
231
J Y V Ä S K Y L Ä S T U D I E S I N C O M P U T I N G

Unsupervised Network Intrusion
Detection Systems for Zero-Day
Fast-Spreading Network Attacks

and Botnets

Payam Vahdani Amoli

JYVÄSKYLÄ STUDIES IN COMPUTING 231

Payam Vahdani Amoli

Unsupervised Network Intrusion
Detection Systems for Zero-Day
Fast-Spreading Network Attacks

and Botnets

Esitetään Jyväskylän yliopiston informaatioteknologian tiedekunnan suostumuksella
julkisesti tarkastettavaksi yliopiston Agora-rakennuksen auditoriossa 2

joulukuun 14. päivänä 2015 kello 12.

Academic dissertation to be publicly discussed, by permission of
the Faculty of Information Technology of the University of Jyväskylä,

in building Agora, auditorium 2, on December 14, 2015 at 12 o’clock noon.

UNIVERSITY OF JYVÄSKYLÄ

JYVÄSKYLÄ 2015

Unsupervised Network Intrusion
Detection Systems for Zero-Day
Fast-Spreading Network Attacks

and Botnets

JYVÄSKYLÄ STUDIES IN COMPUTING 231

Payam Vahdani Amoli

Unsupervised Network Intrusion
Detection Systems for Zero-Day
Fast-Spreading Network Attacks

and Botnets

UNIVERSITY OF JYVÄSKYLÄ

JYVÄSKYLÄ 2015

Editors
Timo Männikkö
Department of Mathematical Information Technology, University of Jyväskylä
Pekka Olsbo, Ville Korkiakangas
Publishing Unit, University Library of Jyväskylä

URN:ISBN:978-951-39-6452-8
ISBN 978-951-39-6452-8 (PDF)

ISBN 978-951-39-6451-1 (nid.)
ISSN 1456-5390

Copyright © 2015, by University of Jyväskylä

Jyväskylä University Printing House, Jyväskylä 2015

ABSTRACT

Vahdani Amoli, Payam
Unsupervised Network Intrusion Detection Systems for Zero-Day Fast-
Spreading Network Attacks and Botnets
Jyväskylä: University of Jyväskylä, 2015, 54 p. (+included articles)
(Jyväskylä Studies in Computing
ISSN 1456-5390; 231)
ISBN 978-951-39-6451-1 (nid.)
ISBN 978-951-39-6452-8 (PDF)
Finnish summary
Diss.

Today, the occurrence of zero-day and complex attacks in high-speed networks
is increasingly common due to the high number vulnerabilities in the cyber
world. As a result, intrusions become more sophisticated and fast to
detrimental the networks and hosts. Due to these reasons real-time monitoring,
processing and intrusion detection are now among the key features of NIDS.
Traditional types of intrusion detection systems such as signature base IDS are
not able detect intrusions with new and complex strategies. Now days,
automatic traffic analysis and anomaly intrusion detection became more
efficient in field of network security however they suffer from high number of
false alarms. Among all type of anomaly detection methods unsupervised
machine-learning techniques are commonly applied in NIDS to detect unknown
and complex attacks in the network without any prior knowledge. This
dissertation manly focuses on analyzing network traffic to find abnormal
behavior in real time. The proposed framework consists of network traffic
preprocessing, anomaly detection and clustering methods. The proposed
framework is capable of generating meaningful reports related to the detection
of real intrusions in well-known datasets. Unsupervised learning methods are
capable of adapting their required features to the dynamically behavior of the
network. Due to unfeasibility of payloads checking in high-speed network the
proposed framework monitors network flows instead. Network flow contains
the behavior of the network in higher extensive vision and shows the
explicitness of the network data, which results in faster and higher detection
rate of network attacks. This research shows that by using proper data
preprocessing and unsupervised data analyzing methods it is possible to detect
fast and complex zero days (new) attack in real time. The practical experiments
are presented in the included articles.

Keywords: machine learning, clustering (unsupervised), network security,
anomaly detection, intrusion detection

Author Payam Vahdani Amoli
Department of Mathematical Information Technology
University of Jyväskylä
Finland

Supervisors Prof. Timo Hämäläinen
Department of Mathematical Information Technology
University of Jyväskylä
Finland

Prof. Gil David
Department of Mathematical Information Technology
University of Jyväskylä
Finland

Reviewers Prof. Amir Averbuch
School of Computer Science
Tel Aviv University
Israel

Adjunct Prof. Kari Luostarinen
Kehittämispäällikkö / Development Manager
Keski-Suomen liitto / Regional Council of Central Finland
Finland

Opponents Prof. János Sztrik
Department of Informatics Systems and Networks
University of Debrecen
Hungary

ACKNOWLEDGEMENTS

I have to honor to express my sentiment and sincerest gratitude to my
supervisors, Prof. Timo Hämäläinen and Prof. Gil David, for their continues
guidance and valued support which has been rendered during the course of my
study in University of Jyväskylä.

My warm gratitude goes to my colleagues and collaborators, Mr. Farhoud
Hosseinpour, Mr. Farhood Farid Etemad, Mr. Younes Abdi, Mr. Mohammad
Tabatabaei and all others who have collaborated and helped me along the way.

I would also like to seize this opportunity to thank Faculty of
Information Technology of University of Jyväskylä for giving this
opportunity to me to work on my dissertation and supporting my research
financially too. I would also like to thanks the Centre for International Mobility
(CIMO) in Finland for partly supporting my research financially and giving me
motivation toward.

I would like thank my lovely and kind wife, Mahsa, for her endless
support and patients during the term of my PHD study. I would like to
thanks to my parents and brother and sister who have given me the
opportunity of study and rendering the best possible support and giving a
perspective to the life beyond the academic world. I would like to thank my
mother/father and brother in law for providing a loving and supporting
environment for me. Last, but definitely not least, I thank my God, the
compassionate and merciful who was helping me to achieve one the best goal of
my life.

Jyväskylä 01.09.2015
Payam Vahdani Amoli

GLOSSARY

AI Artificial Intelligence
AIS Artificial Immune System
APT Advance Persistent Threat
C&C Command-and-Control
CIA Confidentiality, Integrity and Availability
CPU Central Proceeding Unit
CRA Constructive Research Approach
DBSCAN Density-based Spatial Clustering of Applications with Noise

DDoS Distributed Denial of Service
DoS Denial of Service
FNR False Negative Rate
FPR False Positive Rate
GA Genetics Algorithm
Gbps Gigabyte per second
HIDS Host-based Intrusion Detection System
HIS Human Immune System
IDS Intrusion Detection System
IPS Intrusion Prevention System
IPv6 Internet Protocol version 6
IRC Internet Relay Chat
NIDS Network Intrusion Detection System

NMAP Network Mapper
OS Operating System

R2L Remote to Local
SSH Secure Shell
TNR True Negative Rate
TPR True Positive Rate
U2R User to Root

LIST OF FIGURES

FIGURE 1 The Common Topics of Different Papers. ... 17

FIGURE 2 Classification of Intrusions Detection System (IDS). 23

FIGURE 3 Data Standardization. ... 27

FIGURE 4 Subspace Clustring. .. 28

FIGURE 5 Outline of Genetic Algorithm (GA). .. 29

FIGURE 6 Testing and Training Phase in Supervised Machine Learning. 31

FIGURE 7 DBSCAN Clustering for Anomaly Detection. 34

FIGURE 8 K-means Clustring for Anomaly Decetion. ... 35

FIGURE 9 Architecture Overview of HIDS [PI]. ... 39

FIGURE 10 Architecture of the NIDS [PV]. ... 40

FIGURE 11 Proposed System Architecture [PIV]. .. 41

FIGURE 12 Netwokrs Behavoiur During Distributed SSH Brute Force Attack. 43

FIGURE 13 Self-Training Phase During Distributed SSH Brute Force Attack. .. 43

FIGURE 14 Comparison Phase During Distributed SSH Brute Force Attack. ... 44

FIGURE 15 Detection Phase During Distributed SSH Brute Force Attack. 44

8

LIST OF TABLES

TABLE 1 Prediction Conditiones. ... 36

TABLE 2 Performance Evaluation. ... 44

CONTENTS

ABSTRACT
ACKNOWLEDGEMENTS
GLOSSARY
LIST OF FIGURES
LIST OF TABLES
CONTENTS
LIST OF INCLUDED ARTICLES

1 INTRODUCTION .. 13

1.1 Research motivation ... 13

1.2 Research questions ... 14

1.3 Research approach .. 15

1.4 Structure of the work ... 15

1.5 Research contribution .. 16

2 INTRUSION DETECTION SYSTEM ... 19

2.1 Intrusions ... 19

2.2 Intrusion detection system .. 22

3 MACHINE LEARNING .. 25

3.1 Data gathering and preprocessing ... 25

3.1.1 Data selection and feature extraction ... 25

3.1.2 Standardization .. 26

3.1.3 Feature selection .. 28

3.1.3.1 Subspace clustering ... 28

3.1.3.2 Genetic Algorithm ... 29

3.2 Data analyses ... 30

3.2.1 Supervised Machine Learning Algorithems 31

3.2.1.1 Artificial immune system ... 32

3.2.2 Unsupervised Machine Learning Algorithems 33

3.2.2.1 DBSCAN ... 33

3.2.2.2 K-means .. 34

3.3 Performance evaluation ... 35

3.3.1 Estimantion methodology .. 36

4 RESULTS ... 38

4.1 Real time HIDS for botnet detection .. 38

4.2 Machine learning algorithms applied on NIDS 39

4.2.1 New unpublished results ... 42

5 CONCLUSION ... