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Abstract 

Background: Phenotyping is a critical component of plant research. Accurate and precise trait collection, when 

integrated with genetic tools, can greatly accelerate the rate of genetic gain in crop improvement. However, effi-

cient and automatic phenotyping of traits across large populations is a challenge; which is further exacerbated by 

the necessity of sampling multiple environments and growing replicated trials. A promising approach is to leverage 

current advances in imaging technology, data analytics and machine learning to enable automated and fast phe-

notyping and subsequent decision support. In this context, the workflow for phenotyping (image capture → data 

storage and curation → trait extraction → machine learning/classification → models/apps for decision support) has 

to be carefully designed and efficiently executed to minimize resource usage and maximize utility. We illustrate such 

an end-to-end phenotyping workflow for the case of plant stress severity phenotyping in soybean, with a specific 

focus on the rapid and automatic assessment of iron deficiency chlorosis (IDC) severity on thousands of field plots. 

We showcase this analytics framework by extracting IDC features from a set of ~4500 unique canopies representing a 

diverse germplasm base that have different levels of IDC, and subsequently training a variety of classification models 

to predict plant stress severity. The best classifier is then deployed as a smartphone app for rapid and real time sever-

ity rating in the field.

Results: We investigated 10 different classification approaches, with the best classifier being a hierarchical classifier 

with a mean per-class accuracy of ~96%. We construct a phenotypically meaningful ‘population canopy graph’, con-

necting the automatically extracted canopy trait features with plant stress severity rating. We incorporated this image 

capture → image processing → classification workflow into a smartphone app that enables automated real-time 

evaluation of IDC scores using digital images of the canopy.

Conclusion: We expect this high-throughput framework to help increase the rate of genetic gain by providing a 

robust extendable framework for other abiotic and biotic stresses. We further envision this workflow embedded onto 

a high throughput phenotyping ground vehicle and unmanned aerial system that will allow real-time, automated 

stress trait detection and quantification for plant research, breeding and stress scouting applications.
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Background
Soybean (Glycine max (L.) Merr.) is a huge source 

of revenue for the United States, with production of 

approximately USD 40 billion in 2014 [1]. �ere are vari-

ous factors that affect soybean yield, such as nutrient 

availability, weed management, genetics, row configura-

tion, stress (biotic and abiotic) and soil fertility [2]. Iron 

deficiency chlorosis (IDC) is a yield-limiting abiotic stress 

which affects plants that usually grow on calcareous soil 

with high pH. Soybean plants growing in calcareous soils 
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(soils with free calcium carbonate and high pH) are una-

ble to uptake iron from the soil leading to iron deficiency 

in plants. IDC causes reduced plant growth leading to a 

reduction in yield potential and quality of the crop. In 

the mid-west USA, IDC is one of the major problems 

reducing soybean yield, by as much as 20% for each vis-

ual rating point [3]. �is causes an estimated economic 

loss of $ 260 million in 2012 alone [4]. IDC symptoms are 

observed at early plant growth stages on newly grown 

leaf tissue where chlorosis (yellowing) occurs in between 

the veins of the leaves, while the veins themselves remain 

green [5]. �e extent of the problem varies depending on 

the cultivar, field and the year.

Soybean breeders in the US breed for genotypes with 

improved IDC tolerance by selecting for genes that help 

make the plant more iron uptake efficient [6]. Selection 

for desirable soybean genotype (with IDC tolerance) is 

done either through phenotyping in the field or in green-

houses [7], or genotyping with molecular markers linked 

to genes that improve IDC tolerance. More than 10 genes 

have been reported to be associated with improving IDC 

tolerance [8, 9] making genotyping approaches onerous 

where a breeding program may be working to select for 

several other traits. Phenotyping is most suitable as it 

allows identification of soybean genotypes that have an 

acceptable IDC tolerance. Furthermore, this method is 

cost effective and potentially requires little access to spe-

cialized labs.

