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Abstract—In this paper, we propose a simple and low 

complexity pulse peak detection algorithm using cascaded 

recursive digital filters and a slope sum function (SSF) with 

an adaptive thresholding scheme. The algorithm first 

eliminates noises in the photoplethysmogram (PPG) using 

the cascaded lowpass and highpass digital filters. The filters 

have been designed with 3-dB cutoff frequencies of 11 Hz 

and 0.5 Hz, respectively. The filtered PPG signal is then 

transformed by the SSF. The SSF simplifies detecting the 

pulse peaks by enhancing the upslope of the PPG signal and 

suppressing the remainder. A threshold for identifying SSF 

peaks is updated using the median filter with an order of 5. 

This update makes the threshold adaptive to variations of 

SSF heights. The detected SSF peaks localize ranges for 

pulse peak detection. Finally, the pulse peak is identified by 

picking the local maxima within the range from an onset 

index of the SSF signal to the following zero index. In order 

to cope with over-detected and missed information, the 

proposed algorithm employs knowledge-based rules as post-

processing. The algorithm is tested on a database where 

PPG waveforms are collected from 127 subjects. The results 

are promising, suggesting that the method provides simpler 

but accurate pulse peak detection in real applications. 

 

Index Terms—photoplethysmogram, slope sum function, 

pulse peak detection, pulse rate detection 

 

I. INTRODUCTION 

A reliable pulse peak detection facilitates extraction of 

all other characteristic points such as dicrotic wave on the 

signal with the reference to the pulse peak [1]. This 

implies that a false detection of pulse peaks can adversely 

affect delineating the photoplethysmogram (PPG) signal. 

Practically, accurate detection of pulse peaks from the 

PPG signal is difficult, not only because of the 

physiological variability of pulse peaks, but also because 

of the respiration, motion artifacts, and electrical 

interference noises [2]. In particular, the real-time pulse 
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peak detection for small ubiquitous or wearable 

application is a more strenuous task since if further 

requires low computational burden and low memory 

capacity. 

The accurate pulse peak detection is required not only 

to delineate PPG signal, but also to analyze physiological 

states correctly [2], [3]. In the pulse rate variability (PRV) 

analysis, variation in the time interval between successive 

pulse peaks is investigated to assess autonomic function. 

Some of PRV parameters such as the Lyapunov exponent 

are sensitive to each variation [4] and thus the accurate 

pulse peak detection is a must for the PRV analysis. 

Further the accurate pulse peak detection is required to 

calculate the pulse transit time (PTT), which is defined as 

the time it takes a pulse wave to travel between two 

arterial sites, since pulse peaks are considered as the start 

and end points of each pulse wave travel [5]. In addition, 

the reliable pulse peak detection is also required for basic 

clinical applications such as pulse rate monitoring [2], [3]. 

In order to detect pulse peaks accurately, the noises 

including a baseline wandering component should be 

suppressed. For this end, a considerable number of 

algorithms have been proposed to eliminate the noises [6]. 

The algorithm basically used to suppress the noises is 

digital bandpass filter. This algorithm does not require 

detection of any reference points in the PPG signal. 

However, it usually increases a computational complexity 

caused by convolution computations since it needs a 

considerably high filter order in most cases. Park et al. 

also proposed a wavelet adaptive filter (WAF) for the 

noise removal [7]. The algorithm first estimates the 

noises using the wavelet transform and then subtracts it 

from the PPG signal using the least mean square adaptive 

filter. This approach well estimates noises since the 

wavelet transform is proper to analysis of inherently non-

stationary PPG signals. However, the WAF method is 

computationally heavy due to its time-frequency 

transformation. 

In order to address these shortcomings while attaining 

the benefits, we propose a simple, low complexity, and 

real-time pulse peak detection algorithm using the 

cascaded recursive integer filters and the slope sum 

function (SSF) with the adaptive thresholding scheme. 
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II. METHODS 

A. Materials 

In order to train and to test the algorithm, we utilized 

the HIMS (health improvement and management system) 

database [1]. The database includes PPG signals and their 

annotation information collected from 355 subjects. 

Details pertinent to dataset being utilized for training and 

testing are described below: 

Training dataset: The PPG data from 228 subjects (85 

male, 143 female; age range 10-88; test time 1 min.) were 

involved in the training dataset. Pulse peaks are manually 

annotated by two biomedical engineers in the database. 

Testing dataset: A dataset of the DVP signal from 127 

subjects (50 male, 77 female; age range 16-67; test time 1 

min.) was utilized to assess the performance of the pulse 

peak detection algorithm. Pulse peaks are also manually 

annotated by two biomedical engineers in the database. 

