
Vol.:(0123456789)1 3

Journal of Ambient Intelligence and Humanized Computing (2020) 11:961–977

https://doi.org/10.1007/s12652-019-01203-7

ORIGINAL RESEARCH

A real-time service system in the cloud

Aneta Poniszewska‑Maranda1 · Radosław Matusiak1 · Natalia Kryvinska2 · Ansar‑Ul‑Haque Yasar3

Received: 15 August 2018 / Accepted: 28 November 2018 / Published online: 5 February 2019

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract

Recently, we have witnessed unprecedented use of cloud computing and its services. It is influencing the way software is built,

as well as company’ resources such as servers, workstations or generally hardware are used. This paper aims to examine the

benefits of cloud usage to support real-time service systems, using the Salesforce platform. First, we explore the meaning

and the role of cloud computing for the real-time service systems efficient functioning. Then, we build a service management

platform for the Polish Billiards and Snooker Association (PBSA), based on a real-time system located in the cloud. This

way, PBSA managers are able to complete their tasks in this system on-demand. Moreover, it is set up as a private cloud to

grant access only to the snooker organization employees.

Keywords Cloud computing · Real-time service system · Salesforce platform · SaaS cloud

1 Introduction

Ubiquitous development of Information and Communication

Technologies (ICTs) involves the evolution of commonly

adopted computer systems and applications. One of the

fastest growing trends in the IT environment is the cloud.

It is influencing the way of the software building, as well

as companies or end users exploit resources such as serv-

ers, workstations or generally hardware, which in turn can

become deprecated quickly. Cloud itself can be referred to as

cloud computing or public cloud; e.g., online disks designed

for data storage and easy access to it. Accordingly, business/

private users can manage their businesses or processes using

any device that has an Internet connection (Mell and Grance

2009, 2011; Jin et al. 2010; Qi et al. 2018).

From the research point of view, cloud computing is an

interesting field as it is one of the fastest developing domains

in modern businesses and classical computer science.

It brings a lot of opportunities in response to on-demand

access to data resources; but, at the same time, there are

many concerns about the safety of such solutions. Often

information that users decide to store online is sensitive. In

a certain sense, there is some risk involved when using cloud

computing as beneficiaries must trust and rely on the service

providers. On the other hand, the growing number of users

who takes advantage of cloud solutions force cloud provid-

ers to assure an appropriate level of security. Hence, more

and more organizations decide to move their data into the

cloud (Tang et al. 2010; Sriram and Khajeh-Hosseini 2010;

De la Prieta et al. 2017). As an example, an organization that

lacks a service management computer system, we analyze

the Polish Billiards and Snooker Association (PBSA). It is a

Polish federation representative for two sports disciplines—

snooker and English billiards. Its main occupation embraces

organizing tournaments, the popularization of mentioned

disciplines, representation of Poland on the international

arena and choosing players to the national team.

Polish Billiards and Snooker Association does not have

distributed computing infrastructure. Also, the activities on

behalf of this organization are not the main occupation of

people from it, rather just hobby. The cloud approach with

its advantages seems a reasonable solution to build a sys-

tem that could help to manage snooker tournaments. Cloud

 * Aneta Poniszewska-Maranda

 aneta.poniszewska-maranda@p.lodz.pl

 Natalia Kryvinska

 Natalia.Kryvinska@fm.uniba.sk

 Ansar-Ul-Haque Yasar

 ansar.yasar@uhasselt.be

1 Institute of Information Technology, Lodz University

of Technology (TUL), Lodz, Poland

2 Department of Information Systems, Faculty of Management,

Comenius University in Bratislava, Bratislava, Slovakia

3 Transportation Research Institute-IMOB Hasselt University,

Hasselt, Belgium

http://crossmark.crossref.org/dialog/?doi=10.1007/s12652-019-01203-7&domain=pdf

962 A. Poniszewska-Maranda et al.

1 3

platform enables access from personal computers or smart-

phones from anywhere as long as an Internet connection is

available (Sadiku et al. 2014; Poniszewska-Maranda et al.

2017; Chen et al. 2018).

There are many aspects that would make the organization

of such competition more efficient. For example, the main

referee should have a tool that allows managing the schedule

of matches and notifying players about their next match,

generating match report, and generating tournament bracket

automatically. Accordingly, we examine the capabilities of

cloud in relation to the real-time service systems, consider-

ing Salesforce platform.

This paper is organized as follows. Section 2 describes

the idea of real-time system and cloud computing common

usage. This section also describes cloud, key characteris-

tics, deployment and service models. Section 3 reveals the

information about Salesforce platform—what it is for, and

what tools it offers to build our proposed system. Section 4

deals with the building of the proposed system, including

the development of the requirements, architecture and logic

layer. Section 5 provides a summary of the results and pro-

posed future work.

2 Cloud computing for real‑time service
systems

Polish Billiards and Snooker Association (PBSA) service

management platform is developed as a real-time system

located in the cloud. It allows PBSA managers and employ-

ees to call up this system on-demand. It is deployed as a

private cloud with restricted access to the employees of the

snooker organization only. This section describes a real-time

system functionality and its usefulness for our proposed

management system. Then, a categorization of cloud capa-

bilities in relation to the research problem is discussed.

2.1 Real‑time systems

The term real-time system sometimes can be easily misun-

derstood. One might probably think of a complex system

that processes data, operates and responds to the user almost

immediately. In fact, this concept is much wider. The crucial

thing is to distinguish the difference between real-time sys-

tem and computer real-time system (Shin and Ramanathan

1994). A definition proposed in (Laplante 1994; Schoch

and Laplante 1995; Laplante and Ovaska 2011) states that

not only computations correctness is important in real-time

systems, but also the fact that they follow events happening

in real time. In this case, it means that the essential require-

ments are punctuality (meeting time constraints) and contin-

uous operation. According to a concept proposed in (Kopetz

2011), such systems are divided into the set of subsystems,

referred to as clusters (Kopetz 2011). Figure 1 depicts the

components of real-time systems.

