
Citation: Wang, X.; Chen, L.; Shi, H.;

Han, J.; Wang, G.; Wang, Q.; Zhong,

F.; Li, H. A Real-Time Recognition

System of Driving Propensity Based

on AutoNavi Navigation Data.

Sensors 2022, 22, 4883. https://

doi.org/10.3390/s22134883

Academic Editor: Arturo de la

Escalera Hueso

Received: 7 June 2022

Accepted: 26 June 2022

Published: 28 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Real-Time Recognition System of Driving Propensity Based
on AutoNavi Navigation Data
Xiaoyuan Wang 1,2,* , Longfei Chen 1 , Huili Shi 1, Junyan Han 1, Gang Wang 1, Quanzheng Wang 1,
Fusheng Zhong 1 and Hao Li 1

1 College of Electromechanical Engineering, Qingdao University of Science & Technology,
Qingdao 266000, China; chenlongfei@mails.qust.edu.cn (L.C.); shihuili@qust.edu.cn (H.S.);
hanjunyan@mails.qust.edu.cn (J.H.); wanggang@mails.qust.edu.cn (G.W.);
0020030005@mails.qust.edu.cn (Q.W.); bh136@qust.edu.cn (F.Z.); 4019030012@mails.qust.edu.cn (H.L.)

2 Collaborative Innovation Center for Intelligent Green Manufacturing Technology and Equipment
of Shandong, Qingdao 266000, China

* Correspondence: wangxiaoyuan@qust.edu.cn; Tel.: +86-138-6445-5865

Abstract: Driving propensity is the driver’s attitude towards the actual traffic situation and the
corresponding decision-making or behavior during the driving process. It is of great significance to
improve the accuracy of safety early warning and reduce traffic accidents. In this paper, a real-time
identification system of driving propensity based on AutoNavi navigation data is proposed. The
main work includes: (1) A dynamic data acquisition method of AutoNavi navigation is proposed to
obtain the time, speed and acceleration of the driver during the navigation process. (2) The dynamic
data collection method of AutoNavi navigation is analyzed and verified through the dynamic data
obtained in the real vehicle experiment. The principal component analysis method is used to process
the experimental data to extract the driving propensity characteristics variables. (3) The fruit fly
optimization algorithm combined with GRNN (generalized neural network) and the feature variable
set are used to build a FOA-GRNN-based model. The results show that the overall accuracy of the
model can reach 94.17%. (4) A driving propensity identification system is constructed. The system
has been verified through real vehicle test experiments. This paper provides a novel and convenient
method for building personalized intelligent driver assistance systems in practical applications.

Keywords: drivers; driving propensity; intelligent driving assistant system; AutoNavi navigation
data

1. Introduction

Human factors account for more than 90% of traffic accidents. More than 70% of traffic
accidents are caused by drivers [1]. Detecting and controlling driver behavior is an effective
way to improve vehicle driving safety. Driving propensity is the driver’s attitude towards
the actual traffic situation and the preference of the corresponding psychological decision
or behavior value during the driving process, which can better reflect the relationship
between driver factors and traffic accidents [2]. Intention recognition is the core part
of the automotive active safety early warning system [3]. It is easy to overlook driving
propensity as an important part of intention recognition. The effectiveness and accuracy
of the early warning system need to be further improved. It is of great significance to
improve the accuracy of safety early warning and reduce the occurrence of traffic accidents
to refine the research on driving propensity of different drivers, conduct in-depth research
on the identification methods of driving propensity and introduce driving propensity
identification into the active safety driving assistance system of automobiles.

With the rapid development and wide application of electronic maps, there are map
service providers represented by AutoNavi Maps in China, which provide users with free
map location and driving navigation services. However, there are relatively few driving
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propensity studies based on navigation dynamic data. The massive real-time driving data
has not been fully utilized. It is necessary to conduct in-depth research on driving propen-
sity identification based on AutoNavi navigation dynamic data. Based on the Android
development platform and AutoNavi Map SDK and API, a driving propensity identifica-
tion system application is developed in this paper, which realizes the real-time collection,
processing and storage of the driver’s dynamic data propensity identification features.
Driving propensity can be accurately identified based on AutoNavi navigation data.

Wang Xiaoyuan et al. [4] proposed and defined the concept of driving propensity
through systematic research on driver’s psychology and behavior. The influencing factors
and performance characteristics of driving propensity were comprehensively analyzed
from the dimensions of a human–vehicle environment. Song Yiqing [5] found that driver
characteristics, vehicle characteristics, road conditions and weather conditions all had varying
degrees of influence on driving propensity. Wang Mengsha [6] revealed the driving propensity
transfer mechanism adapting to the time-varying law of vehicle grouping relationship by
analyzing the vehicle grouping relationship in a multi-lane complex environment.

Wang Xiaoyuan et al. [7–9] adopted dynamic data acquisition systems such as vehicle-
mounted LIDAR, multi-function speedometer, global positioning system and high-precision
sensors. Time-varying data of a human–vehicle environment could be captured by design-
ing real vehicle experiments, psychophysiological test experiments and driving simulation
experiments. An exploratory study was carried out on the online representation and
real-time identification of driver propensity using machine learning algorithms.

Driving propensity can be divided into dynamic driving propensity and static driving
propensity. The dynamic driving propensity refers to the transient and changing driving
propensity of the driver due to the influence of other factors such as changing traffic
situation and road environment during the driving process. Static driving propensity refers
to the relatively stable and profound driving habits formed by the driver in the past driving
experience [4].

