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Abstract. Constructing an efficient malware detection system requires taking 

into consideration two important aspects, which are the accuracy and the detec-

tion time. However, finding an appropriate balance between these two characte-

ristics remains at this time a very challenging problem. In this paper, we  

present a real-time PE (Portable Executable) malware detection system, which 

is based on the analysis of the information stored in the PE-Optional Header 

fields (PEF). Our system used a combination of the Chi-square (KHI²) score 

and the Phi (φ) coefficient as feature selection method. We have evaluated our 

system using Rotation Forest classifier implemented in WEKA and we reached 

more than 97% of accuracy. Our system is able to categorize a file in 0.077 

seconds, which makes it adequate for real-time detection of malware. 

Keywords: Malware · Malware analysis · Chi-square test (KHI²) · PE-optional 

header 

1 Introduction 

Malware, abbreviation for ‘malicious software’, is a term used to designate any com-

puter program that is designed to accomplish unauthorized actions without the user’s 

consent. The number of new discovered malware has grown steadily over the past ten 

years. Therefore, it is crucial to have an efficient protection against this kind of mali-

cious programs. The existing anti-malware techniques can be broadly classified in 

three classes, which are signature-based, behavioral-based and heuristic-based tech-

niques [1]. Signature-based techniques are widely used by most of commercial antivi-

rus software (AV). These techniques are very accurate for detecting known malware 

that exist in the signatures’ database [1]. However, they are not able to deal with un-

known malware or newly launched ones, often developed after discovering a zero-day 

exploit [2]. Even if the recent AV have become more accurate, they are still very slow 

to take countermeasures when a new threat is discovered [3, 4]. 

The behavioral analysis also known as dynamic analysis consists of monitoring the 

execution of the analyzed program in an isolated environment (i.e. Sandbox or virtual 

machine) [5]. During the monitoring process, the actions that the program accom-

plishes (such as API calls, Systems calls, network traffic, etc.) are recorded and used 
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to generate behavior features for categorizing the program (malware or benign). Such 

techniques are very accurate and they are able to detect unknown malware [5]. How-

ever, their main drawback is that the monitoring process is run for a couple of minutes 

at most, therefore it can’t observe the entire capabilities of the program [4]. Moreover, 

the time required for the monitoring process makes such techniques not suitable for 

real-time detection.   

The heuristic-based analyses investigate different file features such as Opcode in-

structions, structural information (Such as header information), and API (Application 

Programming interface) calls [1],[5]. These sets of information are used as features 

for the classification process, which is generally done using machine learning-based 

classifiers such as decision trees and Bayes Algorithm [1],[6]. The Heuristic based 

Anti-malware systems are very accurate and are able to deal with unknown malware 

[1],[5, 6]. They are also easy to implement compared to the behavioral ones. Howev-

er, the existing systems suffer from the inconvenient of their high processing over-

head, since most of them use a large number of features, which yields to intensive 

computations. Due to that, most of the existing heuristic techniques are inadequate for 

real-time detection, which is a very suitable characteristic especially in such sensitive 

systems. 

In this paper, we introduce a real-time PE (Portable Executable, See section 2) 

malware detection system, which consists of three different components, which are 

the PE-parser, feature selection module and a decision module. The PE parser was 

developed using Python language, and it statically (i.e. without executing the ana-

lyzed program) extracts the information contained in the PE-Optional header fields 

(PEF, see Section 2). PE header information (including Optional header ones) are 

very quick to extract, which is convenient for our real-time purposes. For the same 

purposes, our analysis was restricted on the Optional header only. We believe that 

using other types of features such as File-header fields or other structural information 

will considerably increase the number of features, which will have a direct impact on 

the detection time. The feature selection module was also developed using Python, 

and it is based on the KHI² test, which is a statistical method used for hypothesis test-

ing [7]. The decision module is based on Rotation Forest classifier [8] that is available 

in Waikato Environment for Knowledge Analysis (WEKA) [9].  

This paper is organized as fellows: Section 2 introduces the PE file format in order 

to facilitate the comprehension of the rest of the sections. Section 3 is devoted to most 

known related works, published in the literature. In section 4, we present our pro-

posed system’s architecture. In section 5, we present our experimental results. Section 

6 concludes our work and underlines its perspectives. 

2 PE File Format 

PE is an abbreviation for Portable Executable[10], and it represents the common file 

format for binary executables and DLLs under Windows operating systems. A PE file 

is structured in layers and it is mainly composed of a DOS Header, PE Header,   

Section Headers (Section table), and a number of sections, as shown in “figure 1”.   
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Fig. 1. PE file format  

• The DOS Header is used if the file is run from the DOS. So it can then check 

whether it is a valid executable or not.  

