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Abstract 

In recent years, a large amount of research has been focused on intelligent tire technology. Several 

systems have been developed based on different sensors installed on tires. Nowadays one of the 

major research problems for intelligent tire development is how to correlate measurements provided 

by sensors to the tire dynamics. The methods mostly presented in literature are based on empirical 

correlations between measurements and tire working conditions obtained with extensive 

experimental activities which are expensive and time consuming.  

In this paper, a real-time physical model suitable to describe the longitudinal dynamics of strain-

based intelligent tires is described. The mathematical tire model consists of a flexible ring on a 

viscoelastic foundation. The solution of the model dynamics has been obtained in closed form and 

the model parameters have been identified from experimental data. The comparison between the 

simulated strains and the ones provided by an intelligent tire prototype highlighted that the proposed 

tire model can estimate with an acceptable precision the tire deformations for several operative 

working conditions.   
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1. Introduction 

The identification of driving conditions from tires is of crucial importance for safety, performance 

and stability of vehicles. Therefore, in the last decades, considerable research effort has been 

focused on the development of intelligent tires that are able to provide useful information about tire 

and road conditions. For instance, intelligent tire concept can be adopted for estimating forces at the 

tire-road interface, tire wear, contact patch length, friction coefficient, slip angle and road 

conditions [1]. A sensor system inside an intelligent tire could improve driving safety by sending 

reliable data to drivers via vehicle-to-vehicle or via vehicle-to-infrastructure communications [2]. 

Moreover, intelligent tires could be able to interact with different vehicle control systems, such as 

Anti-lock Braking System (ABS), Electronic Stability Control (ESC), Traction Control System 

(TCS), Suspension Control System (SCS).   

Research on intelligent tires began with the development of the tire pressure monitoring system 

(TPMS) that warns the driver if a tire is significantly under-inflated. More recently, different types 

of intelligent tire concepts have been proposed. Most of them are based on accelerometers or strain 

sensors attached to the inner liner of the tire on the tread portion [3].   

In [4], real-time acceleration measurements have been adopted for estimating several parameters of 

the tire and the road conditions. Negrus et al. [5] presented experimental results concerning an 

intelligent tire equipped with acceleration sensors and a wireless data transmission system.   

An algorithm for contact patch determination and friction coefficient estimation based on radial and 

lateral acceleration profiles has been presented in [6].  The compact size of accelerometers together 

with their inexpensive cost make them suitable for intelligent tires in the market [7]. However, as 

mentioned in APOLLO project [8], accelerations are very sensitive to noise from the road 

interaction and consequently sophisticated signal processing procedures are required for extracting 

tire characteristics. As claimed in the APOLLO project [8], strain sensors in intelligent tire 

applications outperform accelerometers for wheel force estimation. Strain measurements are not 

affected by the tire rotational speed and the noise level is generally lower than the one of 

accelerometers. In addition, strain sensors are less expensive than other sensors, reliable and 

accurate enough to measure strain data under dynamic conditions. 

Several types of strain sensors have been developed based on different measuring principles. 

Polyvinylidene fluoride (PVDF) strain sensors, attached to the inner liner have been adopted in [9, 

10] in order to measure tread ring deformations.  A Surface Acoustic Wave (SAW) device has been 

used in [11] for measurement of tread deformation for friction estimation.  
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In [12], the tread ring strain has been obtained from the capacitance variation of an oscillating 

circuit integrated with the tire. In [13], the tread deformation has been obtained from a magnetic 

sensor. Magnetic sensors for sidewall strain measurements have been also adopted in [14] for wheel 

force estimation. Optical fiber sensors have been employed in [15, 16] for inner liner strain 

measurements. In [17], a fuzzy logic algorithm, for the estimation of slip angle and tire working 

conditions from strain measurements, has been presented.  