Based on this view, a computer real-time system is just

one of the clusters of a bigger system where computations

take place. Hence, the relation through the man–machine

interface is obvious—a man operates a computer that pro-

cesses data related to a controlled object. An interface, in

turn, consists of sensors and actuators that process physical

signals and transfer them to or receive them from the compu-

tational cluster (Gomaa 1993; Liu et al. 2000; Kopetz 2011).

Real-time systems can be divided into two categories,

namely: hard and soft. The most crucial factor here is

time. A computer real-time system should operate within a

requested time constraint referred to it as a deadline. Hard

type of real-time systems means—every deadline must be

met; otherwise, the system can result in a total failure. Such

breakdown could cause a disaster, even for humans. Such

disasters can happen in chemical plants or in air traffic

control, which are in turn real-time systems (Mattai 1995;

Kopetz 2011; Laplante and Ovaska 2011). On the other

hand, soft type of real-time systems does not cause any dan-

ger when the deadline is not met. When a failure occurs in

this case, a system might become just annoying for the user

or may result in some financial losses. A good example to

illustrate this problem is an online reservation system. Miss-

ing a time constraint would result in unsuccessful opera-

tion, but no danger for people (Krishna 2001; Kopetz 2011;

Laplante and Ovaska 2011).

Another classification of real-time systems involves

event-triggered and time-triggered systems. A trigger can be

defined as an event that entails further actions or computa-

tions in the computer. Hence, in time-triggered systems, any

activities taken by it happen at a predefined earlier moment.

This makes the whole system inflexible since it handles

only events that had been defined before. On the other hand,

actions in event-triggered systems are started immediately

after any event other than set earlier to happen at a given

time triggers the system (Kopetz 2011; Klein et al. 2012).

Within the context of this work, a system is developed

for practical purposes that can be defined as a soft real-

time system. In case of total failure, naturally there is no

a significant danger for people or surroundings. It is a tool

designed for improving the efficiency of management sports

tournaments. Therefore, if it doesn’t work properly, people

in charge have to operate just like they are doing it now—

without any automation. Hence, the time constraint involved

here should be such that the work with this system is fluent,

approximately 2–3 s per action invoked by a user. It is also

an event-triggered system, because it reacts to the results

on the tournament. As this is not so complicated, from the

theoretical point of view of real-time systems, the instru-

mentation interface is rather neglected. This is because we

can not define the controlled object as one physical object.

963A real-time service system in the cloud

1 3

In this case, it rather refers to the tournaments as a whole—

matches, calculation of results and registration process.

2.2 Cloud computing

Mell and Grance from National Institute of Standards and

Technology (NIST) defined cloud computing as a model that

provides end users with access from any device, which has

an Internet connection, to a shared set of resources such as

servers, applications or services (Computer Security Divi-

sion 2018; Mell and Grance 2009, 2011). Therefore, the

most crucial fact in the cloud computing concept is that the

software being used is not installed on a device from which

it is accessed. Appropriate services do not involve compa-

nies’ infrastructure, they are available over an Internet con-

nection, ready to use (Leavitt 2009; Tang et al. 2010). One of

the first companies, who started to offer cloud services over

the Internet was Salesforce. A further example was Amazon

Web Services that enabled users the possibility to store data

online and perform computations (Barry 2003; CRM Soft-

ware & Cloud Computing Solutions 2018).

NIST provides four deployment models: private cloud,

community cloud, public cloud, and hybrid cloud (Angeles

2013; Computer Security Division 2018; Barry 2003; Sriram

and Khajeh-Hosseini 2010; Mell and Grance 2011). Besides,

it considers three main service models. These are Infrastruc-

ture as a Service (IaaS), Platform as a Service (PaaS) and

Software as a Service (SaaS). Service models and deploy-

ment models are strictly connected with each other. Besides,

it is important to remember that no matter whether the end

product is delivered in IaaS, PaaS or in SaaS—it can be

built on any of deployment models (Cusumano 2010; Sadiku

et al. 2014; Sultan 2014). In the following, we provide some

implementation examples of cloud service models.

In the first model, Infrastructure as a Service (IaaS), a

customer is given computing resources such as virtual server

space, networking, operating systems so that it can deploy

and run the software. Companies such as Amazon, Rack-

space or GoGrid are examples of IaaS providers. Resources

given to the customer are distributed across data centers,

which are maintained by the provider. Customers, in turn,

can work in virtualized components and deploy their own

platform. The reason for employing the IaaS model in com-

panies is that it allows moving expenses of managing hard-

ware to the cloud provider. Infrastructure as a Service allows

the consumer to build scalable system as resources based

on their needs (Angeles 2013; Computer Security Division

2018; Barry 2003; Sriram and Khajeh-Hosseini 2010; Mell

and Grance 2011).

The next service model is Platform as a Service (PaaS).

The customer is again given the cloud infrastructure and can

deploy their own system into the cloud utilizing tools avail-

able by the cloud provider such as programming languages,

libraries or database management systems. Moreover, avail-

able tools do not exclude the usage of libraries and tools

from other integrated sources. Examples of PaaS providers

are Google App Engine, Microsoft Azure, Force.com and

Amazon. Cloud infrastructure is maintained by the cloud

provider, where application programmers can fully con-

centrate on the system development. Moreover, the tools

provided in the PaaS model often enable developing applica-

tions without the knowledge of programming. For example,

Force.com platform allows building parts of a system using

one-click functionalities (Angeles 2013; Computer Security

Division 2018; Barry 2003; Sriram and Khajeh-Hosseini

2010; Mell and Grance 2011).

