

control response speed and eliminating overshoot. To further 

improve the robustness, integral sliding mode control (ISMC) 

was combined with CNF techniques as a combined control 

method in [7]. 

The aforementioned approaches come with two important 

limitations. First, the constraints on states and/or control actions 

are often not considered. In some cases they are ignored during 

the control design phase and then introduced through heuristics 

post-processing approaches (e.g. adding saturation limits), yet 

this may jeopardize the control optimality. Also, some robust 

control methods may be quite conservative, because their 

primary purpose is to effectively deal with model uncertainties 

or external disturbances. Under normal driving conditions, the 

vehicle lateral dynamics are nearly linear, thus the controller 

robustness may not be a significant benefit, whilst the controller 

performance could not be satisfactory [8].  

Model predictive control (MPC) is a suitable approach to 

address the above gaps. At each sample time, the future system 

states are obtained by updating the control-oriented model and 

optimized through optimization algorithms in the predictive 

horizon, where the constraints can be easily put in explicit form 

[9, 10]. In addition, the high flexibility in formulating control 

Beijing, China (email: gny123@foxmail.com; xudong.zhang@bit.edu.cn; 

zouyuanbit@vip.163.com; 602903705@qq.com; ztao1208@126.com, 

Corresponding author: Xudong Zhang and Yuan Zou).  

Basilio Lenzo is with the Department of Engineering and Mathematics, 

Sheffield Hallam University, Sheffield S1 1WB, UK (email: 

basilio.lenzo@shu.ac.uk)  

Ningyuan Guo, Student Member, IEEE, Basilio Lenzo, Member, IEEE, Xudong Zhang, Member, 

IEEE, Yuan Zou, Senior Member, IEEE, Ruiqing Zhai, Tao Zhang, Student Member, IEEE 

A Real-time Nonlinear Model Predictive 
Controller for Yaw Motion Optimization of 

Distributed Drive Electric Vehicles 

D 



problems through MPC allows to easily tackle nonlinearities or 

time-varying features of the system. Specifically, NMPC 

(nonlinear MPC) is needed due to the nonlinearity of tire 

behavior. However, NMPC may entail significant 

computational cost. To mitigate that, several approaches were 

proposed. A linear time varying MPC (LTV-MPC) controller 

was presented in [11], in which the nonlinear model is 

linearized through a Taylor expansion. Simulation and 

experimental results proved the feasibility of the LTV-MPC 

strategy, although with poorer tracking performance than the 

nominal NMPC. In [12], the explicit MPC was proposed for 

DYC of DDEVs. As for real-time calculation, the control 

problem was optimized offline, thus generating appropriate 

look-up tables to be used online. Another example of an explicit 

MPC law can be found in [13], where the NMPC problem was 

solved offline by using nearest point approach. Here 105 grid 

points were applied to build the final control law, and the 

simulation results showed similar performance to a nominal 

NMPC. Even so, such performance was obtained with a large 

number of points used in the offline optimization, leading to 

high memory requirements that limited the method 

applicability. Ref. [14] developed an NMPC strategy for 

DDEVs, where hardware-in-the-loop (HIL) experiments were 

carried out based on particle swarm optimization (PSO) 

algorithm under field programmable gate array (FPGA) chip. 

Owing to the parallel calculation capacity of PSO and FPGA, 

real-time calculation was possible; however, such method is not 

suitable for large scale applications due to the FPGA high cost.  

Modern vehicles are equipped with an electronic stability 

program (ESP) supervisor, which triggers a friction brake-

based DYC function when it detects a potential incipient loss of 

vehicle stability [15]. In normal driving conditions, instead, the 

ESP is not active. During a generic vehicle journey, the ESP 

may switch “ON/OFF” a number of times, this has an important 

effect on the initialization of the MPC and therefore on its 

ability to converge. With an unsuitable initial solution, the 

optimality of the algorithm may deteriorate, thereby the 

algorithm may diverge hindering vehicle safety. Very few 

contributions in the literature focus on this issue. Refs. [16, 17] 

set the initial values as a zeros vector, but that is appropriate 

only if the controller starts when the vehicle is standstill. Other 

approaches include numerical iteration methods [18, 19] to 

work out an appropriate initial solution; however, they are not 

real-time applicable.  

This paper proposes a novel NMPC approach for DYC of 

DDEVs, which overcomes the above drawbacks by introducing 

the following novelties: 

1) The C/GMRES algorithm is used within the NMPC, to 

achieve superior control performance with reduced 

computational burden.  

2) The external penalty method is applied for implementing 

relevant model constraints in the C/GMRES algorithm, and the 

existence and uniqueness of the solution are proved.  

3) A varying predictive duration is adopted, leading to an 

analytical expression for an optimal initial solution of the 

NMPC. 

 The remainder of this paper is organized as follows. Section 

II introduces the control-oriented model. Section III deals with 

the formulation of the NMPC strategy. Section IV investigates 

numerical simulations assessing the performance of the 

proposed strategy. The main conclusions are in Section V.  

II. CONTROL-ORIENTED MODEL OF DISTRIBUTED DRIVE 

ELECTRIC VEHICLE 

The studied DDEV is a passenger car with two axles and four 

wheels, where each wheel is assembled with an IWM and only 

the front wheels can steer. In this paper a single track model is 

adopted, with nonlinear tires.  

