
A Real-time Service Oriented Infrastructure

Dimosthenis Kyriazis, Andreas Menychtas, George

Kousiouris

National Technical University of Athens

Athens, Greece

{dimos, ameny, gkousiou}@mail.ntua.gr

Karsten Oberle, Thomas Voith

Alcatel Lucent

Stuttgart, Germany

{karsten.oberle, thomas.voith}

@alcatel-lucent.com

Michael Boniface

University of Southampton IT Innovation Centre

Southampton, UK

mjb@it-innovation.soton.ac.uk

Eduardo Oliveros

Telefonica Investigation e Disarollo

Madrid, Spain

eod@tid.es

Tommaso Cucinotta

Scuola Superiore Sant'Anna

Pisa, Italy

t.cucinotta@sssup.it

Sören Berger

University of Stuttgart

Stuttgart, Germany

soeren.berger@rus.uni-stuttgart.de

Abstract — The advancements in distributed computing have

driven the emergence of service-based infrastructures that allow

for on-demand provision of ICT assets. Taking into consideration

the complexity of distributed environments, significant challenges

exist in providing and managing the offered on-demand

resources with the required level of Quality of Service (QoS),

especially for real-time interactive and streaming applications. In

this paper we propose an approach for providing real-time QoS

guarantees by enhancing service oriented infrastructures with

coherent and consistent real-time attributes at various levels

(application, network, storage, processing). The approach

considers the full lifecycle of service-based systems including

service engineering, Service Level Agreement (SLA) negotiation

and management, service provisioning and monitoring. QoS

parameters at application, platform and infrastructure levels are

given specific attention as the basis for provisioning policies in

the context of temporal constraints.

Keywords – real-time; service oriented infrastructure; cloud

computing; quality of service;

I. INTRODUCTION

Service Oriented Architectures (SOAs) [1] refer to a
specific architectural paradigm that emphasizes
implementation of components as modular services that can be
discovered and used by clients. Infrastructures based on the
SOA principles are called Service Oriented Infrastructures
(SOIs). Through the agility, scalability, elasticity, rapid self-
service provisioning and virtualization of hardware, Service
Oriented Architecture principles are reflected into Clouds,
which provide the ability to efficiently adapt resource
provisioning to the dynamic demands of Internet users. Many
architectural paradigms from distributed computing such as
service-oriented infrastructures, Grids and virtualization are
incorporated into Clouds. There are three main classes in the
cloud services stack which are generally agreed upon [2]:

Infrastructure as a Service (IaaS), which refers to the
provision of ‘raw’ machines (servers, storage,
networking and other devices) on which the service
consumers deploy their own software (usually as
virtual machine images).

Platform as a Service (PaaS), which refers to the
provision of a development platform and environment
providing services and storage, hosted in the cloud.

Software as a Service (SaaS), which refers to the
provision of an application as a service over the
Internet or distributed environment.

In this paper, we do not focus on a specific class of the
aforementioned ones, but describe how real-time aspects are
addressed across the classes. The proposed approach has been
developed in the EU-funded project IRMOS [3], targeting soft
real-time applications that have stringent timing and
performance requirements, but for which some violations of
the timing constraints are acceptable provided these are well
understood and carefully managed, as they lead to degradation
in the provided QoS level. Besides the approach, a set of tools
and methodologies [4], [5], [6] have been implemented
offering the corresponding functionality in the IaaS, PaaS and
SaaS classes.

The remainder of the paper is structured as follows: Section
II gives an overview of the proposed service oriented
infrastructure including the key features and a high-level view
of the architecture, while Section III introduces the control
loops concept that allows the infrastructure to provide QoS
guarantees. The “implementation” of the control loops refers to
specific processes (also called channels) that enable and
guarantee real-time, presented in Sections IV and V
correspondingly. The paper concludes with a discussion on
future research and potentials for the current study.

The research leading to these results has been supported by the European

Commission under grant agreement n.214777, in the context of the IRMOS

Project. More information at: http://www.irmosproject.eu.

Annual International Conference on Real-Time and Embedded Systems (RTES 2010)
Copyright © GSTF 2010
ISBN: 978-981-08-7654-8
doi:10.5176/978-981-08-7654-8 R-47

R-39

Annual International Conference on Real-Time and Embedded Systems (RTES 2010)

II. SERVICEORIENTED INFRASCTRUCTURE

A. Key Features

The proposed architecture adopts a service-oriented
approach to allow services to interact dynamically and
continuously, spanning between different domains, and ranging
from the application level down to the level of network
resources management and the execution environment.

To achieve the real-time functionality and the required QoS
level, the infrastructure operation is separated in two phases:
the offline, where the application and Application Service
Components (ASCs) are prepared (i.e. development, modeling,
etc) and the online, where the resources are negotiated and
reserved and the application is initialized and operates.
Expanding on this in greater detail as depicted in the following
figure (Figure 1):

Offline Phase (design-time service engineering): This
phase includes the processes for developing / adapting
application components to the SOI and the creation of
descriptors and documents for the application
operation such as models, mapping rules, initialization
scripts, SLA templates and workflow descriptions.

Online Phase (negotiation, execution and monitoring):
This phase begins with the SLA negotiation and as
soon as the SLAs are agreed (signed), the IaaS provide
reserves the resources (computational, storage and
network) for use within the requested time interval.
When the execution of the application starts, the PaaS
provider is responsible for orchestrating and
monitoring, until completion, the workflow execution.
At any time during the execution, an exception and / or
SLA violation occurs; mechanisms to adapt the
resources (e.g. live migration) are put in place while re-
negotiation of SLAs may be triggered in order to re-
guarantee the QoS provision of the application and the
application service components.

Figure 1. Two-Phases Approach

B. Architecure

Based on the cloud service models, in this section we
briefly discuss the overall architecture (details can be found
in [7]) in order to describe how real-time is achieved across
these service models. In the SaaS service model, a specific
methodology and tools have been developed, which allow
application developers to engineer their application to deploy it

within the SOI [6]. The PaaS service model operates between
applications and virtualized resources. As shown in the
following figure (Figure 2), the core elements are Service
Engineering and Service Management, which are described in
more detailed in the subsequent sections. This layer aims to
provide and manage the execution of real-time services inside
the IaaS on request of the Application Layer, while conforming
to the real-time constraints as determined in the Application-
SLA. Apart from managing applications execution, the
framework supports service engineering, fully automated SLA
negotiation and re-negotiation, mapping high level
performance parameters to low level resource parameters,
discovery and reservation of the ISONI resources needed for
the execution. During the execution phase of the application,
the PaaS provider monitors continuously and manages the
application components and the resources either directly
through the application wrappers or through the monitoring
interface of the IaaS layer.

Service Management

Application Wrapper

Orchestrator
SLA

Management

Service Engineering

Service-

Oriented

Application

Application Wrapper

Service-

Oriented

Application

Application

QoE/QoS

Repository

Event Monitoring and

Provisioning Rules

Virtualised Storage, Computing and Networking

Real-Time

Models

Figure 2. High-level Service Oriented Architecture

III. CONTROL LOOPS

In this section we introduce the concept of control loops
which are implemented with processes being employed to
support application provisioning and execution through the
virtualized execution environment and networking
infrastructure. To achieve this, the platform does not merely
provide a set of services but also cross layer workflows that
consider the control channels and information exchanges which
are required to support real-time management of interactive
applications throughout the full lifecycle.