The last model mentioned in NIST definition is Software

as a Service (SaaS). In this case, a customer does not build

its own system but makes use of a ready system prepared

Fig. 1 Decomposition of the

real-time system (Kopetz 2011)

964 A. Poniszewska-Maranda et al.

1 3

by the cloud provider and running it in the cloud. Exam-

ples of SaaS providers are Salesforce, Microsoft Online

Services, and Google Apps. Applications created by SaaS

providers are accessible from any device with Internet con-

nection. For example, a user can download a program from

Google and use it on his/her smartphone, or a company with

Salesforce licenses can take the advantage of ready to use

applications from Salesforce’s marketplace—AppExchange

(Computer Security Division 2018; Sriram and Khajeh-

Hosseini 2010; Mell and Grance 2011). Figure 2 illustrates

the main elements that constitutes these models (Salesforce

Developers|API Documentation, Developer Forums & More

2017).

In this paper, the real-time service management system

advanced is built on two service models. The final solu-

tion delivered to the Polish Billiards and Snooker Associa-

tion, from the point of view of this organization, is given

in Software as a Service model since it is ready to use the

system in the cloud. During its development, Force.com

platform provided by Salesforce is used, which involves

another model; i.e., Platform as a Service. Issues related

to the Salesforce functionality and its PaaS platform are

described in the next Section.

3 The functionality of Salesforce cloud
service delivery platform

This section provides a detailed description of Salesforce

components that are used to build our proposed system.

Salesforce mainly provides customer relationship manage-

ment (CRM) software, primarily cloud-based. Salesforce has

a high reputation among its beneficiaries as it is confirmed

by numerous awards for the best CRM system given by mag-

azines Enterprise CRM, Mid-Market CRM or being a leader

in ranking of recommended CRM’s led by Software Advice

based on customers’ reviews (CRM Salesforce 2017; Yous-

eff et al. 2008; Benioff and Adler 2009; Trailhead 2017).

3.1 Database in Salesforce

The database represents the persistence layer of each appli-

cation. In the case of Salesforce, users and developers are not

responsible for managing this part of the system as there is

no software that has to be installed for that purpose. Instead,

the platform delivers the database that can be used when

building the applications using Force.com. It is a relational

type, but there are a few differences in comparison to the

database management systems in traditional applications.

In the latter, data is kept in tables which consist of columns

defined by a particular data type. Information might be

retrieved among rows of the concrete table. Furthermore,

these tables can be associated with each other with the use

of a primary key in one table and foreign key in the related

table.

Object replaces the table in Force.com database. In Sales-

force nomenclature, it is crucial to differentiated from so-

called sObject, which can be described as an object mate-

rialized in the platform’s object-oriented programming

language, Apex. This term is introduced to differ such objects

from instances of classes. Hence, the main function of Sales-

force’s object is to store the data. Objects can be related to

each other via relationship fields. There are two types of

them in Salesforce, namely: Lookup and Master–Detail. In

both cases, the ID of the related object is saved in the rela-

tionship field. The first type reflects the relationship of type

“one-to-one” or “one-to-many” and creates a link between

two objects. Among standard Salesforce objects, there is

always a relationship of Lookup type between Account and

Fig. 2 Elements of cloud service models (Computer Security Divi-

sion 2018; Mell and Grance 2011)

965A real-time service system in the cloud

1 3

Contact. The latter has the Lookup field that stores the ID of

a related object, in this case—Account.

The Master–Detail relationship is used when two objects

are tightly bounded with each other. Deletion of parent

record in this relationship entails deleting all child records.

This kind of relationship might reflect “many-to-many”

relationship. It happens with the use of so-called junc-

tion object that has set up Master–Detail field to two other

objects (Salesforce developers). Force.com platform offers

a special language dedicated to retrieving data from its data-

base, called Salesforce Object Query Language (SOQL). Its

statements are very similar to the well-known language of

relational databases. The basic structure of SOQL query is

presented in Fig. 3.

3.2 Apex

The Salesforce platform is using Apex which is an object-

oriented programming (OOP) language. Its syntax strongly

bears resemblance to Java as it is based on its conceptual

principles. Additionally, it supports the OOP paradigm such

as classes, inheritance, and interfaces. Apex is executed and

saved on the Force.com platform. The working principles of

this language is presented in Fig. 4.

Apex enables the conditions and statements available in

the majority of programming languages, such as variables,

constants, if-else statements, loops, and array notation. How-

ever, in the case of this language, an array is the same as

one of the collections, i.e. list. Other collections available

in Apex are sets and maps. What makes Salesforce’s pro-

gramming language unique is that the Cloud is the place

where the code is executed and compiled. Apex also enables

SOQL calls and assigning its results to the chosen collection.

Moreover, it supports Data Manipulation Language (DML)

operations, which can insert, update or delete the records

from the database.

3.3 Visualforce: client‑side language

Visualforce is a framework that enables web development

within the Salesforce platform as such creating customized

user interfaces. All interfaces are built using of this lan-

guage may consist of Visualforce tags, starting from prefix

‘apex’ (e.g., the starting tag <apex:page>), plain HTML and

optionally styling elements such as css elements that can be

uploaded into Salesforce. Moreover, Visualforce can com-

prise JavaScript. The working principle of this framework

is depicted in Fig. 5.

Each interface has its own unique URL address through

which it can be accessed. Then, it can interact with the sys-

tem logic, defined in Apex classes (custom controllers) or

triggers or in standard controllers, enabling automatic access

to data in Salesforce. Custom Visualforce interfaces might be

used in various places inside the platform. To give an exam-

ple, standard Salesforce interfaces for editing or creating a

new record can be overwritten by Visualforce ones. They

can be also accessed through the custom buttons created by

a user. The other options are embedding custom interface

into a standard layout or to open it through the custom tab

(trailhead and Salesforce developers).

4 Real‑time service system based
on the Salesforce platform

This section provides a practical example of real-time sys-

tem employment into cloud computing. It is a system we

developed with the use of the Salesforce platform named

Top 16 Manager. The main goal of this system is to examine

Fig. 3 Structure of SOQL query (Salesforce developers)

Fig. 4 Structure of SOQL query (Salesforce developers)

966 A. Poniszewska-Maranda et al.

1 3

Salesforce platform capabilities in the context of real-time

systems and cloud computing. For that purpose, the system

which can be classified as the soft real-time system is cre-

ated in the private cloud, taking advantage of Force.com

tools and programming languages. One of the best advan-

tages of Salesforce is that customizations can be achieved

by using few administration tools offered by Force.com plat-

form. Applications in Salesforce are mainly built for busi-

ness purposes, where there is a possibility to define Email

Alerts with their contents defined in an Email Template.