In order to acquire PPG signals, we used a computer-

aided photoplethysmograph (HUBI Brain) [8]. The HUBI 

Brain has a red LED sensor with the wavelength of 660 

nm to detect blood volume changes in microvascular bed 

of tissues. The detected analog signal is filtered to smooth 

high frequency noises such as 60 Hz power line 

interference. The signal is then sampled at 512 Hz with 6-

bit resolution and transferred to PC via the USB 

communication protocol for further processing. 

For the acquisition of the PPG signal, subjects were 

required to maintain sitting posture while holding the 

HUBI Brain apparatus in a natural way. The PPG signals 

were obtained for one minute from the left index finger. 

This study was approved by the ethics committee of 

Inje University Sanggye Paik Hospital and recorded data 

were obtained with subject consent. 

B. Noise Removal 

The bandpass filter for the pulse peak detection 

algorithm reduces noises in the PPG signal by matching 

the spectrum of the average pulse peaks [9], [10]. 

Therefore, it attenuates other characteristic waves such as 

dicrotic wave as well as noises. The passband that 

maximizes the pulse peak energy is approximately 0.5-11 

Hz [11], [12]. The filter implemented in this algorithm is 

a recursive integer digital filter in which poles are located 

to cancel the zeros on the unit circle of the Z-plane. The 

bandpass filter is formed by cascading a lowpass and a 

highpass filter. 

Lowpass filter: The transfer function of the second 

order lowpass filter is defined by (1) [10], [13]. 
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The corresponding difference equation of the filter is 
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where T is the sampling period and n is an arbitrary 

integer. The 3-dB cutoff frequency of the filter is about 

11 Hz and the group delay is 14T. 

Highpass filter: The highpass filter is implemented by 

subtracting a first order lowpass filter from an all-pass 

filter with a delay [10]. Further consideration is that a 

first order lowpass filter has a gain of m, where m is the 

number of zeros equally spaced around the unit circle. 

The transfer function of the first order highpass filter 

becomes (3) [10], [13]. 

1

774
387387

1

1

774

1
)()(










z

z
zzHzzH lphp

   (3) 

Here, z
-387

 indicates the all-pass filter with the delay of 

387 and a constant of 774 indicates the gain of the first 

order lowpass filter. The difference equation of the filter 

is (4). 
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The 3-dB cutoff frequency of the filter is about 0.5 Hz 

and the gain is one. The group delay is 387T. 

Fig. 1 shows magnitude response of the cascaded 

lowpass and highpass integer filters. It shows that the 

cascaded filter has 3-dB passband ranged from 0.5 Hz to 

11 Hz. 

 

Figure 1. Magnitude response of cascaded lowpass and highpass filters. 

C. Signal Transformation 

To simplify detecting pulse peaks, we used the SSF 

[14]. The SSF enhances the upslope of PPG waveform 

and suppresses the remainder of the waveform [15]. The 

SSF at time i, SSFi, is defined as (5). 
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where w and sk are the length of the analyzing window 

and the filtered PPG signal, respectively. In this study, we 

used the analyzing window size of 64 samples for the 

sampling rate of 512 Hz [16]. The relationship between 

the PPG signal and the SSF signal is shown in Fig. 2. 
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Fig. 2 shows that the SSF onset completely coincides 

with the pulse onset and the pulse peak is definitely 

appeared in the range between the SSF onset and the SSF 

offset [14]. Based on the fact, the proposed algorithm first 

localizes the SSF onset and the SSF offset. The pulse 

peak is then identified as the local maxima within the 

range. 

 

Figure 2. Relationship between (a) PPG signal and (b) SSF signal [17]. 

D. Peak Finding with Adaptive Thresholding Scheme 

In order to extract pulse peaks, the algorithm first 

converts the PPG signal into the SSF signal by (5). In the 

SSF signal, the algorithm calculates the initial threshold 

value as 70 % of the maximum peak within the first 3-

seconds interval. The threshold is then adaptively updated 

to float over the noises using the estimates of the SSF 

peak. To implement this, every time the SSF peak is 

estimated, it is added to the buffer containing the five 

most recent SSF peaks, as others usually did in ECG 

analysis. These processes are repeated until all the PPG 

samples are examined [17]. In this study, the 3-seconds 

interval was chosen since it covers at least one cardiac 

cycle not only for normal subjects but also for abnormal 

subjects who have cardiovascular diseases such as 

bradycardia arrhythmia. The ratio of 70 % was 

experimentally chosen using the training dataset [17]. 

E. Post-Processing 

In order to cope with over-detected and missed pulse 

peaks, we applied the knowledge-based rules as 

previously proposed in [17]. The rules basically utilize 

the fact that the PPG is a slowly time varying signal and 

the difference between two adjacent PPG pulses cannot 

go beyond certain range. 