The developments of the above mentioned intelligent tire concepts require time-consuming process 

due to extensive experiments necessary to correlate sensor measurements with the tire operative 

conditions.  To overcome this limitation, mathematical modelling of intelligent tires for simulation 

tests could be of vital importance.  Moreover, real-time models could be implemented in observers 

for tire condition estimations from strain measurements.  

Conventional tire models are not suitable for modelling strains in intelligent tires because they 

provide as output forces starting from longitudinal and lateral slips, frictions, etc. [18-23]. For 

instance, the magic formula tire model developed by Pacejka gives tire forces based on regression 

equations related to experimental data [24, 25]. Finite element tire models are often used for 

determining tire strains but they are not suitable for real-time applications due to their 

computational loads [26]. 

In this paper, a tire strain model is presented. The proposed model can predict, in real-time, the tire 

strain according to the driving conditions. More specifically, the physical modelling approach is 

based on the tire flexible ring model which provides deformations of the tire carcass due to applied 

steady-state in-plane forces [27]. The model has been validated through experimental data from an 

intelligent tire presented in [1, 17]. The experiments have been carried out by means of strain 

sensors inserted on the tire inner liner and an indoor tire test rig.  

This paper is organized as follows: in section 2, the intelligent tire system considered for the model 

validation is briefly introduced. The proposed tire model is presented in section 3 and its 

experimental validation is described in section 4. Conclusions and future developments are drawn in 

section 5.  

 

2. Outline of the strain-based intelligent tire 

A strain-based intelligent tire prototype, developed in the Vehicle Dynamics Laboratory at the 

University of Birmingham, has been considered in this study [28]. It is a Dunlop slick radial tire 

175/505 R13 for SAE Formula Student, shown in Fig. 1a. The 175/505 R13 radial tire consists of 
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different rubber components with embedded reinforcements as illustrated in the tire cross section 

reported in Fig. 1b.  

 

a) b)  

Fig. 1. (a) Formula Student Car with Dunlop Slick Tyre; (b) Cross-section of Dunlop 175/505 R13 

Radial Tire. 

 

The pneumatic tire has been equipped with strain gauges on its inner liner [28]. In particular, the 

KYOWA KFEL-2-120-D35L1M2S high-elongation foil strain gauges have been adopted. These 

strain gauges are designed for large strain measurement.  

Fig. 2 shows the tri-axial arrangement of each set of strain gauges attached to the inner liner of the 

tire and the positon of the two rectangular rosette strain sensors, mounted symmetrically about the 

tire tread centre line. The location of the strain gauges has been optimized not only for straight line 

conditions but also in order to improve the achieved information under cornering conditions [17]. 

The strain data registered at both sides of the contact patch, symmetrically located about the tire 

tread centre line, provides crucial information for slip angle estimation. 

The deformation behaviour of the inner liner is dominated by the tire carcass; consequently, due to 

the high value of the carcass stiffness, no local stiffening effect caused by the strain gauges has been 

considered. 
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Fig. 2. Arrangements of strain sensors. 

 

The interference with the sensors during the assembly procedure has been avoided by using a rim 

divided in two pieces (see Fig. 3a). Sealed valves have been used in order to connect the sensors 

placed inside the tire with the external acquisition system without air flowing (Fig. 3b).   

a) b)  

Fig. 3. a) Split Wheel; b) Sealed valves. 

 

The SoMat 2000 Field Computer has been utilized for the test data collection. The adopted system 

is portable and based on microprocessor data acquisition. The sampling frequency has been fixed at 

1000 Hz which can record at least 50 data points per tyre revolution at speed 100 km/h. The 

measurement range of SoMat strain gauge module is from -5000 microstrain to 5000 microstrain, 

which is suitable for the normal working range of the adopted intelligent tire prototype. 

The testing procedure of the intelligent tire will be illustrated in Section 4 together with 

experimental results and comparisons with the numerical ones provided by the mathematical model 

illustrated in the next section. 
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3. Analytical model of the strain distribution 

Analytical modelling of tire/road contact provides a fundamental knowledge of the main 

characteristics of the tire behaviour. Some examples of these types of model are: point contact 

model, rigid tread band model, fixed and adaptive footprint models and the flexible ring model [29]. 