In order to minimize manual configuration and deliver on-
demand QoS-aware services, all subsystems are self-managed
and reconfigured in order to achieve management efficiencies,
and to react on QoS failures (such as an SLA violation or
network link failure) in a timely way. To achieve the latter, we
introduce three control loops that are all at technical level and
provide the necessary functionality in order to maintain QoS
metrics across the architectural levels. The Control Loops are
the following and are depicted in Figure 3:

Application Control: It deals with the relationship
between users and applications required to guarantee
the application QoS. This control loop is managed by

R-40

Annual International Conference on Real-Time and Embedded Systems (RTES 2010)

the application itself and the application developer in
response to either user events or platform events. It is
implemented with the use of models, workflows and
tools that produce artifacts capturing the applications’
behavior and estimating resource needs in advance of
execution. During runtime it refers to application
monitoring that may for example trigger events or
require for changes in the provided resources.

Environment Control: It deals with the relationship
between applications and virtual resources in order to
guarantee the platform QoS, as agreed in the SLAs.
This control loop is managed by the platform services
in response to application and virtualisation events. It
is implemented by the framework services (set of
tools) that support and manage the applications at run-
time (e.g. actions triggered if either the application or
resources do not perform as expected or need to be
adjusted).

Virtualization Control: It deals with the relationship
between virtual and physical resources in order to
guarantee the infrastructure QoS. This control loop is
managed within the IaaS provider in response to
platform or physical events. It is implemented by
intelligent networking services and tools as well as by
the Execution Environment for computing and storage
services.

Platform Services

Infrastructure Services

Infrastructure Resources

(computing, storage, network)

Software-as-a-Service

Platform-as-a-Service

Infrastructure-as-a-Service

Environment

Control

Virtualization

Control

Application

Control

N
e
g
o
tia

tio
n

R
e
se
rv
a
tio

n

S
e
rv
ic
e
E
n
g
in
e
e
rin

g

R
e
n
e
g
o
tia

tio
n

R
e
se
rv
a
tio

n

M
o
n
ito

rin
g

Figure 3. Control Loops

The actual implementation of the control loops refers to
tools and services used on different levels in order to monitor
the applications’ execution, communicate possible events and
take corrective actions if needed. We focus on five main
processes / channels implementing the control loops: Service
Engineering, Negotiation, Reservation, Monitoring and Re-
negotiation. These processes as well as their orientation
towards the control loops are analyzed in the following
paragraphs of this paper (while the first three are considered to
be enablers for real-time, the latter two are “facilitators” of
real-time and interactivity as explained later in this paper).

IV. PROCESSES ENABLING REAL-TIME

The goal of the channels / processes described in this
section is to provide the necessary information prior to
execution in order to describe and model the applications,
predict their behavior, negotiate and reserve resources
according to the aforementioned modeling and prediction in
order to ensure that during execution the requested level of
quality will be offered by the infrastructure.

A. Service Engineering

The goal of the Service Engineering process is to estimate
the resources required for an application and identify the QoS
parameters that have critical influence on the application’s
performance. The main actor in this process is the Application
Developer, who uses a set of tools to provide the necessary
information to the platform services in order to estimate the
required resources for the application execution. These tools
are the following:

1) Service Modelling Environment: A dedicated tool that

contains a profile for modelling ASCs using UML2. The

Application Developer uses this tool to model the application

and specify a number of parameters that are necessary for the

effective deployment of an ASC, and an application in

general. These include workload parameters that affect the

performance requirements of the ASC (e.g. number of users

connected to an eLearning application) and metrics that are

used in order to quantify the level of QoS offered by the

platform for this ASC (e.g. response time of the eLearning

real-time server). The outcomes of this process are the

Application Service Component Description (ASCD). The

modelling environment automatically produces the

Application-SLA Template by combining the individual

ASCDs of the components. The Application-SLA is then

published by the SaaS Provider to the PaaS Provider.

2) Mapping Service: A service providing an Artificial

Neural Network-based rule / model, that depicts the

relationships between the ASC characteristics / inputs, the

different hardware configurations and the resulting QoS

levels. It connects high level application workload features

(such as number of users, resolution of processed images etc.)

with application QoS requirements (like fps output,

application response time etc) and low level resource

parameters. Through these rules, the platform provider can

observe the effect of selected resources on the QoS output for

a given execution with specific workload parameters.