Current methods for phenotypically measuring IDC 

are completely visual and labor-intensive. Rodriguez de 

Cianzio et  al. [7] and Froechlich and Fehr [3] reported 

that visual scoring is the simplest, subjective measure-

ment that requires relatively less labor. However, it has 

reduced accuracy if the evaluation is made in diverse 

environments and by different raters [10]. In addition, 

there can be intra-rater repeatability or inter-rater reli-

ability [11] issues leading to incorrect visual scores. It 

also depends on the subjectivity (and its variability) of the 

IDC rater. Specifically, the human eye can get tired after 

long hours of scoring plants for various traits, which can 

produce large intra-rater variability in rating scores, thus 

resulting in diminished accuracy and reproducibility. In 

a breeding program, hundreds or thousands of plots are 

rated in a short time frame. A short time frame is crucial 

because one has to minimize plant stage variability, i.e., 

variability that is introduced if genotypes are rated over 

a longer time frame. It is therefore essential to develop 

methods that allow for unbiased, accurate, cost effective 

and rapid assessment for IDC in particular, and plant 

biotic (e.g., diseases) and abiotic stresses in general. �ere 

has been recent work in this regard to design, develop and 

deploy high efficiency methods/tools to quantify leaf sur-

face damage [12] as well as plants response to pathogens 

[13]. Additionally, a number of approaches using imaging 

methods for phenotyping, such as fluorescence and spec-

troscopic imaging have been successful for stress-based 

phenotyping [14], high throughput machine vision sys-

tems that use image analysis for phenotyping Arabidop-

sis thaliana seedlings [15] and barley [16], hyperspectral 

imaging for drought stress identification in cereal [17], 

and a combination of digital and thermal imaging for 

detecting regions in spinach canopies that respond to soil 

moisture deficit [18] which have proven to be successful. 

However, a simple, user friendly framework is unavailable 

for the public to phenotype for IDC in soybean plants. �e 

availability of a simple modular approach could poten-

tially be generalized for phenotyping of multiple stresses.

Motivated by these reasons, we developed a simple 

framework (image capture  →  data storage and cura-

tion  →  trait extraction  →  machine learning/classifica-

tion  →  models/smartphone apps for decision support) 

that extracts features that are known to quantify the 

extent of IDC (amount of yellowing, amount of brown-

ing) from digital images. To determine a relationship 

between these features and their respective ratings, we 

evaluated a host of machine learning techniques, further 

elaborated in the latter stages of this paper, to perform 

supervised classification. Subsequently, using informa-

tion obtained from these classifiers, a physically mean-

ingful population canopy graph (PCG) connecting the 

features with the visual IDC rating was constructed for 

a diverse soybean germplasm. �is complete framework, 

which is based on fast feature extraction and classifica-

tion, can then be used as a high throughput phenotyping 

(HTP) system for real time classification of IDC. We ena-

ble real time phenotyping by implementing the software 

framework as a GUI-based, user-friendly software that 

is also deployed on smartphones. �is step successfully 

abstracts the end-user from the mathematical intrica-

cies involved, thus enabling widespread use. We show-

case this software framework by extracting IDC features 

(amount of yellowing, amount of browning) from a set of 

4366 plants that have different IDC resistances.

We envision our classifier based framework as a mod-

ular, extensible and accurate phenotyping platform for 

plant researchers including breeders and biologists.

Methods
Genetic material and �eld phenotyping

A total of 478 soybean genotypes, including 3 maturity 

checks and 475 soybean plant introduction (PI) lines 

acquired from the USDA soybean germplasm collec-

tion, were planted in the Bruner farm in Ames, IA, 2015, 

where soybean IDC was present in previous years. �is 

set of PI lines exhibits a wide diversity in leaf and canopy 

shape [19]. �e design for this field experiment follows a 
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randomized complete block design, with a total of four 

replications. Each PI line was planted once per replica-

tion, while the IDC checks (two) and maturity checks 

(three) were repeated at regular intervals in the field 

with four plots per replication. �e plants were planted 

in 0.31  m length hill plot of five seeds per plot. At two 

soybean growth stages [20]: the second to third trifoliate 

(V2–V3) and fifth to sixth trifoliate (V5–V6) leaf stages, 

the soil pH was tested in the Soil and Plant Analysis 

Laboratory, Iowa State University. At each stage, eight 

soil samples were randomly collected from each repli-

cation and were mixed as one test sample. �e soil pH 

values ranged at 7.80–7.95 and 7.75–7.85 at V2–V3 and 

V5–V6 growth stages, respectively. Field visual ratings 

(FVR) of IDC severity by experts were collected at V2–

V3 and V5–V6 growth stages, as well as two weeks after 

the V5–V6 stage to obtain soybean canopies with a vari-

ety of IDC expression. FVR was done on a scale of 1–5 

described by Lin et al. [21], where 1 indicates no chloro-

sis and plants were normal green; 2 indicates plants with 

modest yellowing of upper leaves; 3 indicates plants with 

interveinal chlorosis in the upper leaves but no stunting 

growth; 4 indicates plants are showing interveinal chlo-

rosis with stunting growth; and 5 indicates plants show 

severe chlorosis plus stunted growth and necrosis in the 

new youngest leaves and growing points.

