

Volume 17, 2018

Accepted by Editor Keith Willoughby│ Received: September 10, 2017│ Revised: December 14, 2017; January
19, 2018 │ Accepted: February 13, 2018.
Cite as: Jeske, H. J., Lall, M., & Kogeda, O. P. (2018). A real-time plagiarism detection tool for computer-based
assessments. Journal of Information Technology Education: Innovations in Practice, 17, 23-35.
https://doi.org/10.28945/3963

(CC BY-NC 4.0) This article is licensed to you under a Creative Commons Attribution-NonCommercial 4.0 International
License. When you copy and redistribute this paper in full or in part, you need to provide proper attribution to it to ensure
that others can later locate this work (and to ensure that others do not accuse you of plagiarism). You may (and we encour-
age you to) adapt, remix, transform, and build upon the material for any non-commercial purposes. This license does not
permit you to use this material for commercial purposes.

A REAL-TIME PLAGIARISM DETECTION TOOL FOR
COMPUTER-BASED ASSESSMENTS

Heimo J. Jeske Tshwane University of Technology,
Pretoria, South Africa

JeskeHJ@tut.ac.za

Manoj Lall* Tshwane University of Technology,
Pretoria, South Africa

LallM@tut.ac.za

Okuthe P. Kogeda Tshwane University of Technology,
Pretoria, South Africa

KogedaPO@tut.ac.za

* Corresponding author

ABSTRACT

Aim/Purpose The aim of this article is to develop a tool to detect plagiarism in real time
amongst students being evaluated for learning in a computer-based assessment
setting.

Background Cheating or copying all or part of source code of a program is a serious con-
cern to academic institutions. Many academic institutions apply a combination
of policy driven and plagiarism detection approaches. These mechanisms are
either proactive or reactive and focus on identifying, catching, and punishing
those found to have cheated or plagiarized. To be more effective against plagia-
rism, mechanisms that detect cheating or colluding in real-time are desirable.

Methodology In the development of a tool for real-time plagiarism prevention, literature re-
view and prototyping was used. The prototype was implemented in Delphi pro-
gramming language using Indy components.

Contribution A real-time plagiarism detection tool suitable for use in a computer-based as-
sessment setting is developed. This tool can be used to complement other exist-
ing mechanisms.

Findings The developed tool was tested in an environment with 55 personal computers
and found to be effective in detecting unauthorized access to internet, intranet,
and USB ports on the personal computers.

Recommendations
for Practitioners

The developed tool is suitable for use in any environment where computer-
based evaluation may be conducted.

https://doi.org/10.28945/3963
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
mailto:JeskeHJ@tut.ac.za
mailto:LallM@tut.ac.za
mailto:KogedaPO@tut.ac.za

A Real-time Plagiarism Detection Tool

24

Recommendation
for Researchers

This work provides a set of criteria for developing a real-time plagiarism pre-
vention tool for use in a computer-based assessment.

Impact on Society The developed tool prevents academic dishonesty during an assessment pro-
cess, consequently, inculcating confidence in the assessment processes and re-
spectability of the education system in the society.

Future Research As future work, we propose a comparison between our tool and other such
tools for its performance and its features. In addition, we want to extend our
work to include testing for scalability of the tool to larger settings.

Keywords plagiarism detection, plagiarism detection tools, computer-based assessment,
quality education, dishonesty

INTRODUCTION

Over the last decade, the universities in South Africa have experienced a paradigm shift, in terms of
higher education, from a focus on teaching to a focus on learning. Many mission statements can be
found that claim their institution to be student-centered or learner-centered institutions. Besides this
rhetoric, possibly the most notable change that can be observed is a greater emphasis on skills devel-
opment. The requirement of skills development placed on institutions of higher learning purposeful-
ly demands that appropriate skills be identified by analyzing its demand in the workplace. One set of
skills that is in great demand by the software industry in South Africa is programming skills (Balwanz
& Ngcwangu, 2016). In a quest to meet the computer programming skills shortage, many national
and private institutions have either started offering such programs or increased their enrolment into
such programs. Although this approach tries to address the issue of quantity of such a workforce, it
also places responsibility on such institutions to ensure that the quality of the students being pre-
pared is not compromised and meets the expectations of such a work environment (Dey & Sobhan,
2006).