3) Performance Estimation Service: A service using the

mapping rules in conjunction with modelling approaches such

as Finite State Machines (FSMs) and Discrete Event

Simulation (DES) in order to include workflow, events,

interactivity, uncertainty and optimization in the ASC and

application performance models, along with probabilistic

guarantees.
The functionality of the Control Loops applied to the

Service Engineering process refers to:

R-41

Annual International Conference on Real-Time and Embedded Systems (RTES 2010)

Application Control: The Application Performance
Models allow for modeling user demand in respect to
application QoS. Optimization and updates of the
models is feasible through a feedback loop that
provides updated runtime information (received from
the Monitoring service).

Environment Control: The set of low level resource
requirements that is being produced by the
Performance Estimation Service allows for modeling
application QoS in respect to virtual resources. The
updates that may occur on the application control loop
can be “passed” to the environment control through the
updated model or updated ASCD parameters that will
be reflected in an updated set of the resource
requirements.

B. Negotiation

The goal of the Negotiation process is to agree the
Application SLAs (considering customer requirements) and
Technical SLAs (discovery of resources available, which fulfill
the customer requirements) between the customer and the
corresponding providers in order to proceed with the
reservation of the resources according to the agreements. The
prerequisites for the Negotiation process are the Application-
SLA Template and the Rules (from the Mapping Service) as
produced by the Service Engineering process.

There are many actors in this process, namely the
Customer, the SaaS Provider, the PaaS Provider and the IaaS
Provider, since there are two different negotiations involved: (i)
Application-SLA negotiation between the Customer and the
SaaS Provider, and (ii) Technical-SLA negotiation between
PaaS Provider and IaaS Provider. The tools / services engaged
in this process are the following:

1) SLA Negotiator: A service orchestrating the negotiation

process and providing valid SLA offers to the Customer prior

to the execution of the services. It represents the central

component during the SLA negotiation process.

2) A-SLA Manager: A service responsible for the

management of Application-SLAs, which includes query,

publishing, creation and update SLA templates and mapping

commitments to IaaS resources.

3) Performance Estimation Service: During the

negotiation phase, this service provides resource specification

descriptions, which encompass information related to the

Virtual Machine Units (VMUs) and the network links

interconnecting them. This information includes QoS

annotations as requests towards the IaaS providers.

4) Discovery Service: A service responsible for registering

available IaaS Providers that meet the QoS parameters defined

in the Application-SLA. It is designed so as to store the

pricelists of the IaaS providers and to retrieve them when

contacted by the SLA Negotiator. The service also includes a

function that is used by the IaaS providers to advertise their

capabilities with QoS properties.

5) T-SLA Manager: A service responsible for the

management of Technical-SLAs which specify resources

procured with IaaS providers. Technical-SLAs are offered by

the IaaS providers as a response to requests from the PaaS

providers. One of the key functionalities of the T-SLA

Manager is reporting any SLA violations to the SaaS provider

through a notification mechanism that can then be used to

trigger events for mitigating management actions. When

violation event occurs, the violation information will be sent

out to the subscribed party.
The functionality of the Control Loops applied to the

Negotiation process refers to:

Application Control: The requirements expressed in
the Application-SLA allow for negotiation of SLAs
and as a result reservation of resources according the
application’s QoS requirements. Changes in the
requirements are reflected in the Application-SLA and
as a result in the selected resources.

Environment Control: The resource specification
descriptions that are being produced by the
Performance Estimation Service turn the Application-
SLA requirements into Technical-SLA requirements
through the mapping of high-level terms to low-level
resource estimates. Actual application and resource
behavior is reported by a feedback loop, this is used to
check whether the required QoS is actually supplied by
the IaaS provider. This data is also used to validate the
accuracy of models used by the engine by comparing
the predictions with actual measurements.