The last one has been widely adopted for describing the in-plane tire behaviour. More specifically, 

in low frequency range, the flexible ring tire model (FRTM) can reproduce the tire dynamics, which 

is similar to that of an elastic ring subjected to external excitation forces [30-32].  

The model adopted in this study is the FRTM due to the possibility of obtaining, in a closed form, 

the mathematical description of the tire inner liner circumferential strains.  In the FRTM, the 

treadband structure is modelled as a thin circular elastic ring connected to the wheel hub in 

circumferential and radial directions through a viscoelastic foundation. The viscoelastic foundation 

is schematically represented by spring damper elements in the radial and tangential directions. The 

spring elements have the function of describing the stiffness of the sidewall structure and the 

membrane stiffness of the inflated torus enclosed by the carcass.  

The tangential and radial flexibility of the tread rubber elements of the tire are modelled with 

another elastic foundation connected to the outside of the elastic ring (schematically represented by 

the parameters kEI and kGt in Fig. 4).  

A similar modelling approach applied to an intelligent tire is presented in [33], with the main focus 

on the tire parameter identification from strain measurements. However, the goals of the present 

paper and of [33] are different. In [33], the contact problem has been solved based on the 

combination of strain gage measurements, finite element modelling (FEM) and the flexible ring 

model. Consequently, the research in [33] is focused on parameter identification with computational 

costs that surely are not compatible with real-time applications. Moreover, in [33], the flexible ring 

model is that one proposed by Kim et. al. [34] which scheme comprises a circular flexible beam and 

series of radial springs. Compared with the general flexible ring model prosed in this paper, the 

model in [33, 34] is limited to analyze the tire behavior subjected to only radial forces. In addition, 

damping effects of sidewall and tangential stiffness of sidewall are neglected in [33, 34]. On the 

contrary, the real-time physical model presented in this paper, and adopted to reproduce 

circumferential strain measurements of the tire inner liner, comprises radial and tangential stiffness, 

damping effects and both radial and tangential forces.  
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In this analysis, the tire rolling on a flat road at a constant forward speed has been considered. 

Consequently, the physical problem can be viewed as a stationary tire in rolling contact with a flat 

road uniformly translating in the opposite direction. In this situation, the rim is fixed in the space 

and the wheel can only rotate at a constant speed. Fig. 4 shows a scheme of the FRTM.   

 

Fig. 4. The flexible ring model.  

 

In Fig. 5, a space-fixed coordinate system and a rotating coordinate system have been defined in 

order to describe the motion of the FRTM.  The main reason for this assumption is that forces and 

contact deformations can be more conveniently analyzed in a coordinate system which translates 

with the contact patch, while a coordinate system which rotates with the wheel can be more suitable 

for describing the dynamics of the rotating treadband.      

 

Fig. 5. Coordinate systems. 
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The origins of both coordinate systems are located at the center of the wheel. The translational 

displacement of wheel center is described with coordinates (x, z) in the non-rotating coordinate 

system, or (x*, z*) in the rotating coordinate system. The location of an infinitesimal element of the 

ring is described in terms of cylindrical coordinates ( r, ϕ) in the non-rotating coordinate system, or 

( r, θ) in the rotating coordinate system, as shown in Fig. 5.  The mathematical transformation 

between the two coordinate systems is: 

 

( ) ( )
( ) ( )
t

tztxz

tztxx

Ω+=
Ω∗+Ω∗=
Ω∗−Ω∗=

θφ
cossin

sincos

  ,           (1) 

 

where t is the time and Ω is the wheel rotational speed.  