In order to evaluate the quality of their students, a common mechanism used in many institutions of
higher learning is to conduct assessments of learning, using mechanisms such as tests and examina-
tions, in a supervised and controlled environment (Astin, 2012; Gibbs & Simpson, 2005). The con-
trolled environment is to ensure that true capabilities and competencies of students are reflected. An
important aspect of assessment of learning is to serve as a means of communication between the
world of education and the society at large. For this communication to be publically accepted as a
code of quality, the tests and examinations process must instill confidence in the marks obtained in
those assessments. Establishing trustworthiness in an assessment of learning results (marks or
grades) is directly related, though not limited, to minimizing academic dishonesty amongst the stu-
dents (Biggs & Collis, 2014; Martins, Fonte, Henriques, & da Cruz, 2014). In this article, we present a
tool to detect plagiarism in real time amongst students being evaluated for learning in a computer-
based assessment setting. In the context of this research, computer-based assessments refer to all
assessments conducted using a computer. This form of assessment is of particular importance when
evaluating the learning of computer programming skills such as coding, debugging, and testing,
which are difficult to assess using traditional paper based approaches. Additionally, computer-based
assessment of learning builds confidence in the minds of prospective employers concerning the abil-
ity of the student to meet the skills-set required of a computer programmer. However, applying
computer-based assessment brings with it additional challenges not commonly found in a traditional
paper based assessment settings (Simon, Cook, Sheard, Carbone, & Johnson, 2013). For instance,
source codes widely available on the Internet can easily be downloaded and used covertly, or files
containing source code of one student can be shared between students on the same intranet. Figure
1 shows a typical computer-based assessment setting. It can be observed from the figure the ease
with which a student could insert a memory stick into the computer’s USB port and copy relevant

Jeske, Lall, & Kogeda

25

files and the difficulty an invigilator would face in identifying such illegal activities taking place. Hav-
ing a tool for detecting such illegal activities in real-time would go a long way in discouraging stu-
dents with intentions to copy during the assessment. A tool such as the one proposed by us will also
assist in reducing the burden on teaching staff to perform a similarity check on the works handed in
for evaluation.

Figure 1. A typical computer-based evaluation setting

LITERATURE REVIEW

In an effort to minimize cheating or copying all or part of a program source code from some sources
and submitting as the student’s own, institutions are constantly under pressure to implement ways to
address such activities (Oberreuter & VeláSquez, 2013). Many academic institutions try to address
them through policies and tools (Hodgkinson, Curtis, MacAlister, & Farrell, 2016; Martins et al.,
2014). Tools often serve as plagiarism detection mechanisms. Many tools such as MOSS, JPlag, Cov-
et, and CloneDr are commonly used for source code plagiarism detection. However, they are not
very suitable for source codes plagiarism detection especially from the perspective of Rapid Applica-
tion Development tools, which automatically supply a major part of the anticipated solution (Simon
et al., 2013). Additionally, in a corpus of student assignments, source-code files may have a similar
semantic meaning. This is inevitable since they are developed to solve a common programming prob-
lem and share common programming language keywords. Plagiarism detection is a reactive mecha-
nism, which highlights similarities between various code snippets well after the commitment of dis-
honest actions (Agrawal & Sharma, 2016; Joy & Luck, 1999).

Policies and procedures, on the other hand, are a more proactive mechanisms aimed at discouraging
plagiarism by highlighting punitive measures. They serve as a plagiarism prevention mechanism. In
order to maintain high standards of academic integrity, it is essential to know and respect the policies
concerning plagiarism, and to seek and foster a learning environment that encourages the develop-
ment of academic skills that are appropriate for each discipline. The limited effectiveness of policies
as a deterrent to plagiarism can be observed by a perpetual increase in incidence of academic dishon-
esty amongst students.