The static driving propensity is closely related to the driving style, which can reveal
the static driving propensity to a certain extent [10]. Martinez et al. [11] believed that the
driver’s driving style had an important impact on the vehicle’s energy management and
driving safety. The research on driving style can be divided into three aspects. One is the
way of collecting driving style data; the other is the selection of driving style characteristic
parameters; the third is driving style recognition algorithm. Data used to identify driving
propensity can be obtained in many different ways, such as driving simulator [12], Con-
troller Area Network (CAN) [13,14], millimeter wave radar [15], vehicle camera [16,17],
Global Positioning System (GPS) [18], on-board diagnostics (OBD) [15,19] and question-
naires [20,21]. The feature data used for driving style recognition can be divided into
three categories. One is driver physical signals [22,23], such as steering angle, accelerator
opening, gestures and other related signals; the other is driver physiological signals, such
as ECG [24], EEG [25], EMG [26], etc.; the third is vehicle motion parameters, such as
vehicle speed [27], acceleration [28–30], yaw angle [31], etc. Early research on driving style
recognition algorithms was mostly based on rules and fuzzy logic methods [32]. How-
ever, the setting of the threshold is highly subjective and cannot be changed according
to the dynamic data. In recent years, many researchers have carried out a lot of research
on driving style recognition based on machine learning algorithms, such as clustering
algorithm [33–35], Bayesian estimation algorithm [36], decision tree algorithm [37], sup-
port vector machine [38,39] and random forest [40,41]. Wang et al. [13] investigated a
new framework for driving style analysis using raw driving patterns and Bayesian non-
parametric methods using driving data collected by the Mobileye vision system and the
vehicle CAN bus. Zhu et al. [14] used inertial navigation system, ranging system and
vehicle CAN system to build a driving data acquisition platform. The platform can collect
multi-dimensional data such as vehicle distance, vehicle relative angle, accelerator opening,
master cylinder pressure, acceleration, steering angle, vehicle latitude and longitude. A
typical driving style for the personalized adaptive cruise is studied. Long et al. [21] investi-
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gated the effectiveness of using a driving style scale to identify driving styles. The reliability
and validity of the Chinese version of the Multidimensional Driving Style Inventory (MDSI)
were verified by exploratory factor analysis and confirmatory factor analysis. Moham-
madnazar et al. [33] utilized basic safety information generated by connected vehicles to
quantify instantaneous driving behavior. Unsupervised machine algorithms were used
to classify driver driving styles in different spatial environments and road types. The
clustering results showed that there were differences in the driving styles of drivers. There
were differences in the thresholds for aggressive and calm driving due to differences in the
environment and road conditions. The percentage of people with aggressive driving styles
was also higher on commercial streets than on highways and residential streets. Mantouka
et al. [35] applied a two-stage K-means clustering method to detect drivers’ dangerous
driving styles. Driving behavior data were obtained using speed and acceleration data from
a smartphone. Aggressive and non-aggressive driving behaviors were detected by initial
clustering and normal and dangerous driving styles of drivers were detected by secondary
clustering. Suzdaleva et al. [36] studied the problem of online detection of driving style
based on recursive Bayesian estimation of a mixture of regular and class components. On
the premise of driving styles during driving, seven driving styles related to fuel economy
were identified through an online estimation algorithm. The algorithm was also used to
model and predict fuel consumption, speed, accelerator pedal position and gear selection.
Wang et al. [39] used a semi-supervised support vector machine to classify driving styles
while using a small amount of annotated driving data in order to solve the problem of
manually annotating a large amount of driving data. Experiments showed that compared
with SVM, the classification accuracy of semi-supervised SVM was improved by about 10%,
which not only improved the classification performance in general, but also significantly
reduces the need for prior data annotation.

At present, there is lack of driving propensity based on navigation dynamic data and
the massive real-time driving data are not fully utilized. In the field of driving behavior
research, there are relatively few applications of AutoNavi navigation data. Zhao et al. [42]
developed the multinomial logit model (MNL) to explore the impact of factors, including
day of the week, time of day, congestion level, traffic control devices and road conditions,
on road safety risk levels in the interchange area of an urban expressway based on a large
amount of aggregate driving behavior data obtained from AutoNavi software. The results
showed that the factors that significantly influence risky roads include day of the week,
number of lanes, congestion level (slow moving), traffic disturbance (with the merge or
diverge within 500 m), type of advance guide sign system (three-level advance guide sign
system) and complexity of diagrammatic guide signs (low or medium complexity). Bian
et al. [43] investigated navigation prompt timing (NPT), navigation prompt message (NPM)
and their combination in an audio navigation system on driving behavior on an urban
expressway with five exits. The results showed that the driver’s psychological state and
operation of the vehicle on the urban expressway were affected by the prompt timing and
messages of the audio navigation system. Guo et al. [44] developed a traffic crash risk
prediction model based on risky driving behavior and traffic flow. The data employed
in their research were captured using the in-vehicle AutoNavigator software. The model
accurately predicted 84.48% of the crashes, while its false alarm rate remained as low as
9.75%, which indicated that the traffic crash risk prediction model had high accuracy. By
analyzing the relationship between traffic flow, risky driving behavior and crashes through
partial dependency plots (PDPs), the impact of traffic flow and risky driving behavior
variables on certain traffic crashes in the prediction model was determined.

Existing research on driving propensity and driving styles were mostly based on
equipment such as driving simulators, millimeter-wave radars, global positioning systems
and various sensors. Research studies based on driving simulator safety are easier to set up
with different traffic scenarios. However, the real road conditions cannot be represented
with the driving simulator and it is difficult to simulate the complexity and diversity of the
real-world traffic environment. The equipment of the research based on the millimeter radar,
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global positioning system and various sensors is expensive, and the installation is relatively
complicated. It is cumbersome to process the data, resulting in high identification cost and
poor practicability. Aiming at the above problems, a dynamic data acquisition algorithm for
AutoNavi navigation and a driving propensity identification method based on AutoNavi
dynamic data and fruit fly optimization algorithm combined with GRNN (generalized
regression neural network) are proposed in this paper. Finally, a driving propensity
identification system is established based on the Android development platform and the
AutoNavi map open platform. The real-time collection, processing and storage of the
driver’s dynamic data during driving can be realized with the driving propensity system.
The dynamic data acquisition method of AutoNavi is realized by constructing dynamic
data acquisition application programs and designing data acquisition algorithms. Nine
driving propensity characteristic datasets derived from time, speed and acceleration during
navigation can be obtained through this method. The fruit fly optimization algorithm is
used to iteratively optimize the smooth factor in GRNN to improve the prediction accuracy.
The driving propensity identification system application is built based on the Android
development platform and AutoNavi Map SDK and API. The application is integrated
into the personal intelligent terminal to realize the real-time collection, processing and
storage of the driver’s driving data and the accurate identification of the driving propensity
during the navigation process. AutoNavi navigation data are applied to the identification
of driving propensity for the first time to achieve the accurate prediction of a driver’s
driving behavior and preferences. It is very important for preventing traffic accidents.
This paper provides a novel idea for establishing a personalized vehicle active safety early
warning system.

2. Materials and Methods
2.1. Participants

A total of 50 drivers were organized to participate in the real vehicle experiment, of
which the ratio of male to female was 8:2, the age distribution was between 25 and 55 years
old and the driving experience was between 1 and 22 years old. The basic information of
the drivers is shown in Figure 1.
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2.2. Apparatus

The experimental materials were temperament type questionnaire, cartel 16 personal-
ity factors questionnaire and driver psychological test questionnaire. These questionnaires
are composed of questions representing driver’s psychophysiological characteristics and
driving behavior characteristics, which has good content reliability and validity [4]. A GL8
experimental vehicle was used as the real vehicle platform, as shown in Figure 2. In this
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paper, only one smartphone can complete all data collection and realize real-time driving
propensity identification.

Sensors 2022, 22, x FOR PEER REVIEW 5 of 30 
 

 

2.2. Apparatus 
The experimental materials were temperament type questionnaire, cartel 16 person-

ality factors questionnaire and driver psychological test questionnaire. These question-
naires are composed of questions representing driver’s psychophysiological characteris-
tics and driving behavior characteristics, which has good content reliability and validity 
[4]. A GL8 experimental vehicle was used as the real vehicle platform, as shown in Figure 
2. In this paper, only one smartphone can complete all data collection and realize real-
time driving propensity identification. 

 
Figure 2. Experimental vehicle. 