Image acquisition

We utilized a Canon EOS REBEL T5i camera for image 

acquisition. Images were stored in the native RAW for-

mat. Substantial effort was put in to develop a standard 

imaging protocol (SIP) (Additional file 1) to ensure imag-

ing consistency and quality. �e flash function was kept 

off and an umbrella was always used to shade the area 

under the camera view in order to minimize illumina-

tion discrepancies between images. A light/color cali-

bration protocol was also followed. An image of a color 

calibration chart (X-Rite ColorChecker Color Rendition 

Chart) was taken at the beginning of imaging operations, 

and every 20 min thereafter or whenever light condition 

changes (cloud cover, etc.). When taking pictures, the 

whole canopy was fit in the field of view of the camera. 

Weed control was practiced consistent with research plots 

and commercial farms; however, due to the small size of 

the field weed removal was done manually. Weeds in the 

view of camera were removed for enhanced efficiency of 

subsequent image processing. Images were taken across 

several days (at several times of the day) under various 

illumination conditions. Finally, the imaging protocol was 

chosen so that the imaging window and the camera reso-

lution resulted in images with at least 6 pixels/mm, ensur-

ing that the approach is transferable to other cameras that 

use an appropriate imaging window to get this resolution.

Dataset description

A total of 5916 RGB (493 plots including PI accessions 

and checks × 4 replications × 3 time points) images were 

acquired, along with subsequent FVR. Each time point 

consists of four repetitions for a total of 1972 (493 × 4) 

images, with 493 images per repetition. Image acquisition 

at each of these time points was vital to obtain a large 

variety of IDC symptoms, as IDC symptoms progress in 

time. �e idea was to develop a dataset with similar num-

ber of observations per IDC rating. �is was, however, 

not possible simply due to the fact that a large fraction of 

plants remained healthy (FVR = 1) throughout the image 

acquisition period. Following image acquisition, for qual-

ity control, each image was inspected visually, and those 

that did not adhere to the Standard Imaging Protocol 

(SIP) were removed, which resulted in 4366 images in the 

remaining image set.

Preprocessing and feature extraction

Preprocessing

White balance and color calibration As the appearance 

of color is affected by lighting conditions, using a calibra-

tion chart enables color correction to be applied to ensure 

that colors are uniform throughout all the plant canopy 

images collected. We primarily used the grey squares to 

identify the white balance, while the green, brown and yel-

low squares were used to calibrate the hue values of green, 

brown and yellow. Hue is defined as the color or tint of 

an object. Hue quantifies color in terms of angle around 

a circle (or more precisely around a color hexagon) with 

values ranging from 0° to 359° [22]. �e red color axis is 

usually set as 0°. �e hue of brown ranges from 21° to 50°, 

whereas yellow hue ranges from 51° to 80° [23]. Calibration 

is done by identifying how much the hue value of the green, 

brown and yellow squares on the color calibration chart has 

drifted from the defined hue values. �is drift correction 

is then applied to the canopy images. �is preprocessing 

resulted in an analysis pipeline that was robust to changes 

in illumination.

Segmentation Each image was converted from native Red, 

Green, Blue (RGB) format to HSV (Hue, Saturation, Value) 

format [22] to efficiently perform background removal, leav-

ing only the plant canopy (foreground). �e background of 

an image (soil, debris) contains more gray pixels compared 

to the foreground (plant), and lacks green and yellow hue 

values; therefore, most of the background was removed by 

excluding pixels that had saturation value below a predefined 

threshold and hue values outside of a predefined range. �e 

saturation threshold value was obtained by identifying the 

saturation values of the background in 148 diverse images. 

�e hue range was simply obtained from the hue color 

wheel, removing pixels that were neither green nor brown. 



Page 4 of 12Naik et al. Plant Methods  (2017) 13:23 

�is combined thresholding based on incorporating hue 

thresholding with saturation thresholding ensured a reliable 

and robust segmentation process.

Noise and outlier removal Once segmentation was done, 

the connected components method [24] was used on the 

processed image to remove spurious outliers and noise 

from the image, (for example, plant debris on soil). �is 

was accomplished by identifying clusters of pixels which 

are connected to one another, labelling them, and identi-

fying the largest connected component. Since the imag-

ing protocol was designed to ensure that the plant was 

centered in the imaging window and in the foreground, 

it follows that the largest connected component is invari-

ably the plant. Cleaning was done by removing any other 

connected components that contain fewer pixels than 

the largest connected component. �en, a mask of the 

isolated plant was applied onto the original RGB image 

in order to display the isolated plant in color. No signifi-

cant pixel loss was observed which is common in other 

thresholding methods [25]. �e use of the connected 

components approach to isolate plants from background 

is extremely fast and accurate. In conjunction with a SIP, 

using connected components for preprocessing is very 

promising, especially for near real time phenotyping 

applications. �e preprocessing sequence is illustrated in 

Fig. 1.

Feature extraction from expert elicitation

Field visual ratings are assigned based on the extent of 

chlorosis (yellowing) and necrosis (browning) expressed 

on the canopy, as described earlier and illustrated in Fig. 2. 

Elicitation from domain knowledge experts (i.e., raters) 

suggested that color signatures (green to yellow to brown), 

specifically extent of (dis)coloration (chlorosis →  yellow-

ing, and necrosis  →  browning) were viable predictors 

to quantify IDC expression. Each pixel of the processed 

image belonging to the canopy was identified as either 

green, yellow, or brown through evaluating their respective 

hue values to identify which hue ranges they belong to, and 

the extent of discoloration from green was represented in 

the form of the percentage of canopy area that experience 

these visual changes (Y and B%), as seen in Fig. 3.

(1)

Areayellow

Areatotal
× 100% = Percentageyellow ,

Areabrown

Areatotal
× 100% = Percentagebrown

Fig. 1 Image preprocessing sequence from original image of canopy to completed automated pre-processed field soybean canopies
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�is expert elicitation informed processes resulted in each 

image being represented by a quantitative measure of yel-

lowing (Y%) and browning (B%), as shown in Eq. 1. 

Classi�cation

In order to map these quantitative variables to the visu-

ally rated IDC ratings, we utilize several state of the art 

Fig. 2 Iron deficiency chlorosis severity description using a field visual rating scale of 1–5

Fig. 3 Feature extraction from plant canopies (top image) for iron deficiency chlorosis. The bottom left figure represents those regions in the canopy 

that are yellow in color, and the bottom right figure represents those regions in the canopy that are brown in color. The percentage spread of yellow 

and brown color are then taken as the two features



Page 6 of 12Naik et al. Plant Methods  (2017) 13:23 

machine learning algorithms to construct classification 

models. �e field visual rating served as the categori-

cal output variable (classes) while the inputs were the 

2-tuple (Y, B%). �e classification models are then even-

tually used to generate IDC ratings given different input 

variables.

�e total dataset consisted of 4366 images following 

quality control as detailed in the “Dataset description” 

section. �e images were sorted into 5 groups which 

correspond to their respective FVR, with majority of 

the observations falling into group 1 (FVR  =  1). �e 

remaining groups (FVR  =  2/3/4/5) meanwhile con-

tained a balanced distribution of observations amongst 

themselves.

Due to the imbalanced nature of the dataset with a 

preponderance of images belonging to FVR 1, two vari-

ations of the dataset were used to develop classification 

models: (a) Using observations from time point 2 and (b) 

for a combination of time point 1, 2, and 3. Time point 

2 served as a standalone dataset due to the fact that it 

has the largest distribution of observations containing 

each of the FVRs. We utilized several classification algo-

rithms, namely classification trees (CT), random for-

ests (RF), Naïve Bayes (NB), linear discriminant analysis 

(LDA), quadratic discriminant analysis (QDA), multi-

class support vector machines (SVM), k-nearest neigh-

bors (KNN), and Gaussian mixture models (GMM). 

Building upon the results, we subsequently utilized the 

concept of hierarchical classification to develop two 

additional models using a combination of LDA and SVM 

algorithms.

�e dataset was randomly sampled into two sub-

sets in a 75–25% ratio. �e larger subset (75%) served 

as the training set, while the remaining subset served 

as the testing dataset (25%). We additionally evaluated 

the performance of the classifier across additional data-

sets. One dataset consisted of images from completely 

different genetic material. Additionally, we repeated 

the field experiment in 2016 and used the trained clas-

sifier on images from this experiment [26]. �e training 

dataset is used to train the classifier, by learning a map-

ping of the Y and B% with their expected IDC ratings. 