Prevention of plagiarism, if applied effectively, has a very strong impact but does not prove to be
watertight to rule out all plagiarism or, more specifically, illegal source code copying (Devlin & Gray,
2007; Wilcox, Cameron, & Reber, 2015). On the contrary, plagiarism detection can narrow down po-
tential cheaters, but it is not sophisticated enough to separate the cheaters from the non-cheaters
(Lukashenko, Graudina, & Grundspenkis, 2007). All these mechanisms are either proactive or reac-
tive and focus on identifying, catching, and punishing those found to have cheated or plagiarized. To
be more effective against plagiarism, there is a need for mechanisms that detect cheating or colluding
in real time, that is, during an assessment session. This will assist in implementing immediate preven-
tive actions in accordance with the institutional policies, for instance, getting a confession letter

A Real-time Plagiarism Detection Tool

26

signed by the student thereby minimizing lengthy disciplinary hearing processes. In this article, we
propose a software-based tool to detect copying or sharing of program codes during a practical
computer-based programming skills assessment session by monitoring, sending alerts, and logging
access to external resources. These external resources include source codes available on the internet,
intranet, and external devices such as USB memory sticks. The monitoring, sending alerts to a
manned computer, and logging of unauthorized activities are all done in a transparent manner to
avoid disturbance to other students being assessed. Having such a system in place will enhance trust
in our academic system by prospective employers of our students.

REQUIREMENTS OF THE SOFTWARE TOOL FOR COMPUTER-
BASED ASSESSMENT

For a tool to be useful during assessment, it must fulfil the following functions.

Support monitoring of unauthorized access to external resources: Students may try to access
resources that they think may be useful to them in answering the questions posed. These resources
could be available on the internet or resources that the students have saved on the intranet with an
intention to access them during the assessment session. Another common place to store information
is on a USB memory stick. These devices, being physically small, are very easy to smuggle into the
venue where the assessment is taking place and easy to insert into the workstations for accessing
source codes covertly.

Support ease of identifying workstations accessing illegal resources: Accessing resources from
the internet, intranet, or a tiny memory stick is very difficult to detect in an assessment setting where
there are many students busy typing in their codes. It is of paramount importance that invigilators or
any other person assigned the responsibility of ensuring the integrity of the assessment process is
able to identify the exact workstation on which suspicious activity is taking place and take appropriate
actions.

Support transparent logging of the illegal activities: An important aspect of policies on plagia-
rism are the punitive measures to be applied in cases of their violation. These punitive measures are a
form of deterrent to perpetrators of these rather serious activities. It is important that that mecha-
nism be in place to log all unauthorized accesses to be used as proof in an event of disciplinary hear-
ing against the students.

There are a few commercial tools, such as NetOp School, Securexam Remote Proctor (SRP), and
LanSchool that may be used for the monitoring of student activities on the network (Hage, Rade-
maker, & van Vugt, 2010). The SRP was initiated by Troy University for conducting trusted examina-
tions at distant learning sites worldwide (Kitahara & Westfall, 2007). The SRP uses biometrics, such
as fingerprints and facial photographs to authenticate the identity of the candidates. SRP works by
allowing access to the computer-based examination and locking down the operating systems of the
desktop to prevent access to all other non-examination materials or applications (Anderson & Gades,
2017). Although SRP could be successful in preventing illegal access to external resources, it is not
suitable for use in a practical computer-based assessment session of programming skills where the
students have to access the compilers for compiling the source codes. This has a limiting effect on
the kind of skills assessment that academic institutions can conduct on its students.

LanSchool is another popular tool used by academic institutions for managing computer-based prac-
tical sessions (LanSchool, 2016). Some of the key features of LanSchool to prevent cheating during
the assessment session is the keyboard monitoring and logging ability, and network tempering control
(includes alert for disconnection) capabilities. However, it lacks the features to monitor external drive
activities and tracking of network communication between peers on a network. Although 2-D map-
ping of the classroom is supported, its usefulness is limited due to not being able to explicitly send
alerts to the manned computer when external resources are being accessed.

Jeske, Lall, & Kogeda

27

Another popular tool is the NetOp School (NetOp Vision, 2015) used for managing teaching related
activities in a computer laboratory settings. It supports, amongst others, activities for sharing teach-
ers’ computer screen, observing students’ computer screens, broadcasting information to all or se-
lected students’ screens, and permitting internet access. It also supports mirroring the physical com-
puter layout in the computer laboratory for facilitating ease of identification. It however, lacks fea-
tures for monitoring internal and external data access. No data flow alerts for local network traffic
between peer stations are supported. A logging feature, though available, is limited in the sense that it
is not possible to log external data access with information such as timestamp and workstation ID
for use as proof at a later stage.

Based on the above discussion, it is observed that although there exist commercial tools that could
be used for detecting cheating during an assessment session, they all seem to lack certain features. In
the next section, we propose the conceptual model that defines the structure, behavior, and high-
level views of our proposed tool (E-Proctor) that aims to minimize these limitations.

THE SOFTWARE TOOL AND ITS DESIGN

Based on the discussion presented above, for a system to be useful in preventing cheating or collud-
ing during a computer-based assessment session, it must include the following features:

• Auto start and transparent monitoring

• Uniquely identify each computer on the network

• Provide fast (near real time) alerts to the monitoring station

• Log the details of transgression taking place
• Initiate actions on the client machine in accordance with the institutional rules.

Figure 2 depicts a high-level view of system functions performed at the clients and the monitoring
station.

Figure 2. A high-level functional view of the E-Proctor system

Both the monitoring station and the client software were written in Delphi programming language
using Indy components. The Indy components are based on the Microsoft’s Winsock.dll library in

A Real-time Plagiarism Detection Tool

28

form of wrappers and are freely available. A high-level view of the various components of the E-
Proctor is shown in Figure 3.

Figure 3. Major components of E-Proctor system

The details of the transparent monitoring process (see Figure 4) are as follows:

• The agent on the client side is activated by the operating system. The client then sends a
ClntReady message to the server.

• The server then responds by sending ClntReady message back to the client. This confirms
to the client that it is now connected to the server. The exchange of ClntReady between the
client and server happens once every 2 seconds.

• If an alert occurs on the client side, then any outgoing ClntReady message will be replaced
by a suitable alert message. For instance, if a memory stick is inserted into a USB port on the
client machine then AlertMemo message will be sent to the monitoring server (Scenario A).

• The server then confirms the receipt of the alert message by sending AlertMemo back to
the client. On receiving the acknowledgment from the server, the client prepares a suitable
summary of activities taking place on the client machine and sends it to the server (in this
case, MFD data). The server logs this information for later use. The nature of information
logged on the server is depicted in Figure 6. On completing the logging process, the server
sends a ClntReady message back to the client to indicate to the client to continue with its
normal monitoring process.

If the server wishes to communicate a request to a selected client, the following message exchange
sequence takes place (Scenario B):

• The default incoming message ClntReady is replaced with ScreenCap message.
• On receiving the ScreenCap message from the server, the client suspends its normal activi-

ties (i.e., sends ClntReady) and starts to act in accordance with the servers request. For ex-
ample, the ScreenCap message is a request to capture the desktop screen and send the im-
age file (jpg file) to the server.

• The server receives the jpg-file and stores it for later use.

Jeske, Lall, & Kogeda

29

Client Server Tasks

Send('ClntReady') / Receive('ClntReady')

ALERT: Send('AlertMemo')

Receive('AlertMemo')

CONFIRM: Send('ClntReady') / Receive('ClntReady')

CONFIRM: Send('AlertMemo')

Recieve('AlertMemo')

Client Tasks

Prepare MFD Summary

SCENARIO B

Code Injection

Monitor/ Server

SCENARIO A

Client issues an ALERT

After clearing data - Send('ClntReady') / Recieve('ClntReady')

loop

Default

each 2s

alt

Send MFD Detailed data / Receive MFD Data

OVERWRITE: 'ClntReady' with

'ScreenCap'' SEND to client
Capture Screen()

After clearing data - Send('ClntReady') / Recieve('ClntReady')

Send Screen Data / Receive Client Screen Data

B

A

Log/ capture screen data

Summarize/

Display MFD Data

Figure 4. Sequence diagram of communication between client and the monitoring station

Figure 5. A 2D layout of the workstations in the assessment venue
and the nature of activities taking place on them

To facilitate in the ease of identifying the person trying to access unauthorized material, a two di-
mensional (2D) image mapping the physical setup is essential. This 2D image of the layout is dis-

A Real-time Plagiarism Detection Tool

30

played on the monitoring station (see Figure 5). In our application, the statuses for the following op-
erations are displayed on the monitoring station:

• Client not connected at all (e.g., station 3).

• PC station log off or disconnection during a session (e.g., station 21).

• Active connection established – Station in ready state with user logged on (e.g., station 1).

• External data device connected, for example, a memory stick (e.g., station 44).

• Access to peer station established (e.g., station 45).

• Access to internet address established (e.g., station 8).
The display on the monitoring station alerts the person in charge of maintaining the integrity of the
assessment to initiate actions according to the institutional guidelines. To discourage plagiarism by
using punitive measures, the evidence of illegal activities needs to be logged for later use. In addition
to the information shown on the monitoring station, more details such as the time and the duration
of illegal activity taking place need to be captured. The details of the information captured in our
application are shown in Figure 6.