This can be invoked using other Force.com tools, namely:

Workflows and Process Builder. Both of them are used to

automate the processes used in Salesforce application. Their

creation starts from defining which object is going to entail

further actions. For example, these include updating the field

value on defined records or sending an email according to

Email Alerts indicated earlier. Actions set in these tools are

triggered only if they meet certain criteria given by the user

who creates either a workflow or a process. These actions

might be either immediate or time-dependent. The difference

between these two tools is that the Process Builder allows

updating child records what is not allowed in workflows. All

described processes are created only by clicking and setting

right options, no code is involved in such cases.

Salesforce may have many users; therefore, there is a need

to define who can access what. It can be achieved by setting

appropriate profiles using another Force.com tool which

does not involve any technical knowledge. Users’ profiles

are set of permissions and their settings regulate which

resources a particular user can access. For example, they

can control view, update, create or delete the permissions for

each object defined in Salesforce, which fields and buttons

are visible for the user or which Apex class or Visualforce

interface can be executed by a particular user (Salesforce

developers). Although Salesforce is 17 years old and many

users claim that the design of the platform is old-fashioned,

many functionalities are stated that makes it so powerful

to build the CRMs in the cloud. However, with the release

of the Salesforce1 mobile application, platform’s creators

decided to move its design into the desktop version of Sales-

force. This is also done to meet the expectations of users

for which the design of the system is its important part. For

that purpose, Salesforce launched lightning experience; a

new graphical user interface of the whole platform. What

has changed apart from the overall design of the platform

is, for example, navigation menu, record layouts, list view,

and dashboards. Salesforce has also released Salesforce

lightning design system (SLDS); a CSS stylesheet consist-

ent with lightning experience principles. It is also possible

to develop the interfaces in Visualforce and apply lightning

styling on them. Except for improved look of the platform,

lightning entails changes in the programming conventions in

Salesforce. The new user interface framework is released in

order to develop the applications on the desktop and mobile

versions of the platform. It is called lightning components.

Just as in Salesforce classic, the server side is handled by

Apex. However, client-side in case of lightning components

is served by JavaScript. It enables an interaction with custom

controllers and with the database. Lightning components

might be accessed in the system through the tab, they can

be the part of custom interfaces or they can be defined under

quick action which may be applied to each record. Typically,

a single component consists of a few elements put in defini-

tion bundle. It comprises of a component in which a user

interface is defined and JavaScript handlers: controllers and

helpers. Optionally, CSS definition of a component might

be included (Trailhead).

Salesforce is undoubtedly an interesting platform as it is

leading CRM software provider as well as from the cloud

computing research point of view. It connects its two service

models (PaaS and SaaS), as the final product used by cus-

tomers is ready to use the software while developing applica-

tions in Salesforce that involves Force.com platform. A big

advantage of Salesforce is the fact that except for technical

Fig. 5 Principles of working of

visualforce (CRM Salesforce;

trailhead; Salesforce developers)

967A real-time service system in the cloud

1 3

tools, programming languages dedicated specially for this

platform, it also has ones that require setting correct options

and processes within a few clicks. It is worth to notice cur-

rent development of the platform, especially with the release

of lightning as every upgrade brings new functionalities and

possibilities of application creation.

4.1 System requirements

The main function of the Top 16 Manager system is the

management of the snooker tournaments TOP 16 organ-

ized periodically by Polish Billiards and Snooker Associa-

tion. Such an event is a challenge from the organizational

point of view. Usually, there is only one person, i.e., the

main referee who is responsible for the efficient conduct

of the tournament. It embraces managing the start time of

each match, their order, assigning referees and placement

of matches on available tables. What is more, the main ref-

eree must inform every player about their incoming match,

which sometimes quite challenging. The functional require-

ments for the Top 16 Manager are as follows: putting match

scores to the system, calculation of table in the group stage,

generation of bracket for the knock-out phase, possibility of

referee, table and status assignment for all matches, match

report generation, e-mail notification for players about the

next match, and mass e-mail message to players taking part

in the tournament.

The basic feature of the Top 16 Manager is the ability to

put match scores to the system and calculate the table of each

group in the tournament. The system automatically draws

groups for the tournament and presents the list of matches.

After the end of the group stage, it is possible to generate

a bracket of the tournament based on scores from the first

phase. In this way, quarterfinals, semifinals and final games

are presented in the system. When a match of the knock-out

phase is finished, the bracket is automatically updated. The

panel of tournament matches is constructed in such a way

that the main referee can easily assign to the single match the

following: a referee, table and status, which makes managing

them more efficiently as all required information is in one

place. Figure 6 illustrates the use-case diagram with all the

functional requirements of the Top 16 Manager. It embraces

only one actor that is the main referee as it is the only user

in this system due to limitations of the developer edition.

With a license of multiple users, it is possible to add to this

diagram other actors, such as players.

4.2 Top 16 Manager system architecture

The architecture of any Salesforce application is defined as

a multitenant architecture. It means that users of the plat-

form share the same resources and tools provided by Force.

com. At the same time, individual users of Salesforce can

take advantage of the customization built on the platform

especially for them. Moreover, Salesforce utilizes metadata-

driven architecture. All platform customizations such as

interface layouts, objects definition, workflows, processes

or Apex code are stored as metadata. In the Salesforce data-

base, no tables are created such as in traditional relational

databases. What is more, the code from the Apex classes and

triggers are not compiled. Instead, stored metadata is used

by system engine at runtime to generate virtual application.