Virtualization Control: The Technical-SLA
commitments allow for resource provisioning
according to the application requirements expressed.
Given that a pre-reservation takes place while creating
the offers according to the resource specification
descriptions, the virtual resources provided meet the
application’s QoS. Changes in the infrastructure with
regard to Technical-SLA commitments result in a
domain wide resource availability check and a pre-
reservation in the IaaS resources for computing,
storage and network resources.

C. Reservation

The goal of the Reservation process is to reserve the
resources (virtual and physical) according to the agreed
Technical-SLA between the PaaS and the IaaS provider. This
process is part of the negotiation process described above. The
main responsible actor is a Deployment Manager that is
instantiated by the ISONI SLA Manager. The tools / services
engaged in this process are the following (additional
information on these services can be found in [8], [9]):

1) Deployment Manager: A service responsible for the

deployment of specific virtual networks in the IaaS.

2) Resource Manager: A service responsible for managing

the execution resources (compute & storage) within the IaaS

domain.

3) Storage Manager: A service responsible for managing

the reservation of storage resources within the IaaS domain.

R-42

Annual International Conference on Real-Time and Embedded Systems (RTES 2010)

4) Path Manager: A service responsible for managing the

network resources within the IaaS domain.
The functionality of the Control Loops applied to the

Reservation process refers to:

Environment Control: The Technical-SLA reservations
are communicated by the IaaS providers to the PaaS
providers. Given that the Workflow Enactor Service
resides on the PaaS, while an instance of it is also
deployed in the virtualized environment, any change to
the configuration from the Application Control Loop
results in changes in the reservation through the
Workflow Enactor Instance.

Virtualization Control: The physical resources are
being reserved and allocated according to the resource
specification descriptions, which are part of the
Technical-SLA. These descriptions contain functional
requirements for the deployment with respect to
computing, storage and networking. When the virtual
network needs to be instantiated the respective
resources are brought into service via the Virtualization
Control interface. In order to set up or configure
resources, for computing and storage the Resource
Manager instructs the Execution Environment (EE)
and for networking the Path Manager instructs the
ISONI eXchange Box (IXB) [10].

V. PROCESSESGUARANTEEING REAL-TIME

The goal of the channels / processes described in this
section is to provide the necessary functionality to guarantee
QoS during execution. Therefore, we describe (besides
execution) two main processes: Monitoring and Re-
negotiation. The first one is a fundamental process that allows
for evaluation of metrics during runtime in order to ensure that
the reserved resources meet the application requirements, while
the second one may either be triggered by the application at
runtime (e.g. more users in a collaborative session) or by the
IaaS providers if the initially expressed application
requirements cannot be fulfilled with the reserved resources
and re-negotiation is needed in order to guarantee the QoS.

A. Execution and Monitoring

The goal of the Execution and Monitoring process is to
enable execution of the application according to the QoS
requirements, while monitor allows measuring QoS at both
application and infrastructure levels targeting trigger events for
runtime adaptability of resource provisioning estimation and
decision making. The main actors in this process are the SaaS
Provider, the PaaS Provider and the IaaS Provider. The tools /
services engaged in this process are the following:

1) Deployment Manager: During the execution phase,

inside the IaaS provider, the Deployment Manager is

responsible for collecting infrastructure monitoring

information and sending this low level information to the

Monitoring Service (inside the PaaS provider) in the

configured form requested during the reservation (Technical-

SLA).

2) Resource Manager: During the execution phase the

Resource Manager is responsible for collating and forwarding

monitoring information received from the infrastructure

regarding the resources.

3) Path Manager: During the execution phase the Path

Manager is responsible for collating and forwarding

monitoring information received from the infrastructure

regarding the network links.

4) Workflow Enactor Service: A service [11], inside the

PaaS provider, responsible for configuring, starting and

stopping the applications (an instance of the service is

deployed in the virtualized environment to invoke the

services).