4 08:51:05-824 11 .PC004 F Rmovble 08:51:06.103 2 [13.0/30.62GB] A 00000001^DISK2 192.168.1.4

5 08:52:24-324 12 .PC004 F 08:52:24.603 R 192.168.1.4

Alert sequence number
per client /PC-station

Time stamp when
alert send:
Hour:Min:Sec-Millisec

Client- /PC-
station- Name

External data
volume accessed

Type of external
device accessed

Time stamp when
alert received:
Hour:Min:Sec-Millisec

The number of times, the
MFD was attached locally

Capacity used on MFD

compared to maximum
i

A = Attached

R = Removed

IP-address of
client (sender)

device

MFD serial number

 ^ (separator)
MFD name

Figure 6. Information logged for later use

A brief explanation of the information captured (refer to Figure 4) from an arbitrary workstation,
station 4 in this case, follows. Client workstation PC004 with IP address of 192.168.1.4 tries to access
a removable external device at 08:51:05-824. This information is displayed on the monitoring station
about a quarter of a second later (08:51:06-103 minus 08:51:05-824 = 279 milliseconds). The external
device was connected to F: drive. It can be observed from Figure 6, that the removable device was
accessed twice between 08:51:06-103 and 08:51:05-824 and the device contains 13.0 GB of infor-
mation but could hold 30.62 GB. In addition, the “A” and “R” represents when the removal device
was attached to the client workstation and when it was removed. For positive identification of the
removal device, its make and serial number are recorded. This information can be of great assistance
if disciplinary actions are taken against the perpetrators.

A comparison between the features supported by the commonly used tools in support of computer-
based assessment and E-Proctor is presented in Table 1.

Jeske, Lall, & Kogeda

31

Table 1. A comparison of commonly used tool features for its support
in computer based assessment

 Software Product

Scale used:
X = Absent/Non-existent support
√/2 = Limited support
√ = Adequate supported

Attributes for Comparison

Se
cu

re
xa

m
 R

em
ot

e
Pr

oc
to

rT
M

N
et

O
p

V
isi

on
 P

ro
/

N
et

O
p

Sc
ho

ol
*

La
nS

ch
oo

l*

E
-P

ro
ct

or
 (p

ro
to

ty
pe

)

Monitoring of unauthorized assess
(For external device, internet connection, local Peer) X X X √

Transparent logging or illegal activities
 √/2 X X √

Ease of identifying workstation accessing illegal resource

√/2 X √/2 √

RESULTS AND DISCUSSIONS

From a software point of view, our tool consists of two major components – the client component
and the server component. The client software was installed on 55 workstations and the server was
installed on one machine (the monitoring station). However, for testing the alert transfer rate from
the client workstation to the monitoring station when inserting and removing a memory stick from
the USB port, 26 randomly selected client workstations were used (Figure 7).

Figure 7. Alert transfer time from workstations to the monitoring station

0

500

1000

1500

2000

2500

3000

3500

0 10 20 30 40 50 60

T
ra

n
sf

e
r

T
im

e
 [

m
s]

(Attaching a Device) <- CLIENT Sequence NUMBER -> (Removing a Device)

Alert Transfer Time
(Alert Received - Alert Sent)

A Real-time Plagiarism Detection Tool

32

Figure 8. Details of report generated

The mean time for the alert transfer to the monitoring station, when a memory device is attached to
the USB port, is 1226.72 milliseconds and it is less than half (594.1 milliseconds) when removing a
device. The time difference is mainly due to the additional information (e.g., size of the memory de-
vice) that needs to be sent to the monitoring station when a device is attached.

Besides providing a mechanism for detecting access to unauthorized resources during an assessment,
our tool also generates a detailed graphical report that may be used to trace the trespassers faster and
more efficiently. Information related to the report is presented in Figure 8.

Jeske, Lall, & Kogeda

33

The report, in essence, captures information that links a particular wrongdoer to a certain unlawful
action. Details such as the time and the duration of a particular unauthorized access are shown. Ad-
ditionally, the report also contains information related to the client workstation (machine name and
the IP address), the nature of the device that was accessed and the number of times an illegal activity
took place as shown in Figure 8.