The multitenant data model of discussed platform con-

sists of multitenant metadata, multitenant data, and mul-

titenant indexes. Multitenant metadata comprises internal

tables called MT_Objects and MT_Fields. These tables store

Fig. 6 Use-case diagram of Top

16 Manager

968 A. Poniszewska-Maranda et al.

1 3

information in the form of metadata about objects together

with organization ID, to which these objects belong and

about fields that are defined on objects. Multitenant data, in

turn, stores individuals’ data inside Salesforce application

that can be mapped to their objects and fields defined in

MT_Objects and MT_Fields. This data type can be avail-

able on the Salesforce platform; for example, number, text,

date, formula. It is also possible to store long text informa-

tion as character large objects (CLOBs). Finally, multitenant

indexes allow cataloging data stored in the cloud so that

retrieving this data and access to it during runtime is opti-

mized. Schema of the multitenant data model is depicted

in Fig. 7.

The Top 16 Manager system comprises of three main

components, for managing TOP 16 tournaments, namely:

Match management, Players notification, and User interface.

Match management component is the most important com-

ponent among others, as it is responsible for handling the

basic functionalities of Top 16 Manager—input of match

scores and calculation of tables. The logic of this component

is defined in Apex classes—controllers for Visualforce inter-

faces, on which the main referee operates. The other compo-

nent is Players notification that has the responsibility of sent

messages to the players taking part in a particular competi-

tion. This component is not critical for the correct opera-

tion of Top 16 Manager. It also communicates with Match

management component, because any notification send to

players is based on the match details. The logic of players’

notification component is defined in Process Builder as well

as in Apex classes. The last component, User interface, is

responsible for the arrangement of the Visualforce interfaces

customization that overrides the standard ones, but also for

all the layouts of object interfaces, related lists and search

layouts. It is defined through a set-up of the Salesforce plat-

form user interface capabilities. Figure 8 depicts the com-

ponent diagram of Top 16 Manager.

4.3 Data model

To fulfill the required functionalities of the proposed system,

the following five custom objects are developed: Tourna-

ment, Player, Tournament Appearance, Match, and Referee.

The main developed object is the Tournament, which is the

starting point of the system. It is related to the Match object

via a one-to-many relationship. Every tournament is con-

nected to it matches; at first 24 in the group stage and then 7

Fig. 7 Multitenant data model

on Saleforce platform (Sales-

force developers)

Fig. 8 Component diagram of Top 16 Manager

969A real-time service system in the cloud

1 3

more at the knock-out phase (quarterfinals, semifinals, and

the final). This reflects the type one-to-many relation, as

the single tournament has multiple matches related to each

other. Match is connected with Player, which contains two

Lookup fields as two players take part in a single match. It

is also connected with the Referee object because a referee

is always assigned to a match.

Tournament appearance object is developed to reflect the

relationship of type many-to-many as multiple players can

take part in many tournaments. This object acts as a junc-

tion object; it has fields of type Master–Detail to Player and

Tournament objects. It also contains a few fields needed for

calculating the table during the group stage of each tour-

nament. Figure 9 illustrates the data model of the snooker

management system, from a platform Schema Builder view

point.

All fields marked by red vertical lines are either standard

ones, such as Created By Last Modified By and Owner, or

the required ones, such as Master–Detail fields on Tourna-

ment Appearances object. A standard field is also the name

of each object’s record. It can be either text or an auto num-

ber. Tournament object contains fields that describe the date

and place of the single competition and technical Check-

box fields which are used as flags for the logic flow. Fields

in the Player object describes the data about a player. One

important information is the e-mail as it allows receiving the

notifications about next matches.

4.4 Logic layer

The system development within the Salesforce platform

involves model-view-controller (MVC) pattern. The system

is divided into three separate layers for easy maintenance

and to provide modularity. In this case, the model is defined

in the standard and in the custom objects, or in Apex classes.

View layer comprises of Visualforce interfaces and compo-

nents, which are rendered on the server and displayed in

the web browser. The logic (controller) layer might be cus-

tomized. It is defined programmatically in Apex classes or

triggers, but it can also use standard controllers generated

by Force.com platform. It embraces; for example, binding

of the input fields on the interface with the object, or with

actions such as saving or cancel. MVC pattern in Salesforce

is depicted in Fig. 10.

The logic of Top 16 Manager is customized programmati-

cally in Apex and in various Force.com administration tools.

The first step in the platform configuration is to define the

appropriate profile, which could be assigned to the account

Fig. 9 The data model of Top 16 Manager

970 A. Poniszewska-Maranda et al.

1 3

for the main referee. In the definition of this profile, all tabs

for standard objects have been hidden since they are unnec-

essary from the system point of view. Instead, it has been

set that visible tabs are those related to five custom objects

used in Top 16 Manager. Moreover, read and write permis-

sions have been given for the required objects. Access to

every Visualforce interface in the system has been allowed

for users with that profile.

If there is a need to add more users to the system, new

profiles should be created. This concerns players as an exam-

ple. In such a situation, their permissions for objects can be

different. For example, they are not supposed to have edited

and created access for such objects as Matches, Referees,

and Tournaments. Due to the fact that Tournament is the

main object in Top 16 Manager, functionalities are mainly

executed from the view of records of that object. It involves

creating a few custom buttons, which open Visualforce inter-

face where a user can operate. The list of buttons belonging

to Tournament object is presented in Fig. 11.

A user can enroll the first players to the tournament with

the use of custom interfaces. Logic defined in Apex work-

ing under that interface creates the records of Tournament

Appearances object connected with the tournament, from

which this action is fired with the selected players. The sys-

tem checks whether the user selected 16 players or not. If

yes, then it saves it to the newly created map Tournament

Appearances. Next, with the use of the random function it

assigns to the appearance group A, B, C or D, in which a

player is going to compete. After that, it saves the appear-

ances to four lists according to their groups, which have

been drawn. Finally, it inserts into the database six matches

in each group, as every player must play against every other

player in his/her group. Those matches assigned relation to

the tournament and the status is set to Match Ready in the

moment of insertion.