Subsequently, the testing dataset is used to estimate the 

performance of the classification model, by applying it 

on the testing dataset to classify each observation. �e 

performance of the classifier can be interpreted from the 

confusion matrix (Table  1). �e diagonals on a confu-

sion matrix show the number of observations where, the 

predicted rating is equal to the actual rating, whereas the 

off-diagonal elements are observations that have been 

misclassified.

 An example confusion matrix for a binary classifica-

tion problem is shown below:

(a) Accuracy which quantifies the fraction of the training 

dataset that is correctly predicted.

  

(b) Per-class accuracy is a more refined metric which 

calculates how the classifier performs for each of 

the classes. �is is useful when the instances in each 

class vary a lot, i.e., when the classes are imbalanced 

(as is the case in this work), since accuracy is usually 

overestimated due to the impact of the class with the 

most instances dominating the accuracy statistic.

  

where n number of classes, row row on the confusion 

matrix

c) Mean per-class accuracy (MPCA) is the mean per-

class accuracy over these classes.

  

In addition, we compute the misclassification costs 

in order to quantify the cost of the misclassification 

errors—i.e., if an observation in rating 1 were to be clas-

sified as rating 5, it would have a higher misclassification 

cost than if it were to be classified as rating 2. Essentially, 

calculating the misclassification cost enables us to know, 

if errors are made, how bad the errors are. To do so, we 

defined a misclassification cost matrix, as detailed in 

Table 2. �e off-diagonals of the matrix are the misclassi-

fication cost for each of the ratings, which are finite, real 

values [27]. For example, if the actual rating of an obser-

vation is rating 1, the error of misclassifying the observa-

tion to rating 5 is 4 times as costly as misclassifying the 

observation to rating 2, and so on. �en, misclassification 

cost is computed using Eq. 5.

(2)Accuracy =
TP + TN

TP + TN + FP + FN
× 100

(3)

Per class accuracy

=

i−th observation of row i

Sum of observations of row i
,

i = 1, . . . , n,

(4)

Mean Per Class Accuracy =

1

n

n∑

i=1

Per class accuracy

(5)

cost =

1

N

∑

i

∑

j

CMij ∗ wij ,

Table 1 Confusion matrix

Three measures of accuracy of the classi�er are reported from the confusion 

matrix

Predicted positive 
(class 1)

Predicted negative 
(class 2)

Actual positive (class 1) True positive (TP) False negative (FN)

Actual negative (class 2) False positive (FP) True negative (TN)
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CMij confusion matrix, wij cost matrix, N number of 

observations

Next, we employ cross-validation to estimate the aver-

age generalization error for each classifier. Cross-valida-

tion essentially is a method of assessing the accuracy and 

validity of a statistical model for generalization on future 

datasets. From a generalizability standpoint, the absolute 

accuracy of a classifier is less important as it could be 

subject to bias and overfitting. Hence, cross-validation is 

a method of performance estimation based on the vari-

ance. �e ideal estimation method would have low bias 

and low variance [28]. We used k-fold cross-validation, 

with k = 10 which is a good compromise between vari-

ance and bias [28]. K-fold CV was repeated 10 times to 

compute the mean cross-validation misclassification 

error for each model. While accuracy and MPCA detail 

the performance of a classifier on essentially the same 

dataset, mean cross-validation misclassification error 

provides information on how well the classifier performs 

on other datasets.

A brief description of classi�cation algorithms deployed

We briefly describe each of the classification algorithms 

[29]. We refer the interested reader to a more detailed 

description of these methods in [30–32].

Decision trees It is based on the construction of pre-

dictive models with a tree-like structure that correlates 

observations to their corresponding categories such as 

classes (for classification) and rewards (for decision-

making problems). �ese observations are sorted down 

the tree from the root to a leaf node, which in turn classi-

fies the observation. Decision trees [33] perform well on 

lower dimensional classification problems, but tend to fal-

ter when the dimension of the classes increases.

Random forests An ensemble method employed to reg-

ularize the greedy, heuristics nature of the decision tree 

training which sometimes causes overfitting. �is method 

[34] combines results and structures from a number of 

trees prior to coming to a conclusion. Multiple trees are 

grown from random sampling of the data. Nodes and 

branch choices of a tree are also determined through a 

non-deterministic manner. �ese models are more robust 

to uncertainties.