2.3. Procedure 
The real vehicle experiments were carried out during sunny weather and dry road 

conditions. The experimental road type was a general urban road and the route was along 
Songling Road, Laoshan District, Qingdao City, Shandong Province, China, as shown in 
Figure 2. The starting point was A, the end point was C and the way point was B. The 
whole journey was 9.45 km. The roads in section A–B were mostly commercial areas and 
residential areas. The traffic flow was large. The B–C section was mainly surrounded by 
factories. The traffic flow was relatively small. The specific time arrangement of the ex-
periment was as follows: weekdays Tuesday morning peak 7:30–8:00, afternoon peak 
15:30–16:00; weekday Wednesday morning peak 9:30–10:00, evening peak 18:30–19:00; 
non-working Saturday mornings 9:00–9:30 in the morning and 18:00–18:30 in the evening 
peak. The experiments lasted for four weeks. 

Before the driving experiment, the basic information of each participant was rec-
orded, including age, gender and driving experience. The participants were organized to 
fill out the driving psychological test questionnaire, the temperament type questionnaire 
and the cartel 16 personality factors questionnaire [4], as shown in Figure 2. The driving 
propensity type of the participants can be preliminarily determined by the questionnaire 
test results. The experimental vehicle was equipped with a debugged smartphone for dy-
namic data collection of AutoNavi navigation. Different participants drove in sequence 
on the experimental route. An experimental assistant was arranged to ensure the normal 
operation of the equipment during the experiment. At the end of each driver’s experiment, 
the dynamic driving data collection APP ended the navigation and automatically saved 
the real-time data to the mobile phone database. Due to the different experimental time 

Figure 2. Experimental vehicle.

2.3. Procedure

The real vehicle experiments were carried out during sunny weather and dry road
conditions. The experimental road type was a general urban road and the route was along
Songling Road, Laoshan District, Qingdao City, Shandong Province, China, as shown in
Figure 2. The starting point was A, the end point was C and the way point was B. The
whole journey was 9.45 km. The roads in section A–B were mostly commercial areas and
residential areas. The traffic flow was large. The B–C section was mainly surrounded
by factories. The traffic flow was relatively small. The specific time arrangement of the
experiment was as follows: weekdays Tuesday morning peak 7:30–8:00, afternoon peak
15:30–16:00; weekday Wednesday morning peak 9:30–10:00, evening peak 18:30–19:00;
non-working Saturday mornings 9:00–9:30 in the morning and 18:00–18:30 in the evening
peak. The experiments lasted for four weeks.

Before the driving experiment, the basic information of each participant was recorded,
including age, gender and driving experience. The participants were organized to fill
out the driving psychological test questionnaire, the temperament type questionnaire
and the cartel 16 personality factors questionnaire [4], as shown in Figure 2. The driving
propensity type of the participants can be preliminarily determined by the questionnaire
test results. The experimental vehicle was equipped with a debugged smartphone for
dynamic data collection of AutoNavi navigation. Different participants drove in sequence
on the experimental route. An experimental assistant was arranged to ensure the normal
operation of the equipment during the experiment. At the end of each driver’s experiment,
the dynamic driving data collection APP ended the navigation and automatically saved
the real-time data to the mobile phone database. Due to the different experimental time
periods, the experimental vehicle could obtain two sets of experimental data by going back
and forth on the experimental route once.

2.4. AutoNavi Navigation Dynamic Data Acquisition Algorithm

The AutoNavi navigation dynamic data acquisition application program consists of a
positioning module, navigation module, data acquisition module, data processing module
and data storage module.
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Map loading and basic map interaction functions can be realized by calling the AutoN-
avi map API in the positioning module. The secondary development is performed based
on the AutoNavi positioning SDK, the location service and map application module of
Android development platform. The real-time positioning function is achieved by applying
for mobile phone positioning permission. The vehicle positioning data are called back
through the positioning API interface. The positioning data can be obtained from this func-
tion with the data acquisition module. The navigation module implements basic navigation
functions through callback path planning, navigation creation and real-time navigation.
The vehicle driving data during the navigation process can be called back through the
navigation API interface. The driver’s navigation driving data are obtained from this
function with the data acquisition module. The data acquisition module is connected to
the positioning module and the navigation module. Through the positioning and navi-
gation data collection interface, the function is called back to obtain the real-time driving
data of the driver, including vehicle latitude and longitude coordinates, vehicle speed,
driving time and driving mileage. The data processing module receives and processes
the real-time driving data transmitted by the data acquisition module. The characteristic
data that better characterizes the driving propensity can be obtained with the driving
data deduction algorithm, including travel time Te, average speed Vave, maximum speed
Vmax, rapid acceleration times Nacc, rapid deceleration Ndec, normal acceleration time Tacc,
normal deceleration time Tdec, average acceleration Aave, and maximum acceleration Amax.
The data storage module receives and stores the dynamic data transmitted by the data
acquisition module and the data processing module in real time.

A multi-dimensional driving propensity characteristic parameter acquisition algorithm
is proposed in this paper. The specific acquisition algorithm of each characteristic parameter
is as follows:

(1) Travel time Te acquisition algorithm

The travel time obtained in this paper is the effective travel time when the vehicle
travels between the two endpoints of a certain navigation with non-zero driving speed. The
driver’s driving propensity can be better characterized with this parameter. The travel time
Te acquisition algorithm is implemented based on real-time monitoring of vehicle speed
changes during navigation. After the navigation is turned on, accumulate the driving time
when the speed is not zero every second. The system collection frequency is 1 Hz. The
total travel time can be calculated until the end of the navigation. For the convenience of
describing the algorithm, the introduction of intermediate variables is shown in Table 1.

Table 1. Intermediate variables of travel time acquisition algorithm.

Name Symbol Data Type Unit Variable Description

Journey time Te int s Sum of valid travel time within the
navigation segment

Driving speed Vn double m/s Effective speed of the vehicle at the current
time point

Driving time T int s Effective time of the current vehicle travel

The flow of travel time Te acquisition algorithm is shown in Figure 3.

(2) Average speed Vave and maximum speed Vmax acquisition algorithm

The average speed Vave and maximum speed Vmax obtained in this paper are the
average effective speed and the maximum effective speed of the vehicle passing through
the two endpoints of a certain section. That is, the average effective speed and the maximum
effective speed of the vehicle within the effective travel time Te. Average speed Vave and
maximum speed Vmax acquisition algorithm is implemented based on real-time monitoring
of speed changes. After the navigation is turned on, detect every second when the speed is
not zero. The system collection frequency is 1 Hz. Accumulate the speed corresponding to
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each second in the effective travel time Te while obtaining the effective travel time to get
the effective speed sum Vsum. Divide it by the travel time to obtain the average speed Vave.
The calculation formula is shown in Equation (1). The maximum speed Vmax is calculated
by comparing the speed values Vn before and after each second. The larger speed value
Vn is temporarily saved as the maximum speed Vmax. The comparison is continued until
the end of the trip. The final maximum Vmax speed is saved. The calculation formula is
shown in Equation (2). For the convenience of describing the algorithm, the introduction of
intermediate variables is shown in Table 2.

Vave =

n=1
∑
Te

Vn

Te
=

Vsum

Te
, (n = 1, 2, · · · , Te) (1)

Vmax =

{
Vn Vn > Vmax

Vmax Vn ≤ Vmax
, (n = 1, 2, · · · , Te) (2)

Sensors 2022, 22, x FOR PEER REVIEW 7 of 30 
 

 

Start

Receive system 
positioning and 

navigation information 
data callback

The speed at the current 
time point is a valid speed?

 accumulate vehicle 
travel time

The navigation 
is over?

End

No

No

Yes

The information is 
accurate and effective?

No

Save the final 
accumulated 

vehicle travel time 
as travel time

Yes

Yes

 
Figure 3. Flow chart of travel time eT  acquisition algorithm. 

(2) Average speed aveV  and maximum speed maxV  acquisition algorithm 
The average speed aveV  and maximum speed maxV  obtained in this paper are the 

average effective speed and the maximum effective speed of the vehicle passing through 
the two endpoints of a certain section. That is, the average effective speed and the maxi-
mum effective speed of the vehicle within the effective travel time eT . Average speed 

aveV  and maximum speed maxV  acquisition algorithm is implemented based on real-
time monitoring of speed changes. After the navigation is turned on, detect every second 
when the speed is not zero. The system collection frequency is 1 Hz. Accumulate the speed 
corresponding to each second in the effective travel time eT  while obtaining the effective 
travel time to get the effective speed sum sumV . Divide it by the travel time to obtain the 
average speed aveV . The calculation formula is shown in Equation (1). The maximum 
speed maxV  is calculated by comparing the speed values nV  before and after each sec-
ond. The larger speed value nV  is temporarily saved as the maximum speed maxV . The 
comparison is continued until the end of the trip. The final maximum maxV  speed is 

Figure 3. Flow chart of travel time Te acquisition algorithm.



Sensors 2022, 22, 4883 8 of 28

Table 2. Intermediate variables of average and maximum velocity acquisition algorithm.

Name Symbol Data Type Unit Variable Description

Driving speed Vn double m/s Effective speed of the vehicle at the
current time point

Sum of speed Vsum double m/s Total effective driving speed in the
navigation section

Average speed Vave double m/s
Ratio of the total effective driving

speed to the travel time in the
navigation segment

Maximum speed Vmax double m/s Maximum effective speed in the
navigation section

A flow chart of the average speed Vave and maximum speed Vmax acquisition algorithm
is shown in Figure 4.

(3) Rapid acceleration times Nacc, rapid deceleration Ndec, normal acceleration time Tacc
and normal deceleration time Tdec acquisition algorithm

The rapid acceleration times Nacc, rapid deceleration Ndec, normal acceleration time
Tacc and normal deceleration time Tdec obtained in this paper are the driving behavior events
generated by the vehicle passing through the two endpoints of a certain navigation section.
That is, the number of rapid acceleration behaviors, the number of rapid deceleration
behaviors, the time of normal driving behavior, and the time of normal deceleration
behavior generated by the vehicle within the effective travel time Te. Rapid acceleration
times Nacc, rapid deceleration Ndec, normal acceleration time Tacc and normal deceleration
time Tdec acquisition algorithm is based on real-time monitoring of acceleration changes.
The system collection frequency is 1 Hz. The acceleration can be calculated from the speed
change per second using Equation (3).

An =
Vn −Vn−1

1
, (n = 1, 2, · · · , T) (3)

When the acceleration An is larger of less than different thresholds, sTime is recorded as
the start time of the sudden acceleration (deceleration) behavior and the normal acceleration
(deceleration) behavior event. At the same time, the system starts to monitor continuously.
When the acceleration An does not meet the threshold condition, it is recorded as the end
time of the corresponding driving behavior event. Determine whether the duration meets
the valid duration threshold of the driving behavior event. According to the relevant
regulations of the traffic safety passage rules and the actual road test data, we selected
the sudden acceleration threshold as 2.22 m/s2, the sudden deceleration threshold as
−2.22 m/s2, the normal acceleration threshold as 0.45 m/s2, the normal deceleration
threshold as −0.45 m/s2 and the effective duration threshold of the driving behavior event
as 5 s. For the convenience of describing the algorithm, the introduction of intermediate
variables is shown in Table 3.

Table 3. Number of rapid acceleration and rapid deceleration times and duration of normal accelera-
tion and normal deceleration to obtain the intermediate variables of the algorithm.

Name Symbol Data Type Unit Variable Description

Rapid acceleration times Nacc int n Number of sudden acceleration times in the
navigation section

Rapid deceleration times Ndec int n Number of sudden deceleration times in the
navigation section

Normal acceleration time Tacc int s Total duration of normal acceleration behavior in the
navigation segment

Normal deceleration time Tdec int s Total duration of normal deceleration behavior in the
navigation segment
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Table 3. Cont.

Name Symbol Data Type Unit Variable Description

Acceleration An float m/s2 Effective acceleration of the vehicle at the current time point
Start time sTime double Start time of the driving behavior event
End time eTime double End moment when the driving behavior event occurred
Duration time double Duration of driving behavior time
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The flow chart of rapid acceleration times Nacc, rapid deceleration Ndec, normal ac-
celeration time Tacc and normal deceleration time Tdec acquisition algorithm is shown in
Figure 5.
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(4) Average acceleration Aave and maximum acceleration Amax acquisition algorithm

The average acceleration Aave and maximum acceleration Amax obtained in this paper
are the average acceleration and maximum acceleration generated by the vehicle during the
normal acceleration time Tacc. The average acceleration Aave and maximum acceleration
Amax acquisition algorithm is based on the real-time monitoring of acceleration changes.
The system collection frequency is 1 Hz. The accumulated acceleration sum Asum can be
obtained by accumulating the acceleration per second An during the acceleration time Tacc.
The average acceleration Aave can be obtained by the ratio of the accumulated acceleration
sum Asum to the acceleration time Tacc, which can be calculated with Equation (4). At the
same time, compare the acceleration value An before and after each second in the accelera-
tion time Tacc. The larger acceleration value is assigned to Amax. If An > Amax, Amax = An;
if An < Amax, Amax keeps the original value unchanged. The comparison continues until
the end of the stroke, saving the maximum acceleration Amax. The calculation formula is
shown in Equation (5). For the convenience of describing the algorithm, the introduction of
intermediate variables is shown in Table 4.

Aave =

n=1
∑

Tacc

An

Tacc
=

Asum

Tacc
, (n = 1, 2, · · · , Tacc) (4)

Amax =

{
An An > Amax

Amax An ≤ Amax
, (n = 1, 2, · · · , Tacc) (5)

Table 4. Intermediate variables of average acceleration and maximum acceleration acquisition.

Name Symbol Data Type Unit Variable Description

Average
acceleration Aave float m/s2 Average vehicle acceleration during

normal acceleration time
Maximum

acceleration Amax float m/s2 Maximum acceleration of the vehicle
during normal acceleration time

Sum of
acceleration Asum float m/s2 Accumulated sum of acceleration per

second during normal acceleration time

The flow chart of the average acceleration and maximum acceleration Amax acquisition
algorithm is shown in Figure 6.
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3. Results and Discussion
3.1. Data

The experimental data collected in this paper contain 12 driving characteristic vari-
ables, as shown in Table 5.

Table 5. Driving characteristic variables and representation symbols.

Name Symbol Name Symbol

Age (year) a Rapid acceleration times Nacc
Driving age (year) DA Rapid deceleration times Ndec

Gender G Acceleration time Tacc
Journey time (s) T Deceleration time Tdec

Average speed (m/s) Vave Average acceleration Aave
Maximum speed (m/s) Vmax Maximum acceleration Amax

Some data are shown in Table 6.