All records that are planned for insertion are first saved to

the list, which is then inserted entirely, instead of inserting

every record separately, based on Apex development guide-

lines. This is done to reduce the number of Data Manipula-

tion Language operations, which is limited to the Salesforce

platform. Then, actions are related to the matches of the

given tournament Fig. 12 depicts an activity diagram of the

process of the players enrolled in the tournament.

In the current system, Visualforce interface lists the games

into groups. It is possible to put the score there and update

its data as status, date and time, table and referee that are

connected with a given match. It should be noted that update

logic is defined in Apex. However, before a record of Match

Fig. 10 MVC pattern in Salesforce (Salesforce developers)

Fig. 11 Tournament object in Top 16 Manager

971A real-time service system in the cloud

1 3

object is updated, it is checked with the use of a few Valida-

tion Rules set on this object. If the criteria defined in the Vali-

dation Rules are satisfied, then the system creates the lists of

matches’ records, according to the groups in which they take

place. It also creates four lists of Tournament Appearances

object, to calculate the table of each group, since this object

stores information about the points gained in the group stage.

The system creates a map, where the key is the player’s ID,

and the value is his/her appearance. When the main referee

updates matches’ results, the procedure goes through matches

on the interface, where there is information about the player,

and then comparing which of the players has won more

frames. Then, it retrieves player’s appearance from the map

and updates this appearance; accordingly, points are awarded

to the winner. Consequently, the group tables are updated. The

system queries for the appearances in each group and sorts

lists with players by points, the difference between frames

won and lost, and frames either won or lost. Figure 13 illus-

trates the activity diagram of updating group matches.

An example of usage of administration tools is the func-

tionality that sends.

An e-mail, set by the referee on the Visualforce interface,

is sent to both players after the match time is one example of

the administration tools that can provide. The view of this

process is depicted in Fig. 14.

As soon as the group stage of the tournament is over, the

main referee can generate a bracket for the knock-out phase.

This demonstrates the functionalities that are invoked from

another Visualforce interface and has the logic defined in Apex

controllers. The custom controller assigns seeding to players

Fig. 12 Activity diagram of

enrolling players to the tourna-

ment in Top 16 Manager

Fig. 13 Activity diagram of

group matches updating in Top

16 Manager

972 A. Poniszewska-Maranda et al.

1 3

according to their performance in the first phase based on

the points they have collected, and the difference between

frames won and lost and a higher number of frames won. If

all the parameters are equal, then the draw decides which of

the players is seeded higher. The system dedicated for this

process queries for the appearances of the given tournament

and sorts them in the same way as in the group stage. Then,

every player taking part in the given competition. Then, with

the use of Apex Messaging class, it sends all emails. The last

custom interface shows the positions that players took in the

current tournament that uses jQuery plugin TableSorter.

To conclude the analysis of actions performed so far,

we can confidently say that it is possible to develop a man-

agement system based on the Salesforce platform. It is not

necessary to be developed for business-oriented purposes,

although Salesforce is mainly aimed for businesses environ-

ments. Moreover, it is possible to develop systems to manage

individuals’ data, using this platform.

4.5 GUI layer

The implementation of our proposed Top 16 Manager sys-

tem is based on the classic version of Salesforce. To improve

the design of the whole system, SLDS is utilized. It is a CSS

stylesheet compatible with the lightning experience. What

is more, the standard interfaces for creating and editing five

custom objects used in Top 16 Manager system are over-

ridden by custom ones, which are also styled according to

SLDS CSS. To override the standard Salesforce interface,

it is necessary to create a custom Visualforce one. For this

purpose, a few classes from SLDS stylesheet is applied to

make a better look for Top 16 Manager system. Listing 1

presents an example for SLDS classes.

Fig. 14 The process of sending an e-mail to players with information

about next match time

it inserts it into the quarterfinal matches database. The player

that is seeded with number 1 competes with the player with

number 8. The order is as follows: 2 vs. 7, 3 vs. 6 and 4 vs.

5. The system also inserts the semifinal and final games but

does not assign any players for those matches yet. When the

tournament bracket is generated, the main referee performs

the same actions as in the group stage. However, at this time,

the system forms the map in which the key is the matching

symbol. For example, QF1, QF2, SF1, etc., and the value is

Match record. After each update, conditional statements check

the winner of each match and assigns him/her to the match in

the next round, i.e., either semifinal or the final.

It is possible for the main referee to send a broadcast email

to all players taking part in the given tournament by filling

the simple form on another custom interface. When the ref-

eree submits it, the system queries for the e-mail field of

It is possible to merge HTML code with Visualforce.

Therefore, CSS classes are used in the Listing 1 such as slds-

form-element, slds-form-element__label or slds-input, ena-

bling to style the input fields according to Lightning design

style wrap the apex:inputField element, which in fact it is

also rendered to HTML that captures the user input. The

example shown in Listing 1 styles only one element from

a single interface. According to this approach, all Visual-

force interface are styled to achieve the Lightning look. In

order to take advantage of SLDS stylesheet, it is loaded from

the static resource, where it is uploaded at the beginning.

Nevertheless, during the development of Lightning styled

interface a few problems are encountered such as SLDS does

not support input fields of type Lookup. Moreover, the usage

of standard inputs like a date with the intention to display a

date picker has damaged the styling of the whole interface.

973A real-time service system in the cloud

1 3

Due to these facts, the open source solutions are applied to

render the mentioned fields properly. These are a special

Visualforce component that displays Lightning styled inputs

in Salesforce Classic (Sultan 2014) and the date picker tak-

ing advantage of Appiphony Lightning JS library (Yous-

eff et al. 2008). Unfortunately, it was not possible to write

New or Edit interface for Tournament Appearance object,

since Visualforce component used in the system supports

inputs of type Lookup but does not support inputs of type

Master–Detail.