A. Single Track Vehicle Model  

The single track vehicle model is adopted for controller 

design in this paper, and the schematic diagram of vehicle 

dynamic is shown in Fig. 1. The vehicle dynamics is modeled 

as [20]:  

( )
v y x y yf yr

z z a yf b yr

m v v F F F

I M l F l F





    


  




  (1) 

where v
m , y

F , a
l , b

l , z
M  and z

I  are, respectively, the total 

vehicle mass, the lateral force, the distance from front axle to 

the center of gravity (CG), the distance from rear axle to CG, 

the vehicle yaw moment and yaw moment inertia. x
v  and y

v  

represent the longitudinal and lateral velocity of the vehicle CG, 

respectively. yf
F  and yr

F  denote the lateral forces of the front 

and rear tires, which are expressed as  

yf yfl yfr

yr yrl yrr

F F F

F F F

 
  

  (2) 

where the subscripts “fl”, “fr”, “rl”, and “rr” express that the 
corresponding variables are related to front, rear, front-left, 

front-right, rear-left and rear-right wheels. The tire sideslip 

angles of front and rear wheels, i.e., f
  and r

 , can be 

calculated as  

( ) / ( / )

( ) / /

f y a x a x

r b y x b x

v l v l v

l v v l v

     

   

     
    

  (3) 

where   is the front wheel steering angle.   and   are the 

vehicle sideslip angle and the yaw rate, respectively.  






f

f

 
Fig. 1. Schematic diagram of vehicle dynamic. 

B. Magic Formula Tire Model  

An empirical tire model [21], MF developed by Pacejka, is 

employed to deal with the strong nonlinearity of tire lateral 

force under pure-slip condition: 
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Fig. 2. Control framework illustration. 
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( , , )

sin arctan arctan( )
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where / ( )
o F o o

B C C D  is the stiffness factor, and 
o z

D F  

is the peak factor.   and z
F  denote the road adhesion 

coefficient and the vertical load of the tire, respectively. 

 1 2sin 2arctan( / )
F o o o z

C B C D c F c    is the cornering 

stiffness. The shape factors o
C , o

E , and the parameters 1c  and 

2c  are determined through least-squares approximation [22].  

C. Control-oriented Model for Controller Design  

According to Eqs. (2) and (4), the lateral forces yf
F  and yr

F  

in the single track vehicle model can be presented as  

2 ( , , )

2 ( , , )

yf f zf

yr r zr

F M F

F M F

 

 

 
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  (5) 

where zf
F  and zr

F  denote the vertical loads of front and rear 

axles, respectively. By adding Eq. (5) into Eq. (1) with an 

external yaw moment 
z

M , the updates of   and   can be 

yielded:   

 

 

2 ( , , ) ( , , )

2 ( , , ) ( , , )
+

f zf r zr

v x

a f zf b r zr z

z z

M F M F

m v

l M F l M F M

I I

   
 

   


 
  








  (6) 

To sum up, based on Eqs. (3), (4), and (6), the control-

oriented model of the DDEV can be formulated as,  

( , , )x f x u w

y Cx


 

  (7) 

where [ ]T
x    and z

u M . w   represents the 

external disturbance, which is the steering angle of front wheels 

from driver. C  is a row vector with all the elements of one. 

Now the formulation of control-oriented model is completed, 

and the proposed DYC strategy will be illustrated in the 

following.  

III. REAL-TIME NONLINEAR MODEL PREDICTIVE CONTROLLER 

A. Control Framework  

The control framework of the proposed strategy is 

hierarchical, as shown in Fig. 2. Firstly, at each time instant, an 

embedded driver model from CarSim® provides the front wheel 

steering angle and the total traction torque demand. A reference 

generator produces the reference values of sideslip angle and 

yaw rate. Based on the feedback longitudinal vehicle velocity, 

vehicle sideslip angle error, and vehicle yaw rate error, a NMPC 

controller with C/GMRES algorithm is used to determine the 

desired external yaw moment. Focusing on the fast initialization 

in the C/GMRES algorithm, the varying predictive duration and 

an initialization approach are proposed, as described in detail 

below. Then, a KKT optimality condition based torque 

allocation method is employed in the lower-level control for 

optimal torque distribution of IWMs. Finally, the optimal 

torque command is sent to a DDEV model implemented in 

CarSim®.  

B. Reference Generator  

The reference generator produces the desired vehicle 

sideslip angle and yaw rate for achieving desired vehicle 

maneuverability and stability targets. In this paper, the control 

reference of r
  and r

  are given as below.  

2

0

min max( , / ), /
( )

r

x

r x x

a b x

v
g v g v

l l v




  






       

  (8) 

where   represents the understeer gradient of vehicle. 

/
x

g v  is a boundary of yaw rate for vehicle stability and 

derived from the certainly lateral acceleration /
y x

a g v  

[23].  