SUMMARY, CONCLUSIONS AND FUTURE WORK

In this current age, where nearly everything is connected to everything else, it has become increasing-
ly easy to copy and paste source codes from other sources and pass it as one’s own. Such actions,
especially in an educational environment, have the potential of serious consequences. In an effort to
enhance academic integrity, institutions rely extensively on policies and plagiarism detection tools.
These mechanisms are either proactive or reactive and do not support real-time plagiarism detection
in computer-based assessment settings.

In this article, we develop a tool that tries to supplement the proactive and the reactive approaches.
Our tool, E-Proctor, was designed keeping the principles of transparent monitoring of unauthorized
accesses, uniquely identifying each computer on the network, sending (near) real-time alerts to the
monitoring station, logging the details of transgressions taking place, and initiating actions on the
client machine in accordance with the institutional rules.

The tool was installed in a computer laboratory with 55 workstations and one monitoring station.
The mean time taken for an alert to be sent to the monitoring station when memory sticks were in-
serted or removed for USB ports was found to be about 1.22 sec and 0.59 sec. In such a short time
period very little, if any, plagiarism can take place. Hence, we consider this as a real-time detection.

A limitation of the proposed E-Proctor tool is it captures the IP address of a resource on the Inter-
net rather than the URL (Uniform Resource Locator) of that resource. For example, if one of the
client machines with IP address of 192.168.10.43 went onto the Internet and connected to an URL
mapped to an IP address of 156.123.45.67 then the E-Proctor tool captures the IP address and not
the URL. This may become a problem in trying to prove that a particular illegal resource was access-
es as many resources can be hosted from a particular IP address.

As future work, we propose a comparison between our tool and other such tools for its performance
and its features. In addition, we want to extend this work to include testing for scalability of the tool
to larger settings.

REFERENCES

Agrawal, M., & Sharma, D. K. (2016). A state of art on source code plagiarism detection. Paper presented at the 2nd
International Conference on Next Generation Computing Technologies (NGCT), 2016.
https://doi.org/10.1109/NGCT.2016.7877421

Anderson, C., & Gades, P. (2017). Proctoring exams in an online environment. Innovate! Teaching with Technology
Conference 2107. University of Minnesota Morris. Minnesota, USA.

Astin, A. W. (2012). Assessment for excellence: The philosophy and practice of assessment and evaluation in higher education:
Rowman & Littlefield Publishers.

Balwanz, D., & Ngcwangu, S. (2016). Seven problems with the ‘scarce skills’ discourse in South Africa. South
African Journal of Higher Education, 30(2), 31-52. https://doi.org/10.20853/30-2-608

Biggs, J. B., & Collis, K. F. (2014). Evaluating the quality of learning: The SOLO taxonomy (Structure of the Observed
Learning Outcome): Academic Press.

Devlin, M., & Gray, K. (2007). In their own words: A qualitative study of the reasons Australian university stu-
dents plagiarize. High Education Research & Development, 26(2), 181-198.
https://doi.org/10.1080/07294360701310805

https://doi.org/10.1109/NGCT.2016.7877421
https://doi.org/10.20853/30-2-608
https://doi.org/10.1080/07294360701310805

A Real-time Plagiarism Detection Tool

34

Dey, S. K., & Sobhan, M. A. (2006). Impact of unethical practices of plagiarism on learning, teaching and research in higher
education: Some combating strategies. Paper presented at the 7th International Conference on Information
Technology Based Higher Education and Training, 2006. ITHET'06.
https://doi.org/10.1109/ITHET.2006.339791

Gibbs, G., & Simpson, C. (2005). Conditions under which assessment supports students’ learning. Learning and
Teaching in Higher Education, 1, 3-31.

Hage, J., Rademaker, P., & van Vugt, N. (2010). A comparison of plagiarism detection tools. Technical Report UU-
CS-2010-015, Department of Information and Computing Sciences Utrecht University, Utrecht, The
Netherlands.

Hodgkinson, T., Curtis, H., MacAlister, D., & Farrell, G. (2016). Student academic dishonesty: The potential for
situational prevention. Journal of Criminal Justice Education, 27(1), 1-18.
https://doi.org/10.1080/10511253.2015.1064982

Joy, M., & Luck, M. (1999). Plagiarism in programming assignments. IEEE Transactions on Education, 42(2), 129-
133. https://doi.org/10.1109/13.762946

Kitahara, R. T., & Westfall, F. (2007). Promoting academic integrity in online distance learning courses. MER-
LOT Journal of Online Learning and Teaching, 3(3), 265-276.