5 Top 16 Manager in action

This section demonstrates the practical functionalities of the

proposed system in Salesforce platform. It is a framework

for main referees of the TOP 16 tournaments. It is presented

from the perspective of the system administrator’s account.

When a user (not a system administrator) successfully login

to the platform, he/she can see a panel with tabs at the top of

the screen. By default, the tab to which the user is redirected

is Tournaments tab as it is the main object in the system. The

other tabs concern another custom object presented in the

system, including Matches, Players, Referees, and Tourna-

ment Appearances. There are also two more default tabs

Home and Chatter. They are in the platform to allow users

saving some notes, marking important dates in the calendar

and for interaction with other users as Chatter that can be

described as a company intranet. However, the use of these

two tabs is neglected in snooker management system as there

is only one user, i.e., the main referee created as an end user

and a system administrator. The min GUI promoted to the

user is depicted in Fig. 15.

This interface allows a user to select a particular tourna-

ment and view its details. It is also possible to expand the

View list and choose the list view, which displays all records

Fig. 15 Main GUI to login to Salesforce platform

Fig. 16 Tournament interface in Top 16 Manager

974 A. Poniszewska-Maranda et al.

1 3

according to the given conditions. After a successful crea-

tion of Tournament record, a user is redirected to record’s

details. It contains all related lists of Matches and Tourna-

ment Appearances that are connected with a new tourna-

ment. Tournament detail interface has buttons under which

there are appropriate functionalities, including: Entries,

Matches, Bracket, Mass Email, Results. Figure 16 shows

Tournament record interface.

The first step in a tournament management process is to

enrolling players to the competition. In our current imple-

mentations, there are 20 players, but there might be a neces-

sity in the future for the main referee to add another player.

The main referee must tick 16 players that are going to take

part in the competition. An updated view of the interface is

presented in Fig. 17.

Figure 18 illustrates an interface that shows the desired

information about the Matches. Through this interface, the

main referee can update matches’ details.

Match management interface allows updating the current

situation in each group. Through this interface, a user not

only adds the scores of the finished match, but also update

its status (Waiting, Match Ready, In Progress, Finished).

A user also is able to generate a report in PDF format and

assign a time to each match. Every time the score is added,

the information is updated accordingly. The reschedule is

constructed even in case of inputting a wrong score. The

proposed system does not allow assigning In Progress status

without a referee assigns it to the match. It also prevents

unexpected inputs of score to TOP 16 tournament. Tie score

is not allowed. The winner must have 4 frames won. Also, it

is not possible to set two matches with status In Progress at

the same table. All the aforementioned situations are han-

dled; and the user is prompted with a message on the top of

the interface. Every time the main referee updates the time

of a single match, the system generates an email to both

players with information about match time. It is also possible

to send a broadcast email to all players that take part in the

given competition.

The last stage of the tournament management process is

an update of positions that players took in the competition.

Under Results button on the Tournament details interface,

there is a custom interface, which displays the final classifi-

cation of the tournament, as shown in Fig. 19.

To sum up, all the processes that the main referee is inter-

ested in are five custom objects defined especially for the

purposes of the required functionalities. Initially, the pro-

cess starts from either adding a new tournament or find-

ing a proper one. Then, invoking management action from

a few custom Visualforce interfaces that are provided on

the tournament details interface. A user can also view the

data about players or referees. On the related lists of those

objects, there is information about achievements or perfor-

mances. For example, players have their positions taken in

each tournament, and referees have listed matches that they

Fig. 17 An updated view of tournament details in “Top 16 Manager”

975A real-time service system in the cloud

1 3

Fig. 18 Match management interface in Top 16 Manager

Fig. 19 Tournament results

interface Top 16 Manager

976 A. Poniszewska-Maranda et al.

1 3

conducted during TOP 16 tournaments. User are informed

in case incorrect input data.

6 Conclusions and future work

In this paper, we examined the Salesforce platform capa-

bilities within the context of the real-time service systems

and cloud computing. The research work performed in this

paper proved that the combination of real-time systems and

cloud computing allows building efficient systems that could

be used for different purposes. Additionally, the Salesforce

platform enables the creation of not only the event-triggered

real-time systems with the use of Apex Triggers, workflows

and Process Builder but also time-triggered systems. This

is because it is possible to define the time-dependent actions

using Process Builder. We also developed a Salesforce sys-

tem, i.e., Top 16 Manager which aims to help managing the

processes of the series of TOP 16 snooker tournaments held

by Polish Billiards and Snooker Association. The results

showed that the Salesforce platform is an environment where

it is possible to develop a soft real-time system as private

cloud. The developed system is a combination of Software

as a Service, from the perspective of the end user, and Plat-

form as a Service, from the perspective of the developer. It

should be noted that Top 16 Manager significantly improves

managing of TOP 16 snooker tournaments that comprises

some functionality that is not available for use by main ref-

erees. In the future, we plan to make it generic and usable for

other types of snooker tournaments and taking advantage of

more Salesforce functionalities such as reports, dashboards

or workflows. We also plan to make Top 16 Manager as a

component of a larger system dedicated to snooker federa-

tions from different countries where snooker competitions

take place.

OpenAccess This article is distributed under the terms of the Crea-

tive Commons Attribution 4.0 International License (http://creat iveco

mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribu-

tion, and reproduction in any medium, provided you give appropriate

credit to the original author(s) and the source, provide a link to the

Creative Commons license, and indicate if changes were made.