• The PE header is an IMAGE_NT_HEADERS data structure, which contains three 

members: PE-Signature, File Header, and the Optional Header. This latter is the 

subject of our work and is composed of several fields [10] as illustrated in figure 

2. The values of the latter fields will be used as discriminators for the benign-

malware categorization process.  

 

Fig. 2. Members of the PE-Optional Header 

3 Related Work  

In the last decade, security researchers have introduced new malware detection me-

thods, in order to overcome the limitations of the standard signature-based ones. 

Schultz et al. [11] were the first authors to introduce a machine learning based mal-

ware detection system. The proposed system is based on the analysis of different in-

formation contained in the PE file such as strings and API calls. They used a classifi-

cation method based on Naïve Bayes, and they achieved 97.11% of accuracy.   

The method presented in [12] is based on API calls and Naïve Bayes classifier. The 

extracted APIs were used to construct models of suspicious behaviors, by grouping 

some APIs according to scenarios that a malware can accomplish, such as obtaining 

the system’s directory, writing malicious data into files, and registry updates. They 

achieved an overall accuracy of 93.7%.  
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Ye et al. [2] have introduced a malware detection system that is based on the anal-

ysis of the set of APIs called by PE programs. The authors proposed a feature selec-

tion method based on the KHI² test. They used an Object Oriented Association (OOA) 

mining based classification method. Their system achieved an overall accuracy of 

67.5% and a detection time of 0.09s.     

The system proposed by Salehi et al. [4] is based on analyzing API calls and their 

arguments. They trained their system using different classifiers and they have ob-

tained an overall accuracy of 98.1%. Extracting APIs arguments requires executing 

the program; therefore, this method has the inconvenient of dynamic approaches men-

tioned previously. 

4 Proposed Method   

Our proposed malware detection system categorizes a file in three different phases, 

which are the feature extraction, the feature selection, and the decision (classifica-

tion). 

4.1 Feature Extraction 

As mentioned previously, our system relies on the analysis of the PE Optional Header 

fields (PEFs) and in order to extract these features from the analyzed file we devel-

oped a module written in Python by using a third party Python module called pefile 

[13]. PEFs are generated by concatenating the field’s name and value (ex. Check-

Sum0 designates that the feature CheckSum has a value equal to 0). 

4.2 Feature Selection 

In order to reduce the number of obtained PEFs and keep only the most relevant ones, 

we developed a feature selection method, which is based on the chi-square (KHI²) 

test. The KHI² is a statistical method, which is used to determine whether there is a 

significant association between two qualitative variables. This association is ex-

pressed by the distance D between an observed frequency O and an expected one E 

(which represents the case of independence between the variables) and the greater is 

that distance stronger is the correlation between the variables. In our case, we will 

study that association between the variable ‘PEF’ that has two modalities: “present” 

and “absent”. This variable represents the presence or not of a specific PEF in a PE 

file. The second variable is “PE” that has also two modalities: “Malware” and “Be-

nign” that corresponds to the two categories of PE files that we used.  

The first step to do when conducting a KHI² test, is to define the two hypotheses 

H0 and H1 that one will be accepted, and the other rejected. H0 and H1 represent re-

spectively the case of independency and the case of dependency between the two 

variables. Note that accepting H0 for a PEF means that it is not specific to any catego-

ry of PE-files. Therefore, it will be considered as irrelevant and will be removed. In 

our case, H0 and H1 are defined as follows: 
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• H0: The presence or absence of a PEF is independent of the PE file’s type (mal-

ware or benign).  

• H1: The presence or absence of PEF is related to the PE file’s type (malware or 

benign). 

For every PEF, we have a contingency table as shown in table 1. 

Table 1. Contingency Table of a PEF. 

 PEF: Present PEF: Absent Row Total

PE: Malware N1 N2 N 

PE: Benign  M1 M2 M 

Column total N1+M1 N2+M2 T 

 

N, M, and T are respectively the total number of malware PE, the total number of 

benign PE, and the total number of all PE files (T=N+M). N1 and N2 are respectively 

the number of malware PE that have a PEF and the number of malware PE that do 

not have the PEF, such as N = N1 +N2. M1 and M2 are respectively the number of 

benign PE that have a PEF and the number of benign PE that do not have the PEF, 

such as M = M1 + M2. The KHI² score (D²) is calculated using the formula (1):  

∑ −
=

cr,

cr,cr,

E

)²E(O
D²                                               (1) 

Where Or,c is the observed frequency count at level r of row variable and level c of 

column variable. And Er,c is the expected frequency. Er,c is defined by equation (2) . 