C. Upper-level Control: Nonlinear Model Predictive 

Controller  

1) Control Problem Construction 

Here, the NMPC control problem of the yaw motion control 

can be written as 
1

min ( ( ), ( )) ( ( ), ( ))

s.t. ( ) ( ( ), ( ))

( )

( ( ), ( )) 0

o p

o

t N

mpc o p o p
t

o o

J g x t N u t N l x u d

x f x u

x x t

h x u

  

  

 

 
   








 (9) 

where ( ( ), ( ))
o p o p

g x t N u t N   denotes the terminal cost of 

   ( ) ( )
T

p r p r
x N x W x N x  , where W  is the weight matrix 

of 1 2diag{ }w w . o
x is the initial system state. p

N  represents 

the steps of predictive horizon. o
t  is the current sample instant 
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of controller. ( ( ), ( )l x u   is the performance cost at each time 

step:  

   
   

( ( ), ( )) ( ) ( )

( ) ( ) ( ) ( )

T

r r

T

o o

l x u x x Q x x

u u t R u u t

   

   

  

    
  (10) 

where 1 2diag{ }Q q q  and R  express the weight factors 

corresponding to state error and control variable, respectively. 

[ ]T

r r r
x    is the reference state for tracking, and   is 

the time step in predictive horizon. ( )
o

u t    indexes the 

control command at the last sample instant, and the quadratic 

penalty item of ( ) ( )
o

u u t     in Eq. (10) is to avoid the 

optimized command chattering. The inequality constraints 

( ( ), ( ))h x u   are set as:  

min max

min max

min maxz z z
M M M

  
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  


 
  

  (11) 

where the subscripts of “max” and “min” mean the allowable 
maximum and minimum related variables, respectively. 

min maxz z
M M   is imposed here for simplicity, and the 

boundaries of   and   in Eq. (11) are defined as 

max min

max min

arctan(0.02 )

/
x

g

g v

  
  

  
   

 [20], where g  is the 

gravitational acceleration.  

2) Continuation/ Generalized Minimal Residual Algorithm 

Since the control problem (9) is highly nonlinear and with 

inequality constraints, the C/GMRES algorithm is employed for 

efficient solving. The calculation process is explicit so that the 

number of mathematical operations to perform in NMPC at 

each sample time is fixed, which ensures a finite computational 

time for online solving compared with numerical iteration 

algorithms [24]. Furthermore, the optimization quality can be 

guaranteed because of the use of the global optimality 

conditions of PMP.  

Because the traditional C/GMRES algorithm cannot handle 

the inequality constraints, the external penalty method is 

adopted to construct an equivalently unconstrained 

optimization problem by transforming the inequality 

constraints to the penalty cost items in the performance index. 

The expression of external penalty cost can be written as:  

2

0 , ( ( ), ( )) 0
( ( ), ( ))

( ( ), ( )) , ( ( ), ( )) 0

j

j

j j j

h x u
x u

h x u h x u

 
  

    
   

  (12) 

where ( ( ), ( ))
j

x u    and j
  are the external penalty cost and 

the weight coefficient for the j th inequality constraint 

( ( ), ( ))
j

h x u  . In this paper, 1, 2,3j  , and ( ( ), ( ))
j

h x u   is:  

2 2

1 max

2 2

2 max

2 2

3 max

( ( ), ( ))

( ( ), ( ))

( ( ), ( ))
z z

h x u

h x u

h x u M M
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   

 

  


 
  

  (13) 

Note that only the maximum boundary of each variable is 

adopted in Eq. (13) since their maximum equals to the related 

minimum multiplied by -1. Then, the original control problem 

can be reformulated as below, where the inequality constraints 

are transformed in external penalty cost:  

31

min ( ( ), ( ))

( ( ), ( )) ( ( ), ( ))

s.t. ( ) ( ( ), ( ))

( )

o p

o

mpc o p o p

t N

j
t

j

o o

J g x t N u t N

l x u x u d

x f x u

x x t
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  

 
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 





  (14) 

where 1 , 2 , and 3  are the weight coefficients of external 

penalty cost regarding vehicle sideslip angle, yaw rate and 

external yaw moment, respectively. Now the control problem is 

available for the application of C/GMRES algorithm. Based on 

the PMP [25], the Hamiltonian function of problem (14) can be 

written:  

3

( ( ), ( ), ( )) ( ( ), ( )) ( ) ( ( ), ( ))

( ( ), ( ))

T T

j

j

H x u l x u f x u

x u

         

  

  


 (15) 

where 
T  represents the co-state vector, and the optimality 

condition of PMP describes that if the optimal control sequence 
1*{ ( )} o p

o

t N

t
u   

  exists, there must have the corresponding 

1*{ ( )} o p

o

t N

t   
  making the following relationships true:  

* * *( ) arg min[ ( ( ), ( ), ( ))]T
u H x u       (16) 

* * * *( 1) ( ( ), ( )) ( )x f x u x          (17) 

* * * *( ) ( 1) ( ( 1), ( 1), ( 1))TH
x u

x
        

      


  (18) 

( ) ( )
o o

x t x t   (19) 

*( 1) ( ( 1))
o p o p

g
t N x t N

x
 

    


  (20) 

For simplicity, define the optimized vector as 

( ) [ ( ) ( ) ( 1)]

p

T

o o o p

N

U t u t u u t N   . By recursive 

calculations according to Eqs. (15) to (20), the optimization 

problem can be reformulated as:  

* * *

* * *

* * *

( ( ), ( ), ( ))

( ( ), ( )) ( ( ), ( ), ( ))

( ( 1), ( 1), ( 1))

0

T

o o o

T

o o

T

o p o p o p

H
x t u t t

u

H
F U t x t x u

u

H
x t N u t N t N

u



   



 
  
 
  

 
 
 
        



 

 (21) 

Ideally, Eq. (21) can be solved by numerical iteration 

algorithms [26], such as trust-region-dogleg (TRD) and interior 

point (IP) methods, yet entailing significant computational cost. 