Table 6. Partial experimental data.

Number a DA G 1 T Vave Vmax Nacc Ndec Tacc Tdec Aave Amax

01

37 12 0 806 11.09 20.56 6 4 84 75 0.435 1.943
37 12 0 800 11.20 20 5 2 84 73 0.479 2.012
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
37 12 0 802 11.17 19.72 6 5 87 75 0.478 1.735

02

34 10 1 759 12.05 21.11 7 5 95 76 0.715 2.091
34 10 1 754 12.1 21.39 6 5 89 72 0.568 2.423
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34 10 1 747 11.75 20 7 4 91 74 0.672 2.271

03

26 6 1 691 13.02 21.11 13 9 95 77 0.763 2.792
26 6 1 698 12.94 23.33 11 10 90 75 0.892 2.878
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
26 6 1 702 12.89 21.94 8 8 92 78 0.781 2.973

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

23

40 12 1 707 12.81 22.5 9 10 97 78 0.892 2.562
40 12 1 698 12.94 23.6 11 6 95 82 0.831 3.261
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
40 12 1 702 12.89 22.4 10 7 92 78 0.785 3.178

24

36 10 1 818 10.82 19.72 5 5 86 83 0.472 1.738
36 10 1 808 11.05 18.89 6 3 93 87 0.418 1.351
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
36 10 1 823 10.75 18.89 4 1 83 88 0.378 1.943

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

49

28 5 0 815 10.86 20.28 5 2 87 86 0.428 1.561
28 5 0 823 10.73 19.17 3 0 89 84 0.496 1.672
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
28 5 0 813 10.89 18.89 5 2 83 87 0.379 1.398

50

42 16 1 707 12.81 22.5 10 7 93 78 0.752 3.287
42 16 1 711 12.75 22.5 11 6 99 74 0.809 3.012
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
42 16 1 705 12.85 23.05 8 9 97 80 0.801 2.798

1 0 for female and 1 for male.

After the experiment, the questionnaire test results of each driver in the experimen-
tal sample are counted, and the preliminary prediction results of each driver’s driving
propensity are recorded. The driver’s driving behavior responses when faced with different
traffic situations and road environments can be viewed through video playback, including
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the driver’s operational response, facial expressions, and driving propensity. The driving
propensity can be comprehensively determined according to the driver’s driving behavior
responses and the preliminary prediction result of the driving propensity. The preliminary
judgement result of driving propensity is shown in Table 7.

Table 7. Preliminary judgment result of driving propensity.

Type of Driving Propensity Number of Driver

Aggressive 03,08,12,13,20,23,27,30,33,35,41,44,46,47,50
Normal 02,06,07,09,11,15,16,17,22,25,28,29,34,37,38,40,43,48

Conservative 01,04,05,10,14,18,19,21,24,26,31,32,36,39,42,45,49

3.2. Driving Propensity Feature Extraction Method

The data in this paper are collected through real vehicle experiments in the real road
environment. This results in a lot of data noise, which causes many fluctuations in the
collected raw data and affects the model training. Thus, a sliding mean filter is selected to
process raw data, such as velocity and acceleration. The mean filter expression is as follows:

Xn =
1
M

M−1

∑
i=0

Xn−i (6)

Among this, M is the sliding filter window size. Xn−1 is the n− i original data. The
sliding filter window size M has a great impact on the filtering effect. According to the
acquisition frequency of the original data (10 Hz), the value of M is selected as 5 to perform
smoothing filtering on the original data.

By analyzing the characteristic parameters of driving propensity, the data size of each
characteristic parameter is quite different, which can affect the target result. The data need
to be normalized according to Equation (7).

a =
a′ −mina′

maxa′ −mina′
(7)

Among this, d is the original data and a is the normalized value of input data d.
The driving propensity feature parameters collected in this paper contain multiple

dimensions. Although the higher the dimension of the feature data, the better it can
represent the driving propensity. However, there is a correlation between high-dimensional
feature data, which will cause data redundancy. The principal component analysis (PCA)
algorithm is used to reduce the dimension of the characteristic parameter set of driving
propensity. The main factors in the driving propensity feature parameter set are extracted
to obtain a set of principal component feature vectors that can represent each driving
propensity type. Each principal component is linearly uncorrelated with each other. The
explanation of the total variance of each principal component is shown in Table 8.

It can be seen from Table 8 that the total variance explained by the first five principal
components reaches 88.311%.

Generally, according to the requirement that the cumulative contribution rate is greater
than 85%, the first five principal components can fully characterize the changing character-
istics of driving propensity. The characteristic values corresponding to the interpretation of
the total variance of each principal component are shown in Figure 7. The characteristic
value of each principal component also shows that the information contained in the first
five principal components can better characterize the changing characteristics of driving
propensity. Combined with the cumulative contribution rate and component eigenvalues of
the characteristic parameters of each driving propensity, the first five principal components
are the characteristic variables for driving propensity identification.



Sensors 2022, 22, 4883 15 of 28

Table 8. Interpretation of total variance of each principal component.

Component
Initial Eigenvalues Extracted Loading Sum of Squares

Total Percentage
of Variance

Cumulative
Percentage Total Percentage

of Variance
Cumulative
Percentage

1 6.640 55.333% 55.333% 6.640 55.333% 55.333%
2 1.964 16.367% 71.700% 1.964 16.367% 71.700%
3 0.922 7.683% 79.382% 0.922 7.683% 79.382%
4 0.594 4.947% 84.329% 0.594 4.497% 84.329%
5 0.478 3.983% 88.311% 0.478 3.983% 88.311%
6 0.439 3.656% 91.967%
7 0.309 2.574% 94.541%
8 0.267 2.225% 96.766%
9 0.181 1.506% 98.272%
10 0.130 1.080% 99.352%
11 0.073 0.610% 99.962%
12 0.005 0.038% 100.000%
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The scores of the first five principal components are given in Table 9. These five
principal components are linear combinations of 12 feature variables. The scores of the
principal components are used as the input in the driving propensity identification model.

Table 9. Score of each principal component.

Test Sample
First

Principal
Component

Second
Principal

Component

Third
Principal

Component

Fourth
Principal

Component

Fifth
Principal

Component

1 1.5103 −1.3385 0.9640 −3.3418 −0.7096
2 1.1362 −1.3688 0.8263 1.6209 0.0544
3 1.6318 −1.3398 1.0407 0.1206 0.4822
4 1.4625 −1.3542 0.9370 0.5988 0.8418
5 1.6846 −1.2961 0.8146 1.0791 0.2296

. . . . . . . . . . . . . . . . . .
1001 −1.1198 1.1781 0.2660 −1.0783 −0.3280
1002 −1.3763 −0.0009 0.6690 −0.0936 0.1397
1003 −0.8410 0.0877 0.5144 0.8409 −0.0655
1004 −1.2461 0.0367 0.6016 −0.3086 −0.3139
1005 −1.0938 0.161 0.6866 −0.1223 1.3106
. . . . . . . . . . . . . . . . . .