References

Angeles S (2013) 8 reasons to fear cloud computing. In: Bus. News Dly.

http://www.busin essne wsdai ly.com/5215-dange rs-cloud -compu

ting.html. Accessed 30 Oct 2017

Barry DK (2003) Web services, service-oriented architectures, and

cloud computing. Elsevier, New York

Benioff M, Adler C (2009) Behind the cloud: the untold story of how

Salesforce. com went from idea to billion-dollar company-and

revolutionized an industry. Wiley, New York

Chen L, Fallmann S, López-de-Ipiña D et al (2018) Context, intelli-

gence and interactions for personalized systems. J Ambient Intell

Humaniz Comput 9:1557–1559. https ://doi.org/10.1007/s1265

2-018-0985-y

Computer Security Division ITL Publications|CSRC (2018) https ://

csrc.nist.gov/publi catio ns. Accessed 30 Nov 2018

CRM Software & Cloud Computing Solutions (2018) https ://www.

sales force .com/eu/. Accessed 30 Nov 2018

Cusumano M (2010) Cloud computing and SaaS as new computing

platforms. Commun ACM 53:27–29

De la Prieta F, Bajo J, Rodríguez S, Corchado JM (2017) MAS-based

self-adaptive architecture for controlling and monitoring cloud

platforms. J Ambient Intell Humaniz Comput 8:213–221. https ://

doi.org/10.1007/s1265 2-016-0434-8

Gomaa H (1993) Software design methods for concurrent and real-

time systems, 1st edn. Addison-Wesley Longman Publishing Co.,

Inc., Boston

Jin H, Ibrahim S, Bell T, Gao W, Huang D, Wu S (2010) Cloud types

and services. In: Furht B, Escalante A (eds) Handbook of cloud

computing. Springer, Boston, MA, pp 335–355

Klein M, Ralya T, Pollak B et al (2012) A practitioner’s handbook for

real-time analysis: guide to rate monotonic analysis for real-time

systems. Springer, Berlin

Kopetz H (2011) Real-time systems: design principles for distributed

embedded applications, 2nd edn. Springer, Berlin

Krishna CM (2001) Real-time systems. In: Webster JG (ed) Wiley

encyclopedia of electrical and electronics engineering. Wiley,

New York

Laplante PA (1994) A real-time image processing language?. In:

Halang WA, Stoyenko AD (eds) Real time computing. NATO

ASI series (Series F: Computer and Systems Sciences), vol 127.

Springer, Berlin, Heidelberg

Laplante PA, Ovaska SJ (2011) Real-time systems design and analysis:

tools for the practitioner. Wiley, New York

Leavitt N (2009) Is cloud computing really ready for prime time.

Growth 27:15–20

Liu F, Narayanan A, Bai Q (2000) Real-time systems

Mattai J (1995) Real-time systems: specification, verification, and

analysis. Prentice Hall PTR, Upper Saddle River

Mell P, Grance T (2009) Effectively and securely using the cloud com-

puting paradigm. NIST Inf Technol Lab 2:304–311

Mell PM, Grance T (2011) The NIST definition of cloud computing.

Spec Publ NIST SP-800-145

Poniszewska-Maranda A, Matusiak R, Kryvinska N (2017) Use of

Salesforce platform for building real-time service systems in

cloud. In: 2017 IEEE international conference on services com-

puting (SCC). pp 491–494

Qi J, Xu B, Xue Y et al (2018) Knowledge based differential evolu-

tion for cloud computing service composition. J Ambient Intell

Humaniz Comput 9:565–574. https ://doi.org/10.1007/s1265

2-016-0445-5

Sadiku MN, Musa SM, Momoh OD (2014) Cloud computing: oppor-

tunities and challenges. IEEE Potentials 33:34–36

Salesforce Developers|API Documentation, Developer Forums & More

(2017) https ://devel oper.sales force .com/. Accessed 30 Oct 2017

Schoch DJ, Laplante PA (1995) A real-time systems context for the

framework for information systems architecture. IBM Syst J

34(1):20–38

Shin KG, Ramanathan P (1994) Real-time computing: a new discipline

of computer science and engineering. Proc IEEE 82:6–24. https ://

doi.org/10.1109/5.25942 3

Sriram I, Khajeh-Hosseini A (2010) Research agenda in cloud tech-

nologies. arXiv:10013259Cs

Sultan N (2014) Servitization of the IT industry: the cloud phenome-

non. Strateg Change 23:375–388. https ://doi.org/10.1002/jsc.1983

Tang L, Dong J, Zhao Y, Zhang L-J (2010) Enterprise cloud service

architecture. In: IEEE 3rd international conference on cloud com-

puting (CLOUD), 2010, pp 27–34

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.businessnewsdaily.com/5215-dangers-cloud-computing.html
http://www.businessnewsdaily.com/5215-dangers-cloud-computing.html
https://doi.org/10.1007/s12652-018-0985-y
https://doi.org/10.1007/s12652-018-0985-y
https://csrc.nist.gov/publications
https://csrc.nist.gov/publications
https://www.salesforce.com/eu/
https://www.salesforce.com/eu/
https://doi.org/10.1007/s12652-016-0434-8
https://doi.org/10.1007/s12652-016-0434-8
https://doi.org/10.1007/s12652-016-0445-5
https://doi.org/10.1007/s12652-016-0445-5
https://developer.salesforce.com/
https://doi.org/10.1109/5.259423
https://doi.org/10.1109/5.259423
https://doi.org/10.1002/jsc.1983

977A real-time service system in the cloud

1 3

Trailhead|The fun way to learn Salesforce (2017) https ://trail head.sales

force .com/en. Accessed 30 Oct 2017

Youseff L, Butrico M, Da Silva D (2008) Toward a unified ontology of

cloud computing. In: IEEE grid computing environments work-

shop, 2008. GCE’08, pp 1–10

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

https://trailhead.salesforce.com/en
https://trailhead.salesforce.com/en

	A real-time service system in the cloud
	Abstract
	1 Introduction
	2 Cloud computing for real-time service systems
	2.1 Real-time systems
	2.2 Cloud computing

	3 The functionality of Salesforce cloud service delivery platform
	3.1 Database in Salesforce
	3.2 Apex
	3.3 Visualforce: client-side language

	4 Real-time service system based on the Salesforce platform
	4.1 System requirements
	4.2 Top 16 Manager system architecture
	4.3 Data model
	4.4 Logic layer
	4.5 GUI layer

	5 Top 16 Manager in action
	6 Conclusions and future work
	References

