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Abstract— This paper presents an in-vehicle real-time
monocular precrash vehicle detection system. The system
acquires grey level images through a forward facing low
light camera and achieves an average detection rate of 10Hz.
The vehicle detection algorithm consists of two main steps:
multi-scale driven hypothesis generation and appearance-
based hypothesis verification. In the multi-scale hypothe-
sis generation step, possible image locations where vehicles
might be present are hypothesized. This step uses multi-
scale techniques to speed up detection but also to improve
system robustness by making system performance less sensi-
tive to the choice of certain parameters. Appearance-based
hypothesis verification verifies those hypothesis using Haar
Wavelet decomposition for feature extraction and Support
Vector Machines (SVMs) for classification. The monocu-
lar system was tested under different traffic scenarios (e.g.,
simply structured highway, complex urban street, varying
weather conditions), illustrating good performance.

Keywords— vehicle detection, Haar wavelet transform,
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I. Introduction

We have developed a real-time vehicle detection system
using a Ford Motor Company proprietary low light camera
system. Robust and reliable vehicle detection is an impor-
tant issue with applications to driver assistance systems
or autonomous, self-guided vehicles. Several factors make
on-road vehicle detection very challenging including vari-
ability in scale, location, orientation, and pose. Vehicles,
for example, come into view with different speeds and may
vary in shape, size, and color. Vehicle appearance depends
on its pose and is affected by nearby objects. In-class vari-
ability, occlusion, and lighting conditions also change the
overall appearance of vehicles. Landscape along the road
changes continuously while the lighting conditions depend
on the time of the day and the weather. Moreover, real-
time constraints make this task even more challenging.

Almost every visual vehicle detection system follows two
basic steps: (1) Hypothesis Generation (HG) which hy-
pothesizes the locations in images, where vehicles might be
present, and (2) Hypothesis Verification(HV) which verifies
the hypotheses.

Various HG approaches have been suggested in the lit-
erature, each of which falls into one of the following three
categories: (1) knowledge-based, (2) stereo-based, and (3)
motion-based. Knowledge-based methods employ knowl-
edge about vehicle shape and color as well as general in-
formation about streets, roads, and freeways. Tzomakas
et al. for example, modelled the intensity of the road and
shadows under the vehicles to estimate the possible pres-
ence of vehicles [1]. Symmetry detection approaches using

the intensity or edge map have also been exploited based
on the observation that vehicles are symmetric about the
vertical axis [2], [3].

Stereo-based approaches take advantage of the Inverse
Perspective Mapping (IMP) [4] to estimate the locations
of vehicles and obstacles in images. Bertozzi et al. [5] com-
puted the IMP from the left and right images and com-
pared them. Based on the comparison, they could find
objects that were not on the ground plane. Using this in-
formation, they were able to determine the free space in
front of the vehicle. In [6], the IPM was used to distort
the left image to the right image. The main problem with
stereo-based methods is that they are sensitive to the re-
covered camera parameters. Accurate and robust methods
are required to recover these parameters because of vehicle
vibrations due to vehicle motion or windy conditions [7].

Motion-based methods detect vehicles and obstacles us-
ing optical flow. Generating a displacement vector for each
pixel (continuous approach), however, is time-consuming
and also impractical for a real-time system. In contrast
to continuous methods, discrete methods reported better
results using image features such as color blobs [8] or local
intensity minima and maxima [9].

The hypothesized locations from the HG step are the
inputs of the HV step, where tests are performed to ver-
ify the correctness of the hypotheses. Approaches to HV
can be classified mainly into two categories: (1) template-
based, and (2) appearance-based. Template-based meth-
ods use predefined patterns of the vehicle class and per-
form correlation between an input image and the template.
Betke et al. [10] proposed a multiple-vehicle detection ap-
proach using deformable gray-scale template matching. In
[11], a deformable model is formed from manually sampled
data using Principal Component Analysis (PCA). Both the
structure and pose of a vehicle can be recovered by fitting
the PCA model to the image.

Appearance-based methods learn the characteristics of
the vehicle class from a set of training images which should
capture the variability in vehicle appearance. Usually, the
variability of the non-vehicle class is also modelled to im-
prove performance. First, each training image is repre-
sented by a set of local or global features. Then, the deci-
sion boundary between the vehicle and non-vehicle classes
is learned either by training a classifier (e.g., Neural Net-
work (NN)) or by modelling the probability distribution
of the features in each class (e.g., using the Bayes rule as-
suming Gaussian distributions). In Matthews et al. [12],
feature extraction is based on PCA. Goerick et al. [13]



used a method called Local Orientation Coding (LOC) to
extract edge information. The histogram of LOC within
the area of interest was then fed to a NN for classification.
Gabor filters and the Wavelet transform were exploited in
our previous studies, demonstrating good performance [14]
[15].