According to the Bernoulli-Euler assumption, the treadband has been assumed as an inextensible, 

curved, bending beam. The introduction of inextensibility assumption is usually valid for rings with 

high extensional stiffness, which is the case with the most widely used tires. The radial deformation 

w and the tangential deformation v at any point on the elastic ring middle surface are related by the 

following mathematical relation: 

 

θ∂
∂

−=
v

w .              (2) 

 

The rotational angle β of the treadband cross section is defined as: 

 









∂
∂

−=
θ

β w
v

R

1
.             (3) 

 

The equations of motion of the wheel and the treadband, expressed in terms of v, in the rotating 

coordinate system are [27]: 
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where dot (·) denotes differentiation with respect to time; T is the torque acting on the rim,  *xF  and 

*zF  are external forces acting at the rim center described in the rotating coordinate system; vq , wq  

and βq are the external forces in the tangential and radial directions and the moment acting on the 

ring, respectively; rθ is a small deviation of the angular displacement of the rim which may be 

described as a windup rotation resulting from the application of a torque; 0

θs  is the initial stress in 

the treadband due to the action of the centrifugal force and inflation pressure p0. In particular, the 

effects of the pressurized air in the FRTM are introduced in two ways: a) the stiffness of the 

tangential and radial springs are considered to vary with the inflation pressure of the tire; and b) the 

circular ring is pre-stressed by the inflation pressure and centrifugal forces due to rotation [27].  

The relation between 0

θs  and the rotating speed Ω and the inflation pressure p0 of the tire is 

determined by the following equation: 

 

( )22

0

0 Ω+= ARbRpA rsθ             (5) 

 

The parameters of Eqs. (4) and (5) are listed in Tab. 1; 
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Symbol Description Unit 

b Width of the ring. m 

h Thickness of the ring. m 

A Area of the cross section of the ring (A=bh). m
2 

E Young’s modulus of the ring material. N/m
2 

I Inertia moment of the cross-section of the ring (I=bh
3
/12).

 
m

4 

R Mean radius of the ring (tire treadband). m 

ρ Density of the ring material. kg/m
3 

kw, kv Stiffness of the viscoelastic foundation per unit length in the radial and 

tangential directions, respectively. 

N/m
2
 

cw, cv Damping of the viscoelastic foundation per unit length in the radial and 

tangential directions, respectively. 

N s/m
2
 

 

Table 1. Parameters of the FRTM. 

 

The solution of (4) has been obtained by adopting the Modal Expansion Method (MEM). The 

fundamental assumption of the MEM is that the response of a linear system to any external 

excitation forces can be expressed as a weighted summation of the natural mode shapes of the 

system.  The mode shapes of a system are usually time independent while the weight factors are 

space independent. Adopting the mode shapes of the FRTM, the sixth order partial differential 

equation of motion of the treadband (see Eqs. (4) for reference) reduces to a set of second order 

ordinary differential equations in time [27, 35]. According to the MEM, the tangential and radial 

displacements of the ring, in the rotating coordinate system, can be expressed as follows: 
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where n denotes the mode number and )(tan  and )(tbn  are the generalized modal displacement. In 

the present study, the moment acting on the ring has been neglected ( 0=βq ). In this case, the 

external line forces on the ring are 
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00
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where wQ  and vQ  are the magnitudes of radial and tangential line forces acting at specified 

stationary angular coordinate 0φ , in the non-rotating coordinates or the corresponding point, 

( )0θθ − , where ( )tΩ−= 00 φθ in the rotating coordinates; ( )( )tΩ−− 0φθδ  is a Dirac delta function.   

The steady state response of the FRTM in terms of the tangential displacement and the 

corresponding radial displacement of the tire treadband for the concentrated line forces are given by 

[35]: 
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The solution of the FRTM for a distributed vertical load could be obtained with the superimposition 

principle.  Consider a distributed load extending from the angular coordinate fφ at the front edge of 

the contact patch to rφ  at the rear edge can be applied to the tire. The normal pressure distribution 

acting on the contact patch could be modelled with a parabolic function of the angular coordinate as 

follows: 

( )22

34

3
)( φφ

φ
φ −= r

r

z
z

R

F
q ,           (10) 

where Fz is the vertical load acting on the wheel and the symmetrical condition fr φφ −= is 

considered. 

The corresponding radial pressure distribution can be obtained as: 

( )
)cos(

1

4

3
)( 22

3 φ
φφ

φ
φ ⋅−= r

r

z
w

R

F
q .                    (11) 

By dividing the extension of the contact patch in Nϕ constant angular steps φ∆ , the generic 

concentrated forces Qw,i and Qv,i  acting at point, with angular coordinate i,0φ , can be written as:  

( )
( ) φφ

φφ

∆=

∆=

iviv

iwiw

qQ

qQ

,0,

,0,
.              (12) 

Hence, the tangential and radial deformations can be obtained by superimposing the solution: 
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Finally, the strain in the circumferential direction of the treadband [15, 27], can be expressed as:  
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in which y is the distance from the treadband middle surface.  

Substituting equations (13) into (14), the circumferential strain can be obtained as follows: 
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The mathematical relation (15) represents a closed form solution of the FRTM in terms of 

circumferential treadband strains. The numerical model outputs have been compared with the 

measurements provided by the adopted intelligent tire. The carcass deformations have been 

obtained taking into account distributed loads acting on the contact patch.   

 

4. Experimental model validation  

The test system used for the experiments is an indoor tire test rig which makes it possible to vary 

speed, vertical load and slip angle. The tire test rig also allows to simulate different surface types by 

installing rough sheets on the drum. The experiment setup is shown in Fig. 6. 

 

 

  

Fig. 6. Test rig. 

 

The experiments have been carried out in straight rolling condition. The influence of the tire 

operative conditions (tire rolling speed, inflation pressure and vertical load) on the strain 

measurements have been deeply analysed in previous works [1, 17, 28].  

The indoor test rig allows the variation of operative conditions without stopping the intelligent tire 

prototype. For instance, Fig. 7 shows the transition period while vertical load is being changed.  
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Fig. 7. Circumferential strains for different vertical loads [1]. 

 

In the study, the main goal is the validation of a real-time FRTM capable of reproducing the strain 

measurements provided by the intelligent tire for in-plane motions. The experimental data selected 

for the model validation are only the circumferential strains. The results have been obtained with 

the tire in straight-line free rolling conditions. In particular, the influence of the tire speed and the 

vertical load has been evaluated. The operative tire conditions used for the tests are listed below: 

 

Tire inflation pressure: 1 bar; 

Tire vertical load: 250 N–1000 N; 

Tire speed: 10 km/h–50 km/h; 

Tire slip angle: 0; 

 

An identification procedure has been performed by varying the model parameters and minimizing 

the error between the measured strains with the numerical ones. The identified FRTM parameters 

are listed in Tab. 2. 

 

Parameters Value Unit 

b 0.175 m 

h 0.002 m 

EI 0.03 Nm
2 

R 0.23 m 

ρ 2000 kg/m
3 

kw 500000 N/m
2
 

kv 100000 N/m
2
 

cw= cv 0 N s/m
2
 

 

Table 2. Values of the identified FRTM parameters. 
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Fig. 8 and Fig. 9 show the comparison between experimental and numerical results for the same tire 

velocity (10 km/h) and vertical load equal to 250 N and 500 N, respectively.  

 

Fig. 8. Circumferential strain (velocity: 10 km/h; vertical load: 250 N). 

 

 

Fig. 9. Circumferential strain (velocity: 10 km/h; vertical load: 500 N). 

 

The simulated strains for both vertical loads provide a good matching with the experimental results. 

The simulated treadband vertical displacements for both vertical loads are reported in Figs. 10a 10b. 

a) b)  

Fig.10. Treadband vertical displacement (velocity: 10 km/h); a) vertical load: 250 N; b) vertical 

load: 500 N. 
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The values of vertical displacements shown in Figs. 10a,b are in accordance with previous 

experimental studies [28] oriented to measure the behaviour of the intelligent tire prototype under 

static vertical loads (see Fig. 11 for reference).   