Naïve Bayes A supervised classification technique for 

constructing classifiers of a probabilistic graphical model. 

It is based on the assumption that each feature is inde-

pendent of each other. Naïve Bayes [35] have been used 

in a variety of fields, and is a popular method for text cat-

egorization.

Linear discriminant analysis (LDA) A linear classifica-

tion technique [36] based on the idea of Fisher’s Metric, 

with an aim to maximize between class variance, while 

minimizing within-class variance. �is allows the linear 

combination of features to improve separability among 

two or more classes. �is requires an assumption of equal 

variance–covariance matrices of the classes.

Quadratic discriminant analysis (QDA) A modification 

of linear discriminant analysis, except a covariance matrix 

must be estimated for each class. �is allows overcoming 

the problem where the variance–covariance differs sub-

stantially [36], where LDA will not perform well.

Support vector machine (SVM) �e most popular among 

supervised, discriminative kernel-based methods for clas-

sification. SVM [37] uses kernel functions to project data 

into a higher dimensional space in order to separate data 

from different classes which cannot be linearly separated. 

A hyperplane is constructed to determine the bounds in 

which each class is separated, to maximize class separabil-

ity.

K-nearest neighbors (KNN) A non-parametric classifica-

tion method [38]. �is algorithm assigns the same class 

label to data samples as its k nearest neighbors based on 

a similarity metric defined on the feature space, where k 

is an integer. �is nonlinear algorithm works reasonably 

well for multi-class classification problems.

Gaussian mixture model (GMM) A generative, unsu-

pervised data model that aims to identify a set of Gauss-

ian distributions mixtures which best describe the data. 

GMM [39] is a probabilistic technique where every data 

example is expressed as a sample of the distribution which 

is a weighted sum of k Gaussian distribution. Once this 

model is created, a Bayes classifier is applied in attempt to 

solve classification problems.

Hierarchical classi�cation

We subsequently pursued a hierarchical classification 

strategy that is motivated by expert elicitation of informa-

tion about IDC susceptibility. Hierarchical classification 

Table 2 Cost matrix,  wij

Predicted ratings

Actual ratings 0 1 2 3 4

1 0 1 2 3

2 1 0 1 2

3 2 1 0 1

4 3 2 1 0
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is known to work well on datasets with a larger number 

of classes but with fewer observations. �e IDC data set 

fell into this category. Also, the task of designing the hier-

archy in this classification strategy enables the inclusion 

of expert knowledge. Here, the hierarchical structure is 

predefined, based on insight and existing knowledge of 

class hierarchies, which then contributes to improving 

classification accuracy.

In this case, the hierarchies were identified based on 

the susceptibility of the genotypes to IDC. Specifically, 

rating 1 and 2 are usually taken together as low suscep-

tibility genotypes, while rating 4 and 5 are taken together 

as high susceptibility genotypes. We thus designed a 

two-step classification strategy: In Step A, a classifier is 

learnt that can separate the data into low, medium and 

high susceptibility groups. Step B then further classifies 

these groups into rating 1 or 2 (for the low susceptibil-

ity group), and rating 4 or 5 (for the high susceptibility 

group).

For Step A, we deploy both LDA and multi-class SVMs. 

�e learnt classifier is called Model 0, and seeks to clas-

sify the dataset into three groups (low, medium and high 

susceptibility) based on their yellow and brown percent-

age. For Step B, we deploy Support Vector Machine as 

the classification is binary. Figure 4 displays a flowchart 

of this hierarchical classifier.

Results and discussion
A number of classification algorithms were capable of 

achieving high mean per class accuracy, more than 90%, 

for classification on the time point 2 data set. Hierarchi-

cal models performed relatively well, with a mean per 

class accuracy at 95.9%. More importantly, when the 

classifier made incorrect predictions, the results were 

predominantly within the same susceptibility class—i.e., 

an error in rating 1 typically falls to rating 2, and not into 

rating 5 etc. �is is illustrated in the misclassification cost 

metric for each classifier, as detailed in Eq.  5. �e best 

performing classifier, classification trees, were able to 

correctly predict new observations 100% of the time.

When data from all time points were used to train and 

test a classifier, the hierarchical model performed the 

best, with 91% accuracy. Other classifiers fell short of the 

90% mark. �e decrease in accuracy was expected simply 

because combining all three time points caused the data 

set to be more imbalanced that before.