Instead, the C/GMRES algorithm can be adopted for the above 

problem with acceptable computational efficacy, which avoids 

the calculations of Jacobian matrix, Hessian matrix and inverse. 

Based on continuation method [27], ( ( ), ( ), )
o o

F U t x t t  can be 

transformed as a linear dynamic system, 
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( ( ), ( ), ) ( ( ), ( ), )
o s o

F U t x t t F U t x t t  , where 
s

  is the 

stability matrix for stabilizing ( ( ), ( ), )
o o

F U t x t t  at original. If 

( ( ), ( ), )
o o

F
U t x t t

U




 is nonsingular, the solution ( )
o

U t  is 

determined by,  

1

( )

[ ( ( ), ( ), )] [ ( ( ), ( ), )

( ( ), ( ), ) ( )]

o

o s o

o

U t

F
U t x t t F U t x t t

U

F
U t x t t x t

x


 




 


  (22) 

In Eq. (22), a significant computational burden is caused 

from the Jacobians of F  with respect to x  and u  and its 

inversion of 
F

U




. To handle it, the products of Jacobians and 

vectors are estimated by forward difference approximation, as 

below,  

( , , )

( , , ) ( , , )

: ( , , : , ,1)
h

F F F
F U x t U x

U x t

F U Uh x xh t h F U x t

h

D F U x t U x

  
  
  

   




  (23) 

where h  is a positive real value. From Eq. (23), Eq. (22) can be 

rewritten as,  

( ( ), ( ), ) ( )

( ( ), ( ), ) ( ( ), ( ), ) ( )

( ( ), ( ) , : ,0,0)

( ( ), ( ), ) ( ( ), ( ), : 0, ,1)

o o

s o o

h o

s o h o

F
U t x t t U t

U

F
F U t x t t U t x t t x t

x

D F U t x t xh t h U

F U t x t t D F U t x t t x









   


  

  

  (24) 

TABLE I.  

FDGMRES ALGORITHM ILLUSTRATION.  

FDGMRES algorithm: *

maxFDGMRES( , , , , , , , )
tol

U U U x x F e k h  

Input: 

ˆ : ( ( ), ( ), ) ( ( ), ( ), : 0, ,1) ( ( ), ( ), : ,0,0)
s o h o h o

r F U t x t t D F U t x t t x D F U t x t t U   

, 1
ˆ ˆ: /v r r , ˆ: r  , :  , : 0k    

Output: U  

while maxk k  or tole   do 

1k k  , and 1 : ( ( ), ( ) , : ,0,0)
k h o k

v D F U t x t xh t h v     

for 1, ,j k   do 

      1: T

jk k jh v v , and 1 1:k k jk jv v h v    

end 

1, 1:k k kh v  , and 1 1 1: /k k kv v v     

1

1 [1 0 0]T k
e

  , ( 1){ } k k

k ijH h
   ¡  (if 1i j   then 

0ijh  ) 

Minimize 1

k

ke H y   to determine 
k k

y  ¡ .  

1: k

ke H y   , [ ] pmN k

k i
V v

  , where m  is the dimension sum 

of u , and pmN  equals to that of U .  

end 
* : k

k
U U V y   

This is an approximately linear equation regarding U  and 

can be fast solved by GMRES algorithm. The GMRES 

algorithm is derived from Krylov-subspace method, which is 

designed to solve large sparse linear equations Ax b  with 

nonsymmetrical matrix A  for the minimization of residual 

b Ax . The advantage of this algorithm is that, in principle, 

it can reduce the residual monotonically and it converges to the 

optimal solution within a number of iterations equaling to the 

dimension of the given equation. The GMRES algorithm with 

forward approximation is commonly called FDGMRES. For 

more details, the calculation process of FDGMRES algorithms 

are illustrated in Table I [28].  

Remark 1: To handle the inequality constraints, common 

approaches are the external penalty method, the auxiliary 

variable method, and the barrier function method. In [29] and 

[30], the inequality constraints were hold by transforming them 

into a set of same-dimensional equality constraints, in which the 

dummy variables of j
  was defined to construct the equalities 

as 
2( ( ), ( )) 0

j o j
h x t u    . A small dummy penalty term was 

added to the cost function to avoid singularity at any 0
j

  , 

namely ( ( ), ( )) ( ( ), ( ))
m

j j

j

l x u l x u w      , where 

( ( ), ( ))l x u   is the new cost function in predictive period, and 

j
w  is the weight coefficient regarding the j th penalty item. 

The auxiliary variable method was proven to be difficult to 

stabilize and tune [31]. For the barrier function method, Ref. 

[32] mentioned that the inequality constraints can be processed 

as an additional cost item of the log function in the performance 

index. This method is potentially effective to handle the 

boundary optimization problem in the C/GMRES algorithm. 

However the method requires good accuracy of the control-

oriented model, which is not deemed the case here, mainly due 

to the simplifying hypotheses coming with a single track 

vehicle model. So, the external penalty method in Eq. (12) is 

finally chosen to deal with the inequality constraints.  