1996 −1.0287 −0.1602 0.8467 −0.7797 0.7990
1997 −0.9700 −0.1123 −0.6619 −0.8127 −1.0078
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Table 9. Cont.

Test Sample
First

Principal
Component

Second
Principal

Component

Third
Principal

Component

Fourth
Principal

Component

Fifth
Principal

Component

1998 −0.9648 −0.1336 0.6619 −0.8127 −1.0078
1999 −1.3439 −0.1849 0.8605 −0.5054 0.1205
2000 −1.5796 −0.2254 0.8340 −0.9133 −0.3929

3.3. Driving Propensity Recognition Model Based on FOA-GRNN

A driving propensity identification method based on AutoNavi dynamic and FOA-
GRNN is proposed in this paper. The process is shown in Figure 8.
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Driving propensity is a dynamic measurement of the behavioral preference character-
istics of car operators during driving. The types of driving propensity can be divided into
aggressive, normal and conservative. The generalized recurrent neural network (GRNN)
proposed by Donald F. Specht is a variant of radial basis neural network [45]. GRNN is
a neural network that uses the probability density function to predict the output of the
input data. It has strong learning ability and nonlinear mapping ability. It can still achieve
good classification results with a small number of samples. Therefore, GRNN is chosen to
dynamically identify the driving propensity.

The basic structure of GRNN includes a four-layer network of input layer, pattern layer,
summation layer and output layer [46]. The input of the model is X = [x1, x2, · · · , xn]

T .
The output of the model is Y = [y1, y2, · · · , yn]

T and y = {0, 1, 2}.
The fruit fly optimization algorithm (FOA) is proposed by Wenchao Pan in 2011 [47].

The olfactory and visual characteristics of fruit flies is cleverly used to search for food
for iterative optimization with FOA algorithm. The principle of FOA algorithm has the
advantages of simple principle and fast convergence speed [48]. The basic principle of
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FOA algorithm can be divided into two stages: drosophila uses smell to search for food
and vision is used to observe and determine the location of the food, and then fly towards
that location. The prediction accuracy of GRNN is greatly affected by the smooth factor
and the drosophila optimization algorithm is an effective method to optimize the smooth
factor [49]. The smooth factor value is optimized by the fruit fly optimization algorithm.
The specific optimization idea is to adjust the smooth factor value to the optimum by using
the mechanism of drosophila olfactory random foraging and visual search for the highest
odor concentration position. The root mean square error (RMSE) between the predicted
value and the actual value of the network output driving propensity is minimized through
iterative optimization. The corresponding drosophila taste concentration value reaches the
optimal value as the minimum value of RMSE. That is, the smooth factor in the general-
ized regression neural network obtains the optimal value, and it is input into the GRNN
model. The driving propensity identification model based on the drosophila optimization
algorithm to optimize GRNN is shown in Figure 9. The specific implementation steps are
as follows.
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Step 1: Input the driving propensity feature variable set and divide the training set
and test set. Set GRNN parameters and input the training samples.
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Step 2: Randomly initialize the fly position (Init_X0, Init_Y0). Set the population size
(Sizepop) and the maximum number of iterations (Maxgen).

Step 3: Give individual drosophila a random direction and distance to search for food
by smell (Xi, YI).

Xi = X0 + Rand() (8)

Yi = Y0 + Rand() (9)

Step 4: Determine the distance Dist(i) between the coordinates of each drosophila and
the origin, and then calculate the taste concentration judgment value Si, which will be used
as a smoothing factor for GRNN

Dist(i) =
√(

X2
i + Y2

i
)

(10)

σ = Si =
1

Dist(i)
(11)

Step 5: Substitute the taste concentration judgment value into the taste con-centration
judgment condition (if Si < 0.001, Si = 1, if Si > 0.001, Si = Si). Bring the smooth factor value
σ = Si into the GRNN model to obtain the taste concentration Smell(i) of the individual
location of the drosophila. In this paper, the root mean square error RMSE of the driving
propensity prediction obtained by the GRNN model is used as the taste concentration
Smell(i).

Smell(i) =

√√√√√ M
∑

i=1
(yi − ŷi)

2

M
(12)

Step 6: Find the location of the individual with the lowest taste concentration Smell(i)
in the drosophila population.

[bestSmell bestIndex] = min(Smell(i)) (13)

Step 7: Determine whether the taste concentration is better than the previous taste
concentration. If yes, go to Step 8; if not, return to Step 3 to continue iterative optimization.

Step 8: Keep the optimal taste concentration value and the corresponding drosophila
individual coordinates, and the drosophila will use vision to fly to this location.

Smellbest = bestSmell
Xbest = X(bestIndex)
Ybest = Y(bestIndex)

(14)

Step 9: Determine whether the maximum number of iterations has been reached, and
if so, save and output the optimal flavor concentration, with the optimal smooth factor as σ.
Establish the driving propensity identification model of FOA_GRNN.

Step 10: Identify the driving propensity of the input driver prediction sample data.
In this paper, a driving propensity identification model is established based on FOA-

GRNN. The experimental data of 30 drivers were selected from the experimental samples
for the training and testing of the model. Among them, we selected 1200 sets of experimen-
tal data of 10 drivers of aggressive type, ordinary type and conservative type, respectively,
and divided them into a training set and test set according to the ratio 8:2. In order to
further verify the trained driving propensity identification model, the experimental data
of another 20 drivers in the experimental sample were input into the model to verify the
recognition accuracy of the model for each type of driving propensity.

In this study, MATLAB 2019a was used for model training simulation experiments. The
initial position interval of the drosophila group was set to [0,1], the size of the drosophila
group was 10 and the flight direction and distance interval of the drosophila group to search
by smell was [−10,10], the maximum number of iterative optimizations of the drosophila
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population is 200. In the divided training set samples, the first five principal components
selected by principal component analysis are used as the input vector for driving propensity
identification to train the model.

The convergence effect of the root mean square error (RMSE) of driving propensity
prediction after 200 iterations of optimization is shown in Figure 9. From the convergence
of RMSE in Figure 10, it can be seen that the effect of early iteration of FOA is more obvious
and the update of flavor concentration is faster. In the iterative optimization process, the
RMSE begins to converge in the 105th generation. At this time, the minimum error value is
0.016, that is, the minimum flavor concentration value is 0.016 and the optimal smooth factor
σ is 0.062. At this time, the position of the drosophila population is (65.4529, −125.8327).
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Figure 10. Root mean squared error convergence.

At this time, the optimal smooth factor σ = 0.062 is substituted into the GRNN network
model and the test samples are input into the optimized driving propensity identification
model. Limited to the length of the article, only the test results of the aggressive samples
are shown here, as shown in Table 10, where 0 represents the aggressive type, 1 represents
the ordinary type and 2 represents the conservative type.

Table 10. Input results for aggressive test samples.