While being able to have high classification accuracy 

is important, the capability of a classifier to produce an 

interpretable PCG was extremely vital. �is is quanti-

fied by the interpretability of the PCG, and is further dis-

cussed in the “PCG” and “Model selection” sections.

�e results of each of the classification models are dis-

played in Tables  3 and 4. Table  3 consists of the results 

from a classification model developed using a sub-set of 

the IDC data (which consists of 3 time points). Instead 

of developing a model using 3 time points, this model 

was developed using data from time point 2 as it has the 

largest distribution of observations containing each of 

the FVRs. Table 4 consists of results from a model devel-

oped using the data spanning across all 3 time points (the 

whole dataset). 

Population canopy graph

It was interesting to note that the learnt classifier revealed 

insightful phenotypic intuition. Specifically, we queried 

the classifier to predict ratings for a uniform sampling of 

the Y and B% range. �is information is used to construct 

a 2D plot that depicts decision boundaries that separate 

Feature vector 

(Brown %, 

Yellow %) 

ML 

Model 0 

Group 1 

Ratings 1,2 

Group 3 

Rating 3 

Group 2 

Ratings 4,5 

First stage of classification Second stage of classification 

ML 

Model 1 

ML 

Model 2 

Predicted 

Rating 1 

Predicted 

Rating 2 

Predicted 

Rating 3 

Predicted 

Rating 4 

Predicted 

Rating 5 

Fig. 4 Hierarchical classifier workflow
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various IDC classes (as a function of Y and B%), which we 

refer to as a population canopy graph (PCG). �is graph, 

shown in Fig.  5 which displays the PCG output from 

 Hierarchy2 classification results on the test set, correlates 

very well with expert intuition. Expert intuition suggests 

that ratings 1–3 exhibit low brown values (corresponding 

to minimal to no necrosis), which is clearly seen in the 

PCG in Fig. 5. Similarly, beyond a certain stage of necro-

sis, a plant is automatically rated as 5 irrespective of the 

amount of chlorosis. �is trend is also exhibited by the 

nearly horizontal line marking the Rating 5 class in Fig. 5. 

Finally, the linear boundaries that allow a graceful transi-

tion from rating 1 through to 2 and 3, which is similar to 

how experts rate the transition of chlorosis.

Model selection

Several of the trained models exhibit good accuracy. We 

choose one of them as our best model based on a com-

bination of a set of two objective measures and one sub-

jective measure. �e ideal model would have high MPCA 

and cross-validated MPCA as it illustrates the capability of 

the model to predict the IDC ratings of soybean through 

features extracted from images. We use MPCA instead of 

just accuracy due to the imbalanced nature of the data-

set, as accuracy alone gives a distorted picture as the class 

with more examples will dominate the statistic. �ese two 

constitute the set of objective measures. Our subjective 

measure is based on a notion of interpretability—which 

we define as the ability of the end-user (plant research-

ers, breeders, and/or farmer) to interpret the PCG created 

Table 3 Results for machine learning algorithm model accuracies developed using a sub-set of iron de�ciency chlorosis 

data on a diverse set of soybean accessions

a Mean per class accuracy

b SVM and SVM

c LDA and SVM

Algorithm Accuracy MPCAa Cross validated MPCA Interpretability Cost metric

CT 100.0 100.0 96.0 Medium 0.0000

KNN 99.7 96.7 95.0 Low 0.0031

RF 99.7 96.0 85.0 Low 0.0031

Hierarchyb 99.4 95.9 79.8 High 0.0062

QDA 99.4 92.0 98.9 Medium 0.0620

Hierarchyc 98.5 86.6 70.8 High 0.0155

GMMB 99.1 82.0 87.0 Medium 0.0093

NB 99.1 82.0 93.8 Medium 0.0093

LDA 98.8 79.3 84.3 High 0.0124

SVM 93.8 39.8 50.0 Low 0.1084

Table 4 Results for  machine learning algorithm model accuracies developed using the complete set of  iron de�ciency 

chlorosis data on a diverse set of soybean accessions

a Mean per class accuracy

b SVM: using SVM for both classi�ers

c LDA and SVM

Algorithm Accuracy MPCAa Cross validated MPCA Interpretability Cost metric

CT 99.7 91.7 78.4 Low 0.0027

Hierarchyb 99.2 90.7 79.2 High 0.0082

Hierarchyc 98.3 84.0 79.0 High 0.0201

QDA 98.5 83.2 77.9 Medium 0.0201

NB 98.4 79.0 78.5 Medium 0.0284

KNN 99.5 75.8 84.3 Low 0.0073

RF 99.1 75.0 81.1 Low 0.0092

GMMB 99.4 74.2 82.7 Low 0.0064

LDA 98.5 71.7 76.9 High 0.0156

SVM 97.3 45.8 45.3 Low 0.0458
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and link it to the visible rating characteristics that are cur-