Remark 2: It should be noted that the optimal solution of 

C/GMRES algorithm is existing and exclusive only when 
F

U




 

is nonsingular [29]. From Eq. (21), 
F

U




 is actually a Hessian 

matrix of the Hamiltonian function with respective to U . In 

addition, given that the optimized variable u  is only related to 

the Hamiltonian function at one time instant of predictive 

horizon, 
F

U




 is a p p
N N  block diagonal matrix. Therefore, 

whether 
F

U




 is nonsingular can be determined by verifying the 

invertibility of 
2

2

H

u




. The expression of 
2

2

H

u




 can be 
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calculated to be 
3

3 3

, ( ( ), ( )) 0

2 , ( ( ), ( )) 0

R h x u

R h x u

 
  


  

. Since R  and 
3  

are positive, 
2

2
0

H

u





 indicating that 

F

U




 is nonsingular.  

3) Varying Predictive Duration and Initialization  

To adapt the frequent initialization issue of C/GMRES 

algorithm, a fast initialization approach is customized for 

C/GMRES algorithm under the considerations that the NMPC 

controller starts at nonzero states and/or nonzero external 

disturbance (e.g. the vehicle is assembled with an ESP as 

mentioned in Section I). Here a time-dependent duration of 

predictive horizon is imposed [30],  

( ) (1 )t

f
T t T e

     (25) 

where ( )T t  is the duration of predictive horizon; 
f

T  is a given 

time duration constant; t  is a time value that records the time 

duration of controller operation, which is reset to zero when the 

controller restarts; and   is a coefficient that determines the 

increase rate of ( )T t . With greater  , ( )T t  increases more 

rapidly and tends to f
T  as t  . By applying Eq. (25) when 

the controller is starting, the time duration of predictive horizon 

is zero, and 
* * *(0) ( ) ( 1)

p
u u u N   , 

* * *(0) ( ) ( 1)
p

x x x N   , and 

* * * *(0) ( ) ( 1) ( ( 1))
p p

g
N x N

x
    

    


. Hence, the 

initialization can be reduced to find only one variable (0)u . 

Since the Hamiltonian function of Eq. (15) is convex regarding 

(0)u , the optimal solution * (0)u  can be solved according to 

0
H

u





 and the boundary of u .  

The boundary of u , min_z new
M  and max_z new

M , can be 

determined by combining the constraints regarding states and 

controls. Based on the state update function (7), the transformed 

constraints of control variable can be worked out by reverse 

calculation:  

 

 

 

min max

min

max

2 ( ( ), , ) ( ( ), , ) (0)
( ) +

( )
(0) 2 ( ( ), , ) ( ( ), , )

( )
(0) 2 ( ( ), , ) ( ( ), , )

a f o zf b r o zr z

o

z z

o

z z a f o zf b r o zr

o

z z a f o zf b r o zr

l M t F l M t F M
t t

I I

t
M I l M t F l M t F

t

t
M I l M t F l M t F

t

   
  

 
   

 
   

 
    
 
 

         
 

 

 (26) 

where t  is the sampling step of controller. Note that since 

( )
o

t  is not determined by (0)
z

M  during initialization, the 

state constraint of   is not considered here. Then, the 

boundary of u  in initialization is obtained:  

 

 

max
max_ max

min
min_ min

( )
min 2 ( ( ), , ) ( ( ), , ) ,

( )
max 2 ( ( ), , ) ( ( ), , ) ,

o
z new z a f o zf b r o zr z

o
z new z a f o zf b r o zr z

t
M I l M t F l M t F M

t

t
M I l M t F l M t F M

t

     

     

        


       

 

 (27) 

Thus 
*(0)u  can be calculated by:  

2
max 3

*

min_ max_

3

( ( ) ( ))
( )

(0) min max( , ),
( 2 )

o r o
z o

z
z new z new

w t t
M R u t t

I
u M M

R

 



      
 
 
 
 

 

 (28) 

Moreover, when initializing, ( )
o

u t t   is zero, and 3 0   

since the limits min_z new
M  and max_z new

M  are imposed in the 

calculation of Eq. (28). Eq. (28) can be rewritten as:  

* 2
min_ max_

( ( ) ( ))
(0) min max( , ),r o o

z new z new

z

w t t
u M M

R I

  
   

 (29) 

Then the optimal (0)U  can be set as 

  *(0) 1 1 (0)

p

T

N

U u  . For the determination of (0)U , the 

optimized control command is assumed to vary smoothly, 

owing to the penalty item 

   ( ) ( ) ( ) ( )
T

o o
u u t t R u u t t        in the performance 

index. Thus,  (0)= 0 0

p

T

N

U .  

To sum up, the operation schematic of the proposed NMPC 

controller is illustrated in Fig. 3. It is noteworthy that this 

schematic is applicable both if DYC is always on, or if it is 

managed by an ESP supervisor. In the latter case, when the ESP 

supervisor triggers DYC, there are two possible scenarios: 1) at 

the controller startup instant, the controller running time is reset 

to zero, the initialization calculation proceeds, and the desirable 

yaw motion command is calculated; 2) at a generic instant 

which is not the startup instant of controller, the predictive time 

duration length is obtained through Eq. (25) and the desirable 

external yaw moment command is worked out by the 

C/GMRES algorithm. To accelerate the convergence rate of 

optimization, the warm start approach is arranged here to set the 

initial values in C/GMRES algorithm, which means the 

optimized solution * ( )
o

U t t   is imposed as the initial 

solution ( )
o

U t  at the zero-th iteration.  

 

ESP supervisor or other 

mechanism regarding 

ON/OFF

Is it the request ON?