The focus of this work is on a real-time, rear-view, ve-
hicle detection system from gray scale images acquired by
Ford’s low light camera. A forward facing camera has been
installed inside Ford’s prototype vehicle which is connected
to a frame-grabber of a normal PC (see Fig.1). The PC
is sitting inside the vehicle and is powered up by a con-
verter in the car. We developed a two step vehicle detec-
tion algorithm: multi-scale driven hypothesis generation
and appearance-based hypothesis verification. Multi-scale
analysis provides not only robust hypothesis generation but
also speeds-up the detection process. The proposed multi-
scale driven hypothesis generation method falls into the
knowledge-based category. In hypothesis verification, each
hypothesis is treated as a two-class pattern classification
problem: vehicle vs non-vehicle. The Haar wavelet trans-
form is used for feature extraction and the SVM for clas-
sification. Wavelet-based features encode edge information
and capture the structure of vehicles at multiple resolution
levels, making them attractive features for vehicle detec-
tion. SVMs are primarily two-class classifiers that have
been shown to be an attractive and more systematic ap-
proach to learning linear or non-linear decision boundaries
by performing structural risk minimization [16] [17].

The rest of the paper is organized as follows: In Section
II, we provide brief overview of the developed system. A
description of the multi-scale driven hypothesis generation
is given in Section III. The appearance-based hypothesis
verification using the Haar wavelet transform and SVMs
are detailed in IV. Our experimental results are presented
in Section V, with our conclusions given in Section VI.

II. monocular precrash vehicle detection

system overview

Precrash sensing is an area of active research among au-
tomotive manufacturers, suppliers and Universities with
the aim of reducing injury and accident severity. The abil-
ity to process sporadic sensing data from multiple sources
(radar, camera, and wireless communication) and to de-
termine the appropriate actions (belt-pretensioning, airbag
deployment, brake-assist) forms the basis of this research
and is essential in the development of active and passive
safety systems. To this end, Ford Research Laboratory
has developed several prototype vehicles that include in-
vehicle precrash sensing technologies such as millimeter
wavelength radar, wireless vehicle-to-vehicle communica-
tion, and a low-light Ford proprietary optical system suit-
able for image recognition. An embedded and distributed
architecture is used in the vehicle to process the sensing
data, determine the likelihood of an accident, and when to
warn the driver. This Smart Information Management Sys-
tem (SIMS) forms the cornerstone to our intelligent vehicle
system design and is responsible for determining the driver

safety warnings. Depending on the situation, SIMS acti-
vates an audible or voice alert, visual warnings, and/or a
belt-pretensioning system. Extensive human factor studies
are underway to determine the appropriate combination of
precrash warning technologies, as well as the development
of new threat assessment algorithms that are robust in an
environment of heterogeneous sensing technologies and ve-
hicles on the roadway.

Fig. 1. Low light camera in the prototype vehicle

(a) (b)

Fig. 2. Low light camera. (a) Nighttime, (b) Daytime

The optical system represents a principal component in
precrash sensing and, with the introduction of inexpensive
camera systems, can form a ubiquitous sensing tool for all
vehicles. The vehicle prototypes have forward and rear-
ward facing camera enabling a nearly 360 field of view.
Fig.1 shows the orientation of the forward facing camera
in the vehicle prototypes. Forward facing cameras are also
mounted in the side-mirror housings and are used for pedes-
trian and bicycle detection as well as to see around large
vehicles. Camera images are digitally captured and pro-
cessed in nearly real-time enabling vehicle detection on
timescales on the order of 10Hz. The Ford proprietary cam-
era system was developed jointly between Ford Research
Laboratory and SENTECH. The board level camera uses
a Sony x-view CCD with specifically designed electronic
profiles to enhance the camera’s dynamic range, thereby
enabling daytime and nighttime operation without bloom-
ing. Fig.2(a) shows the dynamics range of the camera with
limited blooming at nighttime with on-coming headlights,
while Fig.2(b) shows a picture taken on a sunny day.