5) Monitoring Service: A service [12], inside the PaaS

provider, responsible for collecting the high as well as the low

level information provided (an instance of the service is

deployed in the virtualized environment to monitor the ASCs

and provide corresponding reports to the monitoring service).

6) Storage Manager: During execution phase the Storage

Manager is responsible for collating and forwarding

monitoring information received from the infrastructure

regarding the storage units.

7) Real-time Scheduler: A service allowing for temporal

isolation among concurrently running VMUs, in such a way

that the temporal interferences among them do not disrupt the

QoS guarantees required by the applications running within

the VMUs [13]. This mechanism provides strong scheduling

guarantees for an entire VMU, since it ensures a configurable

CPU time within a guaranteed repeating maximum period of

time. The application component running inside a VMU

benefits from these real-time guarantees by experiencing a

constant CPU performance as if it were running alone on the

physical system. The advantage of this scheduler over the

priority-based ones is the ability to provide temporal

encapsulation among competing processes, ensuring that an

individual process inside the VMU runs with proper QoS

guarantees.

8) ISONI eXchange Box: A service [10] regulating

concurrent deployments regarding networking resources in

order to manage and guarantee the bandwidth. Flow control

ensures that the virtual networks are really isolated and do not

impact each other.

9) Storage QoS Manager: Based on storage pool’s and

associated VMU connections’ QoS parameters the Storage

QoS Manager enforces storage quality of service on each

VMU connection.

10) Execution Environment: The Execution Environment is

a framework in which a VMU is running. It also adds

additional features including real-time enabled execution

through the Real-time Scheduler and features for redundancy,

migration and the connection to the long term storage. It also

provides an endpoint for the connection to the virtualized

network for the interaction between different VMUs.
The functionality of the Control Loops applied to the

Execution process refers to:

R-43

Annual International Conference on Real-Time and Embedded Systems (RTES 2010)

Application Control: The information provided by the
application monitoring allows for application QoS
provision, since it contains critical ASC outputs (e.g.
fps of a teleconference, response time of a server etc.).
This runtime information is relayed to the Monitoring
Service in order to be utilized by the PaaS provider for
taking corrective actions that will ensure that the real-
time guarantees are kept throughout application
execution.

Environment Control: The Application-SLA and
Technical-SLA metrics are being monitored during the
execution since monitoring information is collected
both from the applications and from the infrastructure.
Violations are communicated to the SaaS and IaaS
provider in order to take corrective actions. This may
result to SLA Re-negotiation (as explained in the
following section of this paper).

Virtualization Control: The physical resources are
monitored during execution. Any violation that cannot
be handled within the IaaS domain (e.g. through live
migration) is reported to the SLA Manager and
escalated as a T-SLA violation.

B. Re-negotiation

The goal of the Re-negotiation process is to provide
updated resources at runtime following either a request from a
Customer or the monitoring information (obtained during
execution) that shows that the initially expressed application
requirements cannot be fulfilled with the reserved resources
and re-negotiation is needed in order to guarantee the QoS. The
changes affect the virtual network and refer to: Computational
power, Memory, Bandwidth, Storage, and Lifetime of virtual
networkds. Re-negotiation may be triggered during execution,
which actually means that all artifacts and components are in
place. As in the Negotiation process, the actors in this process
are: the Customer, the SaaS Provider, the PaaS Provider and
the IaaS Provider.

The functionality of the Control Loops applied to the Re-
negotiation process refers to:

Application Control: The application configuration is
changed at runtime which is reflected to the
configuration information that is passed to the
Environment Control Loop through the Workflow
Enactor Service.

Environment Control: The updated resource
specification descriptions that are being produced by
the Performance Estimation Service include the
updated resource estimates. The latter allows for real-
time handling of QoS exceptions and changes in
uncertainty throughout the application execution.

Virtualization Control: The updated resource
allocations are based on the new descriptions as part of
an updated Technical-SLA. The Deployment Manager
changes the virtual network according to these new
descriptions.