Initialization 

Controller running time 

resets

Controller ON/OFF request

NMPC controller of 

DYC is inactive

Is it the initial startup instant?

C/GMRES algorithm 

solving (warm start)

Output external yaw 

moment command

Current predictive 

duration

Controller running time 

records

Yes

No

No

Yes

Warm start at 

next instant

 
Fig. 3. Operation schematic of proposed NMPC controller.  
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TABLE II.  

TWO-STEPS METHOD FOR TORQUE ALLOCATION OPTIMIZATION [33].  

Two-steps method based on KKT global optimality condition 

Define [ ] [ ]T T

fl fr rl rr fl fr rl rrT T T T      , 1 1 1 1 1[ ]T

fl fr rl rr     , 2 2 2 2 2[ ]T

fl fr rl rr     , and , , ,ij fl fr rl rr .  

1) Preliminary optimization:  

Assume the cost function vector   belongs to the designed boundary.  

Initialization: Set the Lagrange multiplier vector 1 2 0    

Solve: Quasi-optimal solution 
*  using 

 ( ) ( )
0

T T
v v   



       



 

If There exists 
*

ij  in 
*  exceeding its lower or upper boundary, namely maxT  or minT  

Move to the secondary optimization  

Else  

Return 
*  as the globally optimal solution 

*  for the cost function (31) 

End 
2) Secondary optimization:  

Initialization: For , , ,ij fl fr rl rr  

If 
*

ij  are greater than maxT , Set 1ij  equals to zero and 
*

ij  equals to maxT  

If 
*

ij  are less than minT , Set 2 ij  equals to zero and 
*

ij  equals to minT  

End 

Set the other variables as independent variables.  

Solve: Quasi-optimal solution 
*  using 

 1 max 2 min( ) ( ) ( ) ( )
=0

T T T T
v v         



           


 of Eq. (32) 

If There exists 
*

ij  in 
*  exceeding the lower or upper boundary, namely maxT  or minT  

Repeat the secondary optimization  

Else 

Return 
*  as the globally optimal solution 

*  for the cost function (31) 

End 

D. Lower-level Control: Optimal Torque Allocation Based on 

Karush-Kuhn-Tucker Optimality Condition  

Owing to the actuation redundancy of DDEV, the torque 

output of IWMs should be appropriately distributed. The 

relationship between [ ]T

fl fr rl rr
T T T T   as well as the 

given 
z

M  and tot
T  is presented as:  

v     (30) 

where [ ]T

z tot
v M T  and 

/ (2 ) [ 1 1 1 1]
=

[1 1 1 1]

s w
d r    

  
 

. 

s
d  and w

r  denote the wheel track and the effective radius of 

wheel, respectively. The cost function can be formulated as:  

min max

( ) ( )

s.t.

T T
J v v   
  
       
 

  (31) 

where 1 2diag{ , }     is a penalty weight matrix for 

satisfying the equality conditions, and 1  and 2  are the 

weight coefficients regarding z
M  and tot

T , respectively. Here 

max  and min  are defined as max[1 1 1 1]T
T  and 

min[1 1 1 1]T
T , respectively. The item T   in Eq. (31) 

represents the tire workload usage, where the weight matrix   

is expressed as 

2 2 2 2

1 1 1 1
diag{ , , , }

( ) ( ) ( ) ( )
w zfl w zfr w zrl w zrr

r F r F r F r F   
. Based on 

no equality constraint and min max     in Eq. (31), the 

linearly independent constraint qualification (LICQ) [34] is 

hold so that KKT optimality condition is applicable. The 

problem of Eq. (31) can be rewritten as an equivalent one which 

holds the following expressions:  

 1 max 2 min

1 2

max min

1 max 2 min

( ) ( ) ( ) ( )
=0

0, 0

0, 0

( ) 0, ( ) 0

T T T T

T T

v v         


 
   

     

           





 
    
      

 

 (32) 

where 1  and 2  are the Lagrange multiplier vectors. To fast 

find the optimal solution *  of Eq. (32), a two-steps method 

can be applied consisting of the preliminary and the secondary 

optimization, which has been published in our previous 

research [33] and is concisely described in Table II.  

IV. NUMERICAL SIMULATION VALIDATION  

In this paper, the powerful and high-fidelity vehicle 

simulation software CarSim® is adopted to effectively validate 

the proposed strategy [35]. The parameters regarding the 

vehicle and the proposed strategy are listed in Table III. The 

control performance is validated in scenarios without and with 

an ESP supervisor. In the latter case, the proposed initialization 

method is assessed. Two additional NMPC algorithms (i.e., the 

active set (AS) and IP ones) are also tested and compared with 

the proposed C/GMRES algorithm.  
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Commonly, the vehicle might lose its stability when the 

lateral acceleration is greater than 0.4 g. Here the switching 

“ON/OFF” mechanism of ESP supervisor in this paper is set, as 

shown in Fig. 4. When the lateral acceleration is greater than 

0.3 g, the DYC controller is active, which is represented as 

number “1”. If the DYC controller is already active, it will be 

arranged to be “OFF” until the vehicle lateral acceleration is 

less than 0.15 g. The selected threshold 0.3 g aims to pose a 

margin of 0.1 g (namely from 0.3 g to 0.4 g) for vehicle states 

adjustment of DYC controller, and the hysteresis here is to 

avoid the frequent switching of controller.  