LanSchool. (2016). LanSchool V8.0. Retrieved from
https://www.lenovosoftware.com/LanSchool_v8_Features%20Flyer1.pdf

Lukashenko, R., Graudina, V., & Grundspenkis, J. (2007). Computer-based plagiarism detection methods and tools: an
overview. Paper presented at the 2007 International Conference on Computer Systems and Technologies.
https://doi.org/10.1145/1330598.1330642

Martins, V. T., Fonte, D., Henriques, P. R., & da Cruz, D. (2014). Plagiarism detection: A tool survey and comparison.
Paper presented at the OASIcs-OpenAccess Series in Informatics.

NetOp Vision. (2015). NetOp Vision User’s guide. Retrieved from http://www.codework-
systems.com/downloads/vision/manuals/netopvisionusersguide_en_73.pdf

Oberreuter, G., & VeláSquez, J. D. (2013). Text mining applied to plagiarism detection: The use of words for
detecting deviations in the writing style. Expert Systems with Applications, 40(9), 3756-3763.
https://doi.org/10.1016/j.eswa.2012.12.082

Simon, Cook, B., Sheard, J., Carbone, A., & Johnson, C. (2013). Academic integrity: Differences between computing
assessments and essays. Paper presented at the 13th Koli Calling International Conference on Computing Ed-
ucation Research, Koli, Finland. https://doi.org/10.1145/2526968.2526971

Wilcox, D. L., Cameron, G. T., & Reber, B. H. (2015). Public relations: Strategies and tactics: Pearson New York, NY.

BIOGRAPHIES

Heimo Jeske obtained his BSc degree in Computer Science from the Uni-
versity of Namibia. He is currently a lecturer in the Department of
Computer Science at Tshwane University of Technology, South Africa.
His research interests include Software Engineering, and he is passionate
about teaching programming languages. He is pursuing his MTech degree
at the same university.

https://doi.org/10.1109/ITHET.2006.339791
https://doi.org/10.1080/10511253.2015.1064982
https://doi.org/10.1109/13.762946
https://www.lenovosoftware.com/LanSchool_v8_Features%20Flyer1.pdf
https://doi.org/10.1145/1330598.1330642
http://www.codework-systems.com/downloads/vision/manuals/netopvisionusersguide_en_73.pdf
http://www.codework-systems.com/downloads/vision/manuals/netopvisionusersguide_en_73.pdf
https://doi.org/10.1016/j.eswa.2012.12.082
https://doi.org/10.1145/2526968.2526971

Jeske, Lall, & Kogeda

35

Manoj Lall is a senior lecturer in the department of Computer science at
Tshwane University of Technology, Pretoria, South Africa. He obtained a
doctoral degree in Computer Science from the University of South Africa
in 2013. His research interests include Formal methods, Machine learning,
and Agent based modelling. He has published over thirty international
refereed conference and journal papers.

Okuthe P. Kogeda obtained a doctorate degree in Computer Science
from University of the Western Cape in Cape Town, South Africa in
2009. He is currently a Senior Lecturer, Chair of Departmental Research
& Innovation Committee, and Head of Postgraduate Section in the
Computer Science Department at Tshwane University of Technology,
South Africa. He was a Senior Lecturer in the Computer Science De-
partment at University of Fort Hare in Eastern Cape, South Africa from
2009 to 2011. He was a Lecturer in the Computer Science Department at

University of the Western Cape in Cape Town, South Africa from 2004 to 2009. He was a Lecturer at
University of Nairobi in Nairobi, Kenya from 1999 to 2000. He is a member of IITPSA, IAENG
and IEEE. He is NRF rated researcher since 2015. He has successfully supervised over 30 postgrad-
uate students. He has published over sixty internationally refereed conference and journal papers,
author of five Chapters in books and author of three edited books.

	A Real-time Plagiarism Detection Tool for Computer-based Assessments
	Abstract
	Introduction
	Literature Review
	Requirements of the Software Tool for computer-based assessment
	The Software Tool and Its Design
	Results and Discussions
	Summary, Conclusions and Future Work
	References
	Biographies