Number Output Number Output Number Output Number Output Number Output

1 0.0132 17 0.0072 33 0.0000 49 0.1339 65 1.0283

2 0.0085 18 0.0007 34 0.2195 50 0.0092 66 0.0000

3 0.0000 19 0.0000 35 0.1078 51 0.0000 67 0.0000

4 0.0000 20 0.0078 36 0.0000 52 0.1982 68 0.0000

5 0.0268 21 0.0000 37 0.0000 53 0.0000 69 0.1392

6 0.0091 22 0.0000 38 1.9938 54 0.0000 70 0.0000

7 0.9932 23 0.0000 39 0.2193 55 0.2012 71 0.0062

8 0.0000 24 0.0012 40 0.0016 56 0.0062 72 0.0301

9 0.0073 25 0.0035 41 0.0000 57 0.0032 73 0.0000

10 0.0000 26 0.0000 42 0.0021 58 0.0000 74 0.0081

11 0.1026 27 0.1067 43 0.0039 59 0.0000 75 0.0000

12 0.0000 28 0.0143 44 0.0093 60 0.0089 76 0.1061

13 0.0023 29 0.0000 45 0.2792 61 0.0002 77 0.0102
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Table 10. Cont.

Number Output Number Output Number Output Number Output Number Output

14 0.0000 30 0.0000 46 0.0000 62 0.1026 78 0.0000

15 0.2004 31 0.0000 47 0.0000 63 0.0401 79 0.0000

16 0.0017 32 0.0072 48 0.0000 64 0.0088 80 0.0000

The overall accuracy of the driving propensity identification model based on FOA-
GRNN can reach 94.17%, which has high identification accuracy and can effectively identify
various driving propensity types. It can be shown from Table 11 that the GRNN optimized
by FOA iteratively optimizes the value of the smooth factor and has a good predictive
ability, and the established FOA-GRNN identification model has a good identification effect
on the driving propensity.

Table 11. The final verification results of 20 drivers in the real vehicle experiment.

Number Accuracy Driving Propensity Number Accuracy Driving Propensity

12 95.1% Aggressive 25 93.3% Normal
34 92.9% Normal 44 95.1% Aggressive
09 93.3% Normal 32 96.2% Conservative
42 94.5% Conservative 26 92.9% Conservative
17 92.2% Normal 27 94.5% Aggressive
03 96.2% Aggressive 40 92.9% Normal
21 95.1% Conservative 38 92.2% Normal
28 92.9% Normal 47 96.2% Aggressive
36 94.5% Conservative 04 95.1% Conservative
19 95.1% Conservative 15 92.9% Normal

In order to further verify the identification accuracy of the established FOA-GRNN
driving propensity identification model for each driver’s driving propensity, the experi-
mental data corresponding to the other 20 drivers in the real vehicle experimental sample
were selected for model verification. The final verification results are shown in Table 11.
The verification results show that the driving propensity identification model based on
FOA-GRNN has an accuracy rate of about 95% for aggressive and conservative drivers, and
more than 92% for ordinary drivers, which shows that it has high identification accuracy for
each driver’s driving propensity. Since the characteristics of aggressive and conservative
drivers are more obvious than ordinary drivers, both aggressive and conservative drivers
are better than ordinary drivers in terms of model identification accuracy

As a comparison, the single generalized regression neural network (GRNN) and the
BP neural network (back propagation neural network, BPNN) were used to process the
same data samples to establish a driving propensity identification model and test the
performance of two models. The identification accuracy is compared with the accuracy of
the FOA-GRNN identification model.

The prediction accuracy of GRNN is greatly affected by the smooth factor σ, so this
paper randomly selects 10 groups of smooth factors for testing and obtains the accuracy of
the identification model. The test results are shown in Table 12.

Table 12. GRNN driving propensity identification results.

Number σ Accuracy/% Number σ Accuracy/%

1 50 83.3 6 0.8 87.1
2 15 84.6 7 0.5 86.3
3 10 86.7 8 0.1 89.2
4 5 85.4 8 0.1 89.2
5 1 87.5 10 0.01 87.9
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It can be seen from Table 12 that the accuracy rate of the GRNN driving propensity
identification model is the highest at 89.2%. The identification effect, which can be greatly
affected by the smooth factor, is not ideal. The smooth factor of the GRNN model needs
to be manually adjusted to find the best identification effect. The optimization process is
cumbersome. Compared with the single GRNN identification model, the overall accuracy
of the FOA-GRNN identification model proposed in this paper is improved by 5~10%,
which has a better stability.

A BPNN driving propensity identification model which uses a 5-7-3 neural network
structure is constructed according to the number of nodes in the input layer and output
layer. The quasi-Newton method (trainbfg) is selected as the training function, the sigmoid
function is the hidden layer transfer function, and the softmax function is selected as the
transfer function for the output layer. Many parameters of the BP neural network need to be
adjusted. The learning rate and training accuracy have a great influence on the algorithm.
The three groups of learning rate (lr) are set to 0.01, 0.05 and 0.1. The three groups of
training accuracy (goal) are set to 0.1, 0.01 and 0.001, and the maximum number of training
times is 500. The test results are shown in Table 13.

Table 13. BPNN driving propensity identification results.

Number lr goal Accuracy/%

1
0.01

0.1 88.3
2 0.01 90.8
3 0.001 87.5

4
0.05

0.1 88.7
5 0.01 89.6
6 0.001 86.7

7
0.1

0.1 88.3
8 0.01 91.3
9 0.001 89.6

It can be seen from Table 13 that the highest accuracy rate of the BPNN driving propen-
sity identification model is 91.3%. By manually adjusting the parameters of the BPNN
network, the model can achieve a good identification effect. However, many parameters
of BPNN need to be set and the training process is cumbersome, which cannot guarantee
the best recognition effect of the model. The comparison results show that the driving
propensity identification accuracy of the GRNN model is the lowest. The identification
accuracy of the BPNN model can achieve good results, but it has slow learning speed
and too many parameters, and continuous tuning is required. The generalized regression
neural network optimized by the fruit fly optimization algorithm proposed in this paper
has the advantages of simple optimization process, high accuracy and good stability. It has
higher identification accuracy and better stability in driving propensity identification.

3.4. Real Vehicle Experimental Test

Based on the Android development platform and AutoNavi SDK, a driving propensity
identification system APP suitable for Android smartphones is developed in this paper,
as shown in Figure 11. The smartphone is used as the carrier of the driving propensity
identification system. The Android smartphone used in this experiment is the Redmi
K30i mobile phone. The hardware configuration is as follows: the CPU is Qualcomm
Snapdragon 765 G, the main frequency is 2.4 GHz, the eight-core, the running memory is
6 GB and the body memory is 128 GB.

In order to test the validity and reliability of the driving propensity identification
system APP, three types of experiments are designed in this paper. The trained FOA-GRNN
driving propensity identification model and the single GRNN and BPNN driving propen-
sity identification models are imported into the system driving propensity identification
module, and then the packaged driving propensity identification model is imported. The
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identification system APP is installed in the smartphone and fixed on the experimental
vehicle. Twenty experimenters were selected to carry out driving experiments in sequence
and the driving propensity identification system APP was used to collect, process and
identify the driving propensity of the driver’s dynamic data during the navigation process.
The specific experiments were as follows:
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Experiment 1: The driving propensity identification system based on the FOA-GRNN
model was used to conduct a real vehicle experimental test and the experimenters con-
ducted 240 groups of experiments, including 80 groups of aggressive type, normal type
and conservative type. The experimental results are shown in Table 14.