 
Fig. 4. Switching “ON/OFF” in ESP supervisor.  

A. Control Performance  

In this section, two double-lane-change (DLC) drive tests 

with different velocity and road adhesion coefficient are 

adopted, which are named “Case 1” and “Case 2”. In Case 1, 
the target longitudinal velocity and road adhesion coefficient 

are 100 km/h and 0.85, respectively. In Case 2, the initial and 

target longitudinal velocity and the road adhesion coefficient 

are 80 km/h and 0.4, respectively. To comprehensively assess 

the performance of the proposed controller, two additional 

strategies are implemented and compared with the proposed 

one: i) a LQR-based DYC strategy; ii) the baseline vehicle, i.e. 

no DYC control.  

Fig. 5 shows the path tracking results of Case 1 and Case 2. 

The path tracking effects by the proposed strategy and the LQR 

controller are similar. Without DYC controller, under Case 2, 

there is a greater swing adjusting operations of driver, 

indicating the importance of DYC in improving vehicle 

stability. Fig. 6 illustrates the vehicle sideslip angle results. The 

proposed strategy can implement the smaller yaw sideslip angle 

compared with that by LQR controller, illustrating more 

predominant vehicle stabilization capacity. 

 
Table III.  

PARAMETERS REGARDING VEHICLE AND PROPOSED STRATEGY.  

Parameter Value Unit 

Vehicle mass v
m  1412 kg 

Distance from CG to front axle a
l   1.015 m 

Distance from CG to rear axle b
l   1.895 m 

Coefficient of MF model 1c   2.664×105 - 

Coefficient of MF model 2c   3.334×104 - 

Wheel track sd   1.675 m 

Wheel radius wr   0.308 m 

Vehicle moment of inertia around Z axis zI   1536.7 kg m2 

Predictive horizon steps pN   8 - 

Sample cycle of controller t   0.02 s 

Time step in predictive horizon   0.02 s 

Weight matrix of output state Q  diag{10, 7×105} - 

Weight matrix of control increment R  diag{10-2} - 

Weight matrix of external penalty items W  diag{102, 105, 10-3}  

Boundary of external yaw moment z
M  [-4000,4000] N m 

Time duration constant fT  0.2 - 

Coefficient regarding varying rate   10 - 

Stability matrix in C/GMRES s
  50 - 

Max. iteration number in C/GMRES maxk  4 - 

Terminal residual norm in C/GMRES tol
e   0.001 - 

Weight matrix of torque allocation   diag{5, 20} - 

Boundary of IWM torque output min max[ , ]T T  [-600,600] N m 

 

 

 
(a)                                                                                                          (b) 

Fig. 5. Path tracking results. (a) Case 1; (b) Case 2. 

 
(a)                                                                                                        (b) 

Fig. 6. Vehicle sideslip angle results. (a) Case 1; (b) Case 2. 
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(a)                                                                                 (b)                                                                                  (c) 

Fig. 7. Vehicle yaw rate results under Case 2. (a) proposed strategy; (b) LQR controller; (c) without DYC. 

 
(a)                                                                                                         (b) 

Fig. 8. Vehicle sideslip angle-sideslip angle rate phase plane. (a) Case 1; (b) Case 2. 

 
(a)                                                                                                       (b) 

Fig. 9. ESP supervisor “ON/OFF”, vehicle lateral acceleration and predictive duration results. (a) Case 1; (b) Case 2. 

 
(a)                                                                                                       (b) 

Fig. 10. Vehicle yaw rate results by proposed strategy. (a) Case 1; (b) Case 2. 

 

The vehicle yaw rate results of Case 2 are depicted in Fig. 

7. The proposed strategy can effectively track the reference 

when the real yaw rate is relatively far from limits. The 

proposed strategy accounts for such limits in advance and it 

adjusts the control command in time for restricting the yaw rate 

within the constraints. However, the traditional LQR controller 

cannot explicitly impose the inequality constraints so that its 

maximum yaw rate is greater than the limit, namely /
x

g v . 

Without the DYC, the vehicle yaw rate is oscillating in Fig. 7 

(c), which explains why the path tracking result is chattering at 

the turning maneuvers of Fig. 5 (b). More intuitively, Fig. 8 

shows the vehicle sideslip angle-sideslip angle rate phase 

planes to illustrate the vehicle stability effect.  

B. Effectiveness of Initialization Method in C/GMRES 

algorithm 

The results regarding ESP supervisor triggering and the 

varying predictive duration are illustrated in Fig. 9. The DYC 

controller is active under the turning maneuvers of DLC test 

cycle, since at those instants, the lateral acceleration is greater 

and the vehicle has the possibility of losing its stability. When 

the DYC controller is active, the predictive duration of NMPC 

extends and gradually reaches the given value of 0.2 s as 

increasing running time. The vehicle yaw rate results by the 

proposed strategy with ESP supervisor are shown in Fig. 10. 

With ESP supervisor, the real yaw rate by the proposed strategy 

can be effectively bounded, owing to its capacity of considering 

the yaw rate constraint in the predictive horizon. As illustrated 

in Fig. 10 (b), under Case 2, the real yaw rate is out of the limits 

at time ≈ 3 s for a short period and then rapidly decreases to 

meet the constraint. This can be explained as although the tire 

nonlinearity features are taken into account through the MF tire 

model, still some error is present due to the vehicle model, 
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affecting the NMPC controller. That said, under this situation, 

a greater penalty cost is added into the optimization of the 

NMPC controller, and the controller quickly adjusts the control 

command to restrict the yaw rate for minimizing the 

performance cost, as illustrated in Fig. 10 (b) between ≈ 3 and ≈ 3.5 s.  