For estimating missed pulse peaks, the rule first 

calculates differences between two adjacent pulse peaks 

(PP). The reference value (R) is calculated by applying 

the median filter with an order of 5 to the differences. If 

the reference and the difference values are differed larger 

than the half the reference, then the rule considers that the 

algorithm missed a pulse peak; otherwise, it considers 

that the algorithm correctly detects a pulse peak. If the 

missed peak is found, then the rule finds the local 

maximum PPG having a positive SSF value in a range 

from preceding pulse peak plus the half the reference 

(PP(n)+0.5R(n)) to the minimum value between the next 

pulse peak and the reference (MIN{PP(n+1), R(n)}. 

For eliminating over-detected pulse peaks, the rule first 

calculates a difference between the first and the second 

pulse peaks as an initial reference value. The differences 

(D1, D2, D3, and D4) between nth and (n+1)th, nth and 

(n+2)th, nth and (n+3)th, and nth and (n+4)th pulse peaks 

are respectively calculated. The rule then calculates the 

differences between D1, D2, D3, D4 and the reference, 

and selects a pulse peak index having the minimum 

difference (D). If D is D1, then the rule considers it as 

correctly estimated pulse peak index; otherwise, the rule 

removes (n+1)th pulse peak, (n+1) and (n+2)th pulse 

peaks, and (n+1), (n+2), and (n+3)th pulse peaks for 

D=D2, D=D3, and D=D4, respectively. 

In this study, we first estimated the missed pulse peaks 

and then eliminated over-detected ones. 

III. PERFORMANCE EVALUATION 

A. Noise Removal 

Fig. 3 shows an example of the noise removal using 

the cascaded lowpass and highpass integer filters. 

 

Figure 3. An example of the noise removal from the PPG signal using 

the cascaded lowpass and highpass integer filters: (a) noisy PPG 

signal and (b) filtered PPG signal. 

In Fig. 3, we can notice that the baseline wandering 

component and the high frequency noises are effectively 

suppressed by the cascaded lowpass and highpass integer 

filters. Further the figure shows that the filters do not 

significantly distort morphological information of the 

PPG signal. 

B. Pulse Peak Detection 

In order to verify the efficacy of the proposed 

algorithm, we investigate how closely the algorithm 

detects true position of pulse peaks and how accurately it 

extracts pulse peak intervals. For this end, we used two 

quantitative measures: sensitivity, positive predictive 

value (PPV), and mean absolute difference (MAD). Each 

measure is defined as (6) to (8), respectively. 
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where TP, FP, and FN are the true positive, the false 

positive, and the false negative, respectively. N is either 

the number of the pulse peaks or the number of pulse 

peak intervals. The Preal and Pdetected are the pulse peak 

indices or pulse peak intervals manually annotated in the 

database and automatically detected by the algorithm, 

respectively. 

In this study, true detection is defined by two rules. In 

the index-based rule, the true detection is defined as if the 

difference between manual and algorithm generated 

annotations is less than three samples (approximately 5 

ms) intervals. Similarly, in the interval-based rule, it is 

considered to be true when the difference between the 

manually annotated and the algorithmically estimated 

QRS interval is within three samples. Table I shows the 

performance evaluation results. 

TABLE I.  TYPE SIZES FOR CAMERA-READY PAPERS 

Rules Sensitivity PPV MAD 

Index 96.45 % 60.57 % 3.34 samples 

Interval 97.34 % 80.29 % 2.60 samples 

 
In Table I, we obtained outstanding achievements in a 

sensitivity of 96.45 %, a positive predictive value of 

60.57 %, and a mean absolute difference of 3.34 samples 

for interval-based rule, and a sensitivity of 97.34 %, a 

positive predictive value of 80.29 %, and a mean absolute 

difference of 2.60 samples for interval based rule, 

respectively. These results show that the proposed pulse 

peak detection algorithm recognizes well both the true 

positions of pulse peaks and the intervals of pulse peaks. 

IV. PERFORMANCE EVALUATION 

The conventional pulse peak detection algorithms 

require high computational complexity because of a high 

filter order and the time-frequency transformation. In 

order to reduce computational complexity while 

maintaining the detection accuracy, a real-time pulse 

peak detection algorithm has been proposed. The 

algorithm employed the cascaded recursive integer filters 

and the slope sum function with an adaptive thresholding 

scheme. Its efficacy and performance have been 

evaluated on the database where the PPG signals were 

practically collected. The results are promising, 

suggesting the proposed algorithm can provide simpler 

and accurate pulse peak detection in real-time 

environments with the reduced computational burden. 

Therefore, we can conclude that the proposed pulse peak 

algorithm can be used not only to monitor pulse rate and 

to delineate other characteristic points of the PPG signal 

with the reference to the pulse peak, but also to analyze 

pulse transit time and pulse rate variability in real-time. 
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