VI. CONCLUSIONS

Current approaches on service oriented architectures focus
on designing and implementing a rich set of services to
efficiently operate, manage and reconfigure computing, storage
and network resources under real-time conditions, providing to
end users and to the associated applications the appropriate and
required level of QoS. All Platform and Infrastructure
capabilities are offered as on-demand services, although the
architecture of the media applications varies from traditional n-
tier enterprise applications to service-oriented workflows. Thus
emerging cloud-based platforms and service oriented
infrastructures face the challenge of providing QoS guarantees
in order to facilitate real-time and interactivity as requested by
Future Internet Applications.

In this paper we described how real-time aspects are
addressed across all layers of service oriented environments.
The proposed approach and the architecture has been
developed within the framework of the IRMOS project; being
validated with three different real-time interactive multimedia
applications, namely Digital Film Postproduction, Interactive
Real-time eLearning and Virtual and Augmented Reality.

REFERENCES

[1] T. Erl, “Service-oriented Architecture: Concepts, Technology, and
Design”, Upper Saddle River: Prentice Hall PTR, ISBN 0-13-185858-0,
2005.

[2] The NIST Definition of Cloud Computing, Peter Mell and Tim Grance,
Version 15, http://csrc.nist.gov/groups/SNS/cloud-computing, 2009

[3] The IRMOS Project, www.irmosproject.eu

[4] IRMOS Whitepaper, “Intelligent Service Oriented Network
Infrastructure Whitepaper”, 2009.

[5] Boniface, M., Nasser, B., Papay, J., Phillips, S., Servin, A., Zlatev, Z.,
Yang, K. X., Katsaros, G., Konstanteli, K., Kousiouris, G., Menychtas,
A., Kyriazis, D. and Gogouvitis, S., “Platform-as-a-Service Architecture
for Real-time Quality of Service Management in Clouds”, Fifth
International Conference on Internet and Web Applications and
Services, ICIW 2010, May 2010, Barcelona

[6] Kyriazis D, Einhorn R, Furst L, Braitmaier M, Lamp D, Konstanteli K,
Kousiouris G, Menychtas A, Oliveros E, Loughran N, Nasser B, “A
Methodology for engineering real-time interactive multimedia
applications on Service Oriented Infrastructures”, IADIS Applied
Computing 2010, Timisora, Romania, 2010

[7] IRMOS Project Deliverable D3.1.3, "Updated Version of IRMOS
Overall Architecture ", 2009

[8] Oberle, L., Kessler, M., Voith, T., Stein, M., Lamp, D., Berger, S.,
“Network Virtualization: The missing piece”,ICIN2009, Bordeaux, 2009

[9] Oberle, K., Voith, T., Stein, M., Gallizo, G., Kübert, R., “The Network
Aspect of Infrastructure-as-a-Service”, ICIN2010, Berlin, October 2010

[10] Kessler, M., Oberle, K., Braun, S., Lamp, D., “Network Virtualization:
Towards a fully virtualized service infrastructure”, ISC2009, Hamburg,
23-26.06.2009

[11] Gogouvitis S, Konstanteli K, Kousiouris G, Katsaros G, Kyriazis D,
Varvarigou T, “Workflow Management in Service Oriented
Infrastructures”, Proceedings of the 6th IEEE/IFIP International
Conference on Network and Service Management, Canada, 2010

[12] Katsaros G, Kousiouris G, Gogouvitis S, Kyriazis D, Varvarigou T, “A
Service Oriented Monitoring Framework for soft real-time applications”,
IEEE International Conference on Service-Oriented Computing and
Applications (SOCA), Australia, 2010

[13] Checconi F, Cucinotta T, Faggioli D, Lipari G, "Hierarchical
Multiprocessor CPU Reservations for the Linux Kernel," 5th
International Workshop on Operating Systems Platforms for Embedded
Real-Time Applications (OSPERT 2009), Dublin, Ireland, June 2009

R-44