C. Comparison with Active Set and Interior Point Algorithms 

To illustrate the superiority of the C/GMRES algorithm, the 

AS and IP algorithms are employed for comparison. These two 

algorithms are implemented through the Matlab® function 

“fmincon”, and their maximum toleration error are set to 0.01. 
All the simulations are implemented under Intel(R) Core(TM) 

i5-9400F CPU @ 2.9GHz desktop computer.  

Fig. 11 shows the computational time and iteration number 

for the three algorithms under Case 1. Compared with AS and 

IP algorithms, the computational time of C/GMRES algorithm 

is significantly lower. Although the terminal residual norm is 

0.001, most of the optimization by the C/GMRES algorithm are 

achieved at an iteration number lower than the preset maximum 

one maxk  (namely 4), showing its outstanding calculation 

capacity. Table IV lists the three algorithms’ computational 
times. Here, the effects of the ESP supervisor are not included. 

The C/GMRES algorithm has a distinct advantage in 

computational efficiency, with a computational burden that is 

one order of magnitude lower than AS and IP algorithms. 

Moreover, the maximum calculation time of C/GMRES 

algorithm is 110.98 to 53.42 times smaller than the other two. 

This is of significance since it is the critical index of whether 

the controller can be applied in real time. In light of the above, 

it is reasonable to deduce that the proposed strategy is suitable 

for real-time application under robot operating system (ROS) 

based hardware environment, like Raspberry Pi. For a more 

comprehensive comparison, Fig. 12 depicts the control 

performance results by three algorithms. Since the approximate 

errors of continuation method exist [19], as can be found in the 

zoomed figures, the path tracking and yaw rate results by 

C/GMRES algorithm are slightly different with those by AS 

and IP algorithms. However, it is acceptable focusing on the 

extreme reduction of computational time. 

 

 
(a)                                                                                                       (b) 

Fig. 11. Computational time and iteration number under Case 1. (a) C/GMRES algorithm; (b) AS and IP algorithms. 

 
(a)                                                                                                       (b) 

Fig. 12. Control performance comparison under Case 2. (a) path tracking; (b) vehicle yaw rate. 

TABLE IV.  

COMPUTATIONAL TIME COMPARISON.  

Test cycle Algorithm 

Mean RMSE Maximum 

Value (s) 
Calculation burden 

ratio 
Value (s) 

Calculation burden 

ratio 
Value (s) 

Calculation burden 

ratio 

Case 1 

C/GMRES 0.0024 1 0.0010 1 0.0044 1 

AS 0.0425 17.71 0.0435 43.50 0.4883 110.98 

IP 0.0546 22.75 0.0458 45.80 0.2441 55.48 

Case 2 

C/GMRES 0.0024 1 0.0010 1 0.0053 1 

AS 0.0455 18.96 0.0480 48.00 0.3354 63.28 

IP 0.0599 24.96 0.0576 57.60 0.2831 53.42 

V. CONCLUSION 

In this paper, a DYC control strategy of DDEVs is proposed 

for improving the vehicle stability and handling. The control 

framework is arranged as two levels. In the upper-level control, 

the NMPC controller is adopted for DYC so as to produce the 

desirable external yaw moment. The C/GMRES algorithm is 

chosen to gain the optimal solution with fast computational 

efficiency, and external penalty method is employed to handle 

the inequality constraints. In addition, for fast initialization of 

C/GMRES algorithm, the varying predictive duration and the 

initialization method are also introduced in the proposed NMPC 

controller. In the lower-level control, the optimal torque 
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allocation is achieved by a two-steps method based on KKT 

optimality condition. The simulation results demonstrated that:  

1) Compared with a LQR controller and the baseline vehicle, 

the proposed strategy can achieve considerably smaller vehicle 

sideslip angle with desirable yaw rate tracking effect, indicating 

its superior capacity in vehicle handling and stability.  

2) Owing to the optimization of NMPC in the preview sight, 

the proposed strategy can simultaneously achieve the smooth 

transient performance and hold the inequality constraints. 

Instead, the LQR controller can only adjust the yaw motion of 

vehicle with greater overshoot for limiting the constraints.  

3) Even when the initial tracking errors of states are nonzero, 

the proposed initialization method, namely the varying 

predictive duration and the analytic expression, allows to 

quickly obtain the optimally initial solution. This guarantees 

that the C/GMRES algorithm based NMPC can be applied for 

DDEVs with ESP supervisor. That is, the proposed strategy is 

applicable under the case that the status “ON/OFF” of a DYC 

switches multiple times during a generic vehicle journey.  

4) Compared with AS and IP algorithm based NMPC 

controllers, the proposed one can implement similar control 

performance but at least one order of magnitude reduction on 

computational time. Moreover, the computational time of the 

proposed strategy per sample step in Windows operation 

system is around 0.003 s, indicating that it is applicable for real-

world vehicle application under ROS hardware environment, 

such as Raspberry Pi. 

Future works will focus on the experimental assessment of 

the proposed controller on a real-world DDEV.  
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