rently used. Specifically, we check to see if the shape of the 

decision boundaries produced by the model makes physi-

cal sense—that the decision boundaries correlated with 

the physical aspect of IDC, e.g.: plants with IDC rating 4 

and above display significantly more browning compared 

to ratings 3 and below. Interpretability was scored either 

‘Low’, ‘Medium’, or ‘High’; ‘Low’ for models that did not 

correlate with expert intuition (e.g.: individual islands, 

quadratic boundaries that appear to be biased), ‘Medium’ 

for models that partially correlates with expert intuition, 

and ‘High’ for models that correlated well with expert 

intuition. �e hierarchical model  Hierarchy2 had the best 

trade-offs amongst these criterions, as shown in Tables 3 

and 4, and was chosen as the best model.

Smartphone and PC software
To enable high throughput phenotyping using the devel-

oped classifier, we embed the preprocessing stage as well 

as the classifier into an easy to use GUI that is deploy-

able as a smartphone app. �is app is supported on all 

Android-based devices, such as tablets and smartphones 

and has the full functionality of the desktop-based ver-

sion. �e Android-based app allows users to take pic-

tures with their devices and extract the IDC rating in 

real time. �is allows for portability and instant acqui-

sition of data. Figure  6 shows a flowchart of illustrating 

the app. When the app is launched, the user has a choice 

between taking a new picture, and analyzing a picture 

already contained in the device. �e picture should be 

taken in the native RAW format (usually in the.dng for-

mat), and not using standard JPEG formats which use 

lossy compression that may cause color changes. Once 

a picture has been selected, it is processed and the IDC 

score evaluated and displayed on the screen. �e user can 

export single or multiple images in tabular form through 

various methods, such as Dropbox, Bluetooth, Google 

Drive, and through email. �is app allows untrained per-

sonnel and/or unmanned ground vehicles to extract and 

transmit IDC ratings without the need for a trained plant 

researcher/phenotyper looking at every plant. �is is a 

tremendous enabler in terms of dramatically increasing 

the number of plants that can be accessed. In addition to 

the smartphone based app, a desktop based GUI will also 

be released to enable batch processing of a large num-

ber of images. �is allows offline (or off site) analysis of 

images that are either captured manually or in an auto-

mated fashion.

Conclusion
We designed, developed and deployed an end-to-end 

integrated phenotyping work-flow that enables fast, 

accurate and efficient plant stress phenotyping. We 

show how image processing and machine learning 

can be deployed to construct classifiers that can auto-

matically evaluate stress severity from image data. We 

emphasize that expert knowledge is crucial in design-

ing appropriate classifiers. �is is clearly seen in the 

markedly superior performance of the hierarchical clas-

sifier over single stage classifiers. �e classifier is addi-

tionally used to produce a phenotypically meaningful 

population canopy graph. Subsequently, we deploy the 

developed classifier onto smartphones that serves as a 

high-throughput framework that can be utilized cross-

platform for evaluating IDC ratings of soybean using 

only digital images. It is clear that image based analy-

sis is more reliable and consistent than visual scor-

ing as it removes the human error aspect involved in 

visual rating when repeated IDC measurements are 

needed at different growth stages. We compared the 

computed IDC ratings with provided visual scores from 

domain experts, and observed a close similarity, sup-

porting accurate measurements and the accuracy of 

this HTP framework. We envision that such systems 

will help the plant researchers and breeders increase 

the efficiency and accuracy of selecting genotypes com-

pared to visual scoring to enable fast phenotyping and 

reduce researcher bias. It is also relatively low cost and 

has the potential to speed up and improve crop devel-

opment. �e newly developed software framework is 

being embedded onto a high throughput phenotyping 

ground vehicle and unmanned aerial system (UAS) that 

will allow real-time, automated stress trait detection 

and quantification for plant breeding and stress scout-

ing applications. �is framework is also currently under 

further development by our group for numerous biotic 

stresses in soybean.
Fig. 5 Population canopy graph of predicted data using a testing set 

with images and visual rating for IDC in soybean
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