III. multi-scale driven hypothesis generation

To hypothesize possible vehicle locations in an image,
we use some prior knowledge about the appearance of rear
vehicle views. Specifically, rear vehicle views contain lots
of horizontal and vertical structures, such as rear-window,
fascia. Based on this observation, the following procedure
could be applied to hypothesize candidate vehicle locations.
First, interesting horizontal and vertical structures can be
identified by applying horizontal and vertical edge detec-
tors. To pick the most promissing horizontal and vertical
structures, further analysis is required, for example, com-
pute the horizontal and vertical profiles of the edge images
and perform some analysis to pick the strongest peaks (e.g.,
see the last row of Fig.3).

This method could be very effective, however, an impor-
tant issue to be addressed, especially in the case of on-line
vehicle detection, is how the choice of various parameters
in this procedure affect system robustness. These param-
eters include the threshold values for the edge detectors,
the threshold values picking the most important vertical
and horizontal edges, and the threshold values for choos-
ing the best maxima (i.e., peaks) in the profile images.
Although a set of parameter values might work perfectly
under some conditions, they might fail in other environ-
ments. The problem is even more severe for an on-road
vehicle detection system since the dynamic range of the
acquired images is much bigger than that of an indoor vi-
sion system.

To deal with this important issue we propose using a
multi-scale approach. The multi-scale approach combines
a sub-sampling operation with a smoothing operation to
hypothesize possible vehicle locations. Assuming that the
input image is f , let set f (K) = f . The representation of
f (K) at a coarser level f (K−1) is defined by a reduction
operator. For simplicity, let us assume that the smoothing
filter is separable, and that the number of filter coefficients
along one dimension is odd. Then it is sufficient to study
the one-dimensional case:

fK−1 = REDUCE(fK) (1)

fK−1(x) = ΣN
n=−Nc(n)fK(2x − n)

where the REDUCE operator performs down-sampling
and c(n) are the coefficients of a low pass (i.e., Gaussian)
filter.

The size of the input images from our video captur-
ing card is 360 × 248. We use three levels of detail:
fK(360 × 248), fK−1(180 × 124), and fK−2(90 × 62). At
each level, we process the image following the next steps:
(1) blurring using the low pass filter (see the first column of
Fig.3) (2) detecting the vertical edges (see the second col-
umn of Fig.3), constructing the vertical profile of the edge
image (see the last column of Fig.3), and filtering the pro-
file with a low pass filter, (3) detecting the horizontal edges
(see the third column of Fig.3), constructing the horizon-
tal profile of the edge image (see the last column of Fig.3),
and filtering the profile with low pass filter; (4) finding the
local maxima and minima (i.e., peaks and valleys) of the

two profiles. The peaks and valleys of the profiles provide
strong information about the presence of a vehicle in the
image.

Starting from the coarsest level of detail (fK−2), first
we find all the local maxima at that level. Although the
resulted low resolution images have lost fine details, impor-
tant vertical and horizontal structures are mostly preserved
(see the first row of Fig.3). Once we have found the max-
ima at the coarsest level, we trace them down to the next
finer level fK−1. The results from fK−1 are finally traced
down to level fK where the final hypotheses are gener-
ated. It should be noted that due to the complexity of the
scenes, some false peaks are expected to be found. We use
some heuristic rules and constraints to get rid of them, for
example, the ratio of successive maxima and minima, the
absolute value of the maxima, and perspective projection
constraints under the assumption of flat road. These rules
are applied at each level of detail.

The proposed multi-scale approach improves system ro-
bustness by making the detection less sensitive to the choice
of parameters. Forming the first hypotheses at the lowest
level of detail is very useful since this level contains only the
most salient structural features. Besides improving robust-
ness, the multi-scale scheme speeds-up the whole process
since the low resolution images have much simpler struc-
ture as illustrated in Fig.3 (i.e., candidate vehicle locations
can be found faster and easier).

Fig. 3. Multi-scale hypothesis generation. The sizes of the images
in the first row are:90 × 62; the second row:180 × 124; and the
third row:360× 248. The images in the first column are the ones
after low pass filtering in different scales; the second column: ver-
tical edge maps; the third column:horizontal edge maps; and the
fourth column: vertical and horizontal profiles. For illustration
purposes, all the images have been scaled back to 360× 248

IV. appearance-based hypothesis verification

Verifying a hypothesis is essentially a two-class pattern
classification problem: vehicle vs non-vehicle. We use the
Haar Wavelet transform for feature extraction and the
SVM for classification.