 

 

Fig. 11. Experimental vertical displacement/load at 100 kPa inflation pressure. 

 

Another comparison has been performed in order to evaluate the effect of the tire rotational velocity 

on the measured strain. Fig. 12 and Fig. 13 show the comparison between the model outputs and the 

experimental data for the same vertical load (250 N) and velocities equal to 20 km/h and 30 km/h, 

respectively. 

 

Fig. 12. Circumferential strain (velocity: 20 km/h; vertical load: 250 N). 
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Fig. 13. Circumferential strain (velocity: 30 km/h; vertical load: 250 N). 

 

Also for these tests, the model is able to track the main behaviour of the measured strains.  

A comparison between simulated and measured strains have been executed for higher values of 

vertical load (750 N) and velocity (50 km/h). Fig. 14 and Fig. 15 show the circumferential strains 

and the carcass shape before and after compression, respectively.  

 

Fig. 14. Circumferential strain (velocity: 50 km/h; Vertical load: 750 N). 

 

 

Fig. 15. Simulated tire carcass contours from the FRTM (velocity: 50 km/h; vertical load: 750 N).  
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Model outputs are in good accordance with the experimental results and the estimated tire deformed 

shape can be considered reliable.   

It is important to note that the most accurate way to analyse the influence of the load in the strain 

data is obtained by means of the variation of the compressive peaks in circumferential strains [1]. 

Fig. 16 shows the trend of the simulated and experimental strain compressive peaks with respect to 

the vertical loads.   

 

Fig. 16. Maximum compressive strain (absolute value). 

 

Results of Fig. 16 clearly highlight a similar variation of the numerical and experimental strain 

compressive peaks in function of the applied vertical loads. However, some differences between 

model outputs and measurements still occur.  Probably this discordance is due to nonlinearities of 

the actual tire mechanical structure.  

Two further experimental tests have been executed to verify the capability of the proposed FRTM 

in the case of combined vertical and longitudinal loads. Figs. 17 and 18 show comparisons between 

experimental and simulated circumferential strains for two different values of the applied 

longitudinal force: Fx=485 N and Fx=505 N, for the same vertical force Fz=1000 N, and for rolling 

velocities of 10 km/h and 30 km/h, respectively. 
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Fig. 17. Circumferential strain (velocity: 10 km/h; vertical load: 1000 N, longitudinal load: 485 N). 

 

Fig. 18. Circumferential strain (velocity: 30 km/h; vertical load: 1000 N; longitudinal load: 505 N). 

 

Also in this case the FRTM is able to reproduce the trend of measurements characterized by 

asymmetrical behaviours due to the longitudinal forces acting on the intelligent tire.  

 

5. Conclusions and future developments 

An analytical model suitable to describe the behaviour of tire strains has been presented. The tire 

has been modelled with a flexible ring on a viscoelastic foundation. The radial and tangential 

displacements of the tire carcass have been obtained in closed form with the modal expansion 

method. Consequently, the tire inner liner strains have been expressed as functions of the tire 

carcass deformations. The simulated strains have been obtained by taking into account distributed 

loads acting on the tire contact patch.  The validation of the proposed tire strain model has been 

performed by adopting a strain-based intelligent tire. An experimental setup has been adopted for 

indoor tests and correlations between the measured tire strains and the ones provided by the 

developed physical model have been analysed. Experimental and numerical results have been 

compared demonstrating the high performance of the proposed modelling approach. In particular, 

the experimental validation highlighted that the flexible ring model is able to predict the 

circumferential strains of the tire inner liner in the presence of both vertical and longitudinal forces. 

The presented mathematical model could be used for simulations of strain-based intelligent tires.  
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Moreover, the developed real-time tire flexible ring model could be implemented in the design of 

observers for tire condition estimations from strain measurements.  
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