Table 14. FOA-GRNN driving propensity identification results.

Identification Results Aggressive (Pre-Judgment
Result)

Normal (Pre-Judgment
Result)

Conservative (Pre-Judgment
Result)

Aggressive (real result) 76 3 1
Normal (real result) 4 72 4

Conservative (real result) 1 5 74

By calculating and analyzing the identification results in the above table, various
evaluation indicators of the driving propensity identification system were obtained as
shown in Table 15.

Table 15. Various evaluation indicators of the FOA-GRNN driving propensity identification model.

Evaluation Indicators Accuracy (%) Precision (%) Recall (%) F1-Score (%)

Aggressive 92.5 93.83 95 94.56
Normal 92.5 90 90 90

Conservative 92.5 93.67 92.5 93.08

It can be seen from Table 15 that the system model has high identification accuracy
and recall rate. The characteristics of aggressive and conservative drivers are more obvious
than normal drivers. Therefore, in terms of precision, recall rate and comprehensiveness,
both aggressive and conservative drivers are better than normal drivers.

Experiment 2: The driving propensity identification system based on the GRNN
models was used to conduct the real vehicle experimental test and the experimenters
conducted 240 groups of experiments, including 80 groups of aggressive type, ordinary
type and conservative type. The experimental results are shown in Table 16.
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Table 16. GRNN driving propensity identification results.

Identification Results
Aggressive

(Pre-Judgment
Result)

Normal
(Pre-Judgment

Result)

Conservative
(Pre-Judgment

Result)

Aggressive (real result) 72 6 2
Normal (real result) 6 66 8

Conservative (real result) 3 7 70

By calculating and analyzing the identification results in the above table, various
evaluation indicators of the driving propensity identification system were obtained as
shown in Table 17.

Table 17. Various evaluation indicators of the FOA-GRNN driving propensity identification model.

Evaluation
Indicators Accuracy (%) Precision (%) Recall (%) F1-Score (%)

Aggressive 85.83 88.89 90 89.44
Normal 85.83 83.54 82.5 83.02

Conservative 85.83 87.5 87.5 87.5

Experiment 3: The driving propensity recognition system based on BPNN was used to
conduct the real vehicle experimental test and the experimenters conducted 240 groups of
experiments, with 80 groups for the aggressive type, the ordinary type and the conservative
type, respectively. The experimental results are shown in Table 18.

Table 18. BPNN driving propensity identification results.

Identification Results
Aggressive

(Pre-Judgment
Result)

Normal
(Pre-Judgment

Result)

Conservative
(Pre-Judgment

Result)

Aggressive (real result) 74 5 1
Normal (real result) 5 69 6

Conservative (real result) 2 6 72

By calculating and analyzing the identification results in the above table, various
evaluation indicators of the driving propensity identification system were obtained as
shown in Table 19.

Table 19. Various evaluation indicators of the BPNN driving propensity identification model.

Evaluation
Indicators Accuracy (%) Precision (%) Recall (%) F1-Score (%)

Aggressive 89.58 91.36 92.5 91.93
Normal 89.58 86.25 86.25 86.25

Conservative 89.58 91.14 90 90.57

The performance indicators of the driving propensity identification system based
on the FOA-GRNN model, GRNN model and BPNN model are shown in Figures 12–14.
Compared with the driving propensity identification system based on the GRNN model,
the accuracy of the driving propensity identification system based on the FOA-GRNN
model is at least 5% higher, and the accuracy of the driving propensity identification system
is also improved compared to the BPNN model. In terms of precision, recall and F1 score,
the driving propensity identification system based on the FOA-GRNN model has better
performance indicators for aggressive, normal and conservative drivers than the other
two systems. The identification effect and the system stability are higher than the other
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two systems. Although the identification accuracy of the system model in the real vehicle
test is lower than training in MATLAB, it still achieves good identification accuracy. The
generalization ability of the system model is strong, which verifies the effectiveness and
practicability of the system.
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4. Conclusions

Driving propensity is the driver’s attitude towards the real traffic situation and the
preference of the corresponding decision-making or behavior value in the process of driving,
which can better reflect the relationship between the driver’s factors and traffic accidents.

In the existing driving propensity-related research, the driving data collection equip-
ment is expensive, the installation is complicated and the experimental data processing
is cumbersome, resulting in high costs and poor practicability for the identification of
driving propensity. There are relatively few studies that do not take full advantage of the
vast amount of real-time driving data. A driving propensity identification method based
on AutoNavi navigation dynamic data and FOA-GRNN is proposed in this paper and a
driving propensity identification system based on the Android development platform and
AutoNavi map open platform is established. Starting from the realization of personalized
automotive active safety assistance system, in-depth research on the identification method
of driving propensity was conducted. The specific research results are as follows:

(1) The dynamic data collection method of AutoNavi Navigation. A dynamic data
acquisition method for AutoNavi Navigation is proposed in this paper. A dynamic
data collection application based on the Android development platform and AutoNavi
map API and SDK is developed. The data such as time, speed and acceleration are
collected through AutoNavi API. The algorithm which can collect nine kinds of
driving propensity characteristic parameters is designed, which realizes the real-
time collection, processing and storage of driver characteristic data in the process
of navigation and driving. This makes it possible to accurately identify the driving
propensity based on the dynamic data of AutoNavi.

(2) An experimental framework suitable for driving propensity research. Starting from
the consideration of the driver’s own factors, the driving propensity is preliminary
judged through the authoritative test questionnaire. The reliability and validity of
the test results are analyzed in this paper. Combined with the observation during the
driver’s experiment and the video playback after the experiment, the driving propen-
sity of the driver is comprehensively determined. The feasibility of the AutoNavi’s
dynamic data acquisition program and the effectiveness of the acquisition algorithm
are verified by the real vehicle experimental data.

(3) Feature parameter extraction of driving propensity. Considering the computational
timeliness of the driving propensity model, the multidimensional data collected from
the real vehicle experiments are processed for dimensionality reduction. The principal
component analysis algorithm is selected to reduce the dimension of driving data and
filter out redundant features. The feature data that contributes the most to various
driving propensity is extracted and finally the feature parameters that better represent
the driving propensity are obtained.

(4) Driving propensity identification model. Combined with the fruit fly optimization
algorithm and generalized regression neural network, a driving propensity identi-
fication model based on FOA-GRNN is proposed. The model is trained, tested and
verified by using the driving propensity feature variable set. The results show that the
FOA-GRNN model proposed in this paper can realize the accurate identification of
driving propensity and achieve better results for the identification of various driving
propensity types. Compared with the GRNN and BPNN models, it is proved that the
FOA-GRNN model has better stability and higher identification accuracy.

(5) Driving propensity identification system. By analyzing the functional requirements of
the system, the overall framework of the system is determined and a modular system
construction method is designed. Based on the Android development platform
and AutoNavi map API and SDK, the driving propensity identification system is
constructed. It is verified with the real vehicle experimental test that the functional
modules of the system can operate stably, the overall performance of the model is
better and the driving propensity can be accurately identified. The construction
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of this system can provide a new idea for the establishment of a human-centered
safety-assisted driving system, which has certain practical significance.
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