A. Haar Wavelet Transform

Wavelets are a type of multiresolution function approx-
imation that allow for the hierarchical decomposition of a
signal or image. They have been applied successfully to
various problems including object detection [18], [19], face
recognition [20] and image retrieval [21]. Any given de-
composition of a signal into wavelets involves just a pair of
waveforms (mother wavelets). The two shapes are trans-
lated and scaled to produce wavelets (wavelet basis) at dif-
ferent locations (positions) and on different scales (dura-
tions). We formulate the basic requirement of multiresolu-
tion analysis by requiring a nesting of the spanned spaces
as:

· · ·V
−1 ⊂ V0 ⊂ V1 · · · ⊂ L2 (2)

In space Vj+1, we can describe finer details than in space
Vj . In order to construct a multiresolution analysis, a scal-
ing function φ is necessary, together with a dilated and
translated version of it:

φ
j
i (x) = 2

j

2 φ(2jx − i). i = 0, · · · , 2j − 1. (3)

The important features of a signal can be better de-
scribed or parameterized, not by using φ

j
i (x) and increasing

j to increase the size of the subspace spanned by the scaling
functions, but by defining a slightly different set of function
ψ

j
i (x) that span the difference between the spaces spanned

by various scales of the scale function. These functions are
the wavelets, which spanned the wavelet space Wj such
that Vj+1 = Vj

⊕

Wj , and can be described as:

ψ
j
i (x) = 2

j

2 ψ(2jx − i). i = 0, · · · , 2j − 1. (4)

Different scaling functions φ
j
i (x) and wavelets ψ

j
i (x) de-

termine various wavelet transforms. In this paper, we use
Haar wavelet which is the simplest to implement and com-
putationally the least demanding. Furthermore, since Haar
basis forms an orthogonal basis, the transform provides a
non-redundant representation of the input images. The
Haar scaling function is:

φ(x) =

{

1 for 0 ≤ x < 1
0 otherwise

(5)

And the Haar wavelet is defined as:

ψ(x) =







1 for 0 ≤ x < 1
2

−1 for 1
2 ≤ x < 1

0 otherwise

(6)

Wavelets capture visually plausible features of the shape
and interior structure of objects. Features at different
scales capture different levels of detail. Coarse scale fea-
tures encode large regions while fine scale features describe
smaller, local regions. All these features together disclose
the structure of an object in different resolutions.

B. Wavelet Features

We use the wavelet decomposition coefficients as our fea-
tures directly. Each of the images is scaled to 32 × 32 and

then a 5 level Haar wavelet decomposition is performed on
it, which yields 1024 coefficients. We do not keep the coeffi-
cients in the HH subband of the first level since they encode
mostly noise [19]. The final set contained 768 features.

C. SVMs

SVMs are primarily two-class classifiers that have been
shown to be an attractive and more systematic approach to
learning linear or non-linear decision boundaries [16] [17].
Given a set of points, which belong to either of two classes,
SVM finds the hyper-plane leaving the largest possible frac-
tion of points of the same class on the same side, while max-
imizing the distance of either class from the hyper-plane.
This is equivalent to performing structural risk minimiza-
tion to achieve good generalization [16] [17]. Assuming l

examples from two classes

(x1, y1)(x2, y2)...(xl, yl), xi ∈ RN , yi ∈ {−1, +1} (7)

finding the optimal hyper-plane implies solving a con-
strained optimization problem using quadratic program-
ming. The optimization criterion is the width of the mar-
gin between the classes. The discriminate hyper-plane is
defined as:

f(x) =

l
∑

i=1

yiaik(x, xi) + b (8)

where k(x, xi) is a kernel function and the sign of f(x)
indicates the membership of x. Constructing the optimal
hyper-plane is equivalent to find all the nonzero ai. Any
data point xi corresponding to a nonzero ai is a support
vector of the optimal hyper-plane.

Suitable kernel functions can be expressed as a dot prod-
uct in some space and satisfy the Mercer’s condition [16].
By using different kernels, SVMs implement a variety of
learning machines (e.g., a sigmoidal kernel corresponding
to a two-layer sigmoidal neural network while a Gaussian
kernel corresponding to a radial basis function (RBF) neu-
ral network). The Gaussian radial basis kernel is given by

k(x, xi) = exp(−
‖ x − xi ‖

2

2δ2
) (9)

The Gaussian kernel is used in this study (i.e., our exper-
iments have shown that the Gaussian kernel outperforms
other kernels in the context of our application).