T

nn
E cr

cr,

×
=                                                        (2) 

Where nr, and nc represent respectively the sum on row r and the sum on column c. 

After calculating the KHI² values for the obtained PEFs, we have to determine which 

of two hypotheses are accepted or rejected for every PEF. To do that, we have to 

compare the obtained KHI² scores of every PEF to a threshold, which represents the 

theoretical KHI² value (χ²). That value is obtained by first calculating the degree of 

freedom (DF), and choosing a signification level α that represents the error probabili-

ty when accepting or rejecting an hypothesis. Considering DF and α, the χ²value is 

obtained from the KHI² distribution table [14] . DF is calculated using the following 

equation:  

)1()1(DF −×−= CR                                                (3) 

Where R, and C are respectively the number of modalities of the first and the second 

variables. After rejecting all the PEFs that are not correlated (D² ≤ χ²), we will calcu-

late the φ coefficient using the formula (4) for the remaining ones. The φ coefficient is 

a normalization of the KHI² score (D²), which is used to measure the strength of the 

dependency between the two variables [15]. In our work, that coefficient will be used 

to generate the different PEFs’ subsets, which are grouped according to their correla-

tion’s strength (relevance).  
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The value of φ ranges between 0 and 1, therefore, the strength of the relationship can 

be divided in 4 different classes:  

• φ ≈ 0.25: Weak correlation.  

• φ ≈ 0.50: Medium correlation. 

• φ ≈ 0.75: Strong correlation. 

• φ ≈ 1: Very strong correlation. 

Our obtained PEFs will be divided into non-disjoints subsets according to the φ values 

mentioned previously. 

4.3 Classification  

In order to evaluate our malware detection system we have used Rotation Forest clas-

sifier [8] that is implemented in WEKA [9]. Therefore, our classification module 

takes as an input the PEFs subsets represented as an .arff file. The .arff file is the data 

file format supported by WEKA, and it is automatically generated using a python 

script. The classifier is then trained and models are generated for each feature subset 

of the training set. The obtained models are then tested on previously unseen PE-files 

contained in our test set.   

5 Experimentation 

5.1 Dataset 

We collected a dataset composed of 552 PE files (338 malware and 214 benign pro-

grams). This dataset will be split into 80% training set and 20% test set. The infected 

PE dataset was downloaded from Vxheavens.com and contains 12 different malware 

categories as shown in table 2.  

Table 2. Used malware dataset 

N° Malware Type Counts N° Malware Type Counts 

1 Backdoor 27 7 Trojan 59 

2 Email-Worm 19 8 Trojan-Downloader 24 

3 Exploit  28 9 Trojan-Dropper 32 

4 Hacktool 22 10 Trojan-Spy 18 

5 Net-Worm 16 11 Virus 42 

6 P2P-Worm 17 12 Worm 34 

TOTAL = 338 
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The benign PE files include some utility software downloaded from Softpedia.com 

and some Windows system files collected from a clean installation of windows XP. 

We scanned the whole dataset by more than 40 AV available on the website Virus-

Total.com, in order to make sure that they are correctly labeled (malware,  

benign).    

5.2 Results and Evaluation  

In this subsection, we will present the obtained experimental results from the feature 

extraction phase until the decision phase. We first start by the obtained PEFs after the 

feature extraction phase. As presented in Table 3, we have obtained 590 PEFs with 

their corresponding frequencies in malware and benign PE (observed frequencies).  

Table 3. Overview of the obtained PEFs list and their corresponding frequencies 

 Frequency 

N° Optional Header field Value Malware (271) Benign(172) 

1 BaseOfCode 4096 271 (100%) 172 (100%) 

2 BaseOfData 102400 4 (1%) 1 (1%) 

… … … … … 

86 CheckSum 0 259 (96%) 5 (3%) 

87 CheckSum 102910 1 (1%) 0 (0%) 

… … … … … 

589 Subsystem 2 226 (83%) 106 (62%) 

590 Subsystem 3 45 (17%) 66 (38%) 

 

We will calculate the KHI² and φ values (as presented in the subsection 4.2) for the 

obtained PEFs and remove the non-relevant ones that have KHI² < 3.84 (3.84 is the 

X² value for DF=1 and alpha =0.05). The obtained results are presented in table 4. 

Table 4. KHI² scores and φ values of the selected PEFs 

N° PEF KHI² φ 

1 CheckSum0 375.21 0.92 

2 MajorImageVersion0 370.57 0.91 

3 DllCharacteristics0 355.91 0.9 

4 MajorOperatingSystemVersion5 346.02 0.88 

5 MinorOperatingSystemVersion0 341.92 0.88 

… … … …

50 SizeOfInitializedData28672 3.86 0.09 

 

As presented in Table 4, we have obtained a final list of 50 PEFs with their corres-

ponding KHI² scores and φ values. We will divide these features into different groups 

(subsets) according to their φ values. At the end of the feature selection phase, we 

have obtained three different subsets: G1, G2, and G3 that contain PEFs that have 
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respectively φ ≥ 0.75, φ ≥ 0.5, and φ ≥ 0.25. We have respectively 11, 14, and 22 

PEFs in G1, G2, and G3. We have used a forth subset G4 that contains the complete 

590 extracted PEFs, the aim from that is to see whether our feature selection method 

have improved the obtained results or not.  

Next, we will evaluate our system’s performance by training the Rotation Forest 

classifier using different features subsets and see which subset will generate the best 

results. The performance of a classifier is generally evaluated by calculating three 

different metrics which are Detection rate (DR), False Alarm rate (FA), and Accuracy 

(AC) and they are calculated using the equations 5, 6 and 7 respectively: 

100%
FNTP

TP
DR ×

+
=                                                    (5) 

Where TP (true positive) and FN (false negative) represent respectively malware that 

were correctly classified as malware and malware that were wrongly classified as 

benign. 

100%
TNFP

FP
FA ×

+
=                                                    (6) 

TN (true negative) and FP (false positive) represent respectively benign programs 

that were correctly classified as benign, benign program that were wrongly classified 

as malware. The accuracy (AC) represents the rate of files that were correctly classi-

fied in their class. 

100%
FNFPTNTP

TNTP
AC ×

+++

+
=                                           (7) 

The fourth metric that we will use to evaluate our system’s performance is the de-

tection time (DT), which represents the average time required for categorizing a file 

and it is expressed in seconds per file. DT includes the feature extraction time, .arff 

file generation time, and the classification time. The obtained results are presented in 

table 5. 

Table 5. Experimental results 

Group φ PEF Counts DR FA AC DT 

G1 ≥0.75 11 98.51% 7.14% 96.33% 0.075 

G2 ≥0.50 14 100.00% 7.14% 97.25% 0.077 

G3 ≥0.25 22 98.51% 9.52% 95.41% 0.079 

G4 - 590 97.01% 7.14% 95.41% 0.116 

From the results presented in the above table, we can see that our proposed feature 

selection method was able to increase the accuracy of our system by +1.84% (from 

95.41% with G4 to 97.25% with G2) and that using only 14 PEFs. It was also able to 

reduce the categorization time by 33% (from 0.116s with G4 to 0.077s with G2). Note 

that the feature extraction phase took 0.037s, the .arff file generation also required 

0.037s, and the classification phase took 0.003s.    
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5.3 Comparison  

In this subsection, we will evaluate our system’s performance by comparing it with 

the previously cited methods. The results are presented in table 6.  

Table 6. Results of the comparison with the previously cited methods for malware detection 

Method Feature Type DR AC 

Our method PEFs 100% 97.25% 

Schultz et al. [11] Strings 97.43% 97.11% 

Salehi et al. [4] APIs+Args 99.2% 98.4% 

Wang et al. [12] APIs 94.4% 93.71% 

Ye et al. [2] APIs 88.16% 67.5% 

 

From the results presented in Table 6, we can see that our system outperforms 

three of the four presented systems with an improvement in accuracy that varies from 

0.14 % to 30%. The system proposed by Salehi et al. [4] is more accurate than our 

system (+1.15%). However, our system has a better detection rate.   

If we consider the detection time (categorization time), we can conclude that our 

system is adequate for real-time detection. The proposed system is able to categorize 

a file in 0.077s, which is a very satisfying performance, compared with the system 

proposed by Ye et al. [2] which categorizes a file in 0.09s.  The system proposed by 

Salehi et al. [4] needs to monitor the analyzed program during 2 minutes in order to 

extract API calls and their arguments, that represents almost 3000 times the required 

time by our proposed features extraction method.          

6 Conclusion and Future Works 

In this paper, we have presented a real-time PE-malware detection system that is based 

on the analysis of the PE-optional Header information. The proposed system uses an 

efficient feature selection method, which is based on the KHI² test. This latter allowed 

us to achieve a high accuracy and a low detection time, using only 2% of the initially 

extracted features. As future works, we project to combine different types of features 

such as APIs calls, and Opcode, in order to increase the accuracy of our system.  
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