D. Off-line Training

The performance of the real-time verification subsystem
depends on the off-line training of the SVM classifier. The
images used in the off-line training were collected in two
different sessions, one in the Summer of 2001 and one in
the Fall of 2001, using Ford’s proprietary low-light camera
systems. To ensure a good variety of data in each ses-
sion, the images were taken on different days and times,
as well as on five different highways. The training set
contains subimages of rear vehicle views and non-vehicles
which were extracted manually from the Fall 2001 data set.
A total of 1051 vehicle subimages and 1051 non-vehicle



subimages were extracted by several students in our lab.
There is some variability in the way the subimages were
extracted; for example, certain subimages cover the whole
vehicle, others cover the vehicle partially, while some con-
tain the vehicle and some background (see Fig. 4). In [18],
the subimages were aligned by warping the bumpers to ap-
proximately the same position. We have not attempted to
align the data in our case since alignment requires detect-
ing certain features on the vehicle accurately. Moreover, we
believe that some variability in the extraction of the subim-
ages could actually improve performance. For testing (i.e.,
to fine-tune the performance of the SVM classifier), we used
a set of 231 vehicle and non-vehicle subimages which were
extracted from the Summer 2001 data set. Each subimage
in the training and test sets was scaled to 32× 32 and pre-
processed to account for different lighting conditions and
contrast [22].

Fig. 4. Subimages for training.

(a) (b)

(c) (d)

(e) (f)

Fig. 5. Vehicle detection samples under simply structured highway

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 6. Vehicle detection samples in complex scenes

V. Results

In order to evaluate the performance of the two-step vehi-
cle detection system, tests were carried out under different
driving condition. Fig.5 and Fig.6 show some representa-
tive detection results. The bounding boxes superimposed
on the original image indicate the final detection. Fig.5
shows detection results on simply structured roads like a
national highway. This is the easiest traffic scenario for
any vision-based on-road vehicle detection system. Our
system worked very well under this scenario. Detection un-
der an urban traffic scenario is much more difficult because
vehicles are closer to each other, and buildings or trees
might cast shadows on both road and vehicles. Fig.6(a-
f) shows some detection results under this scenario, where
our system worked quite satisfactory. The performance of
the system degraded when we drove the prototype vehicle
under some abnormal conditions, such as, raining, too lit-



tle contrast between the cars and the background, heavy
congested traffic, etc. Fig.6(g-h) presents two successful
examples under this scenario.

We have achieved a frame rate of approximately 10
frame per second (NTSC: processing on average every
third frame) using a standard PC machine (Pentium III
1133MHZ) and without making particular efforts to opti-
mize our software. Note that this number is only an aver-
age (i.e., some images can be processed faster than others,
for example, when there is only one vehicle present). It
should be mentioned that vehicle detection for precrash
sensing requires a higher sampling rate in order to provide
a satisfactory solution. Our solution, presently, has a 10Hz
sampling rate. If the vehicle’s speed is about 70mph, 10Hz
corresponds to a 3 meter interval. For many situations,
this level of resolution is sufficient. The most time con-
suming step in our system is the computation of the verti-
cal/horizontal edges. We are currently working to increase
the temporal resolution to 20Hz, enabling side-impact col-
lision avoidance and mitigation. To speed up the system
further and to save time for the vehicle control subsystem in
the prototype vehicle, we plan to investigate hardware solu-
tions based on Field Programmable Gate Arrays (FPGA).

VI. Conclusions and Future Work

We have designed and built a real-time on-road monoc-
ular vehicle detection system using Ford’s proprietary low
light camera. The vehicle detection algorithm includes two
main steps: multi-scale driven hypothesis generation and
appearance-based hypothesis verification. The multi-scale
driven hypothesis generation step forms possible hypothe-
ses at a coarse level of detail first. Then, it traces them
down to the finer resolution. This scheme provides not
only robustness but also speeds-up the whole process. The
appearance-based hypothesis verification step verifies the
hypotheses using Haar Wavelet features and SVMs.

We have evaluated the system using Ford’s prototype
vehicle under different traffic scenarios: simply structured
highway, complex urban street, and under varying weather
condition. Our system worked very well on structured
highways, provided workable results on urban streets un-
der normal conditions, and degraded gracefully under some
adverse conditions, such as inclement weather and heavy
congested traffic.

For future work, we plan to use bootstrapping to increase
system performance, and to address driving situations with
difficult weather conditions and congested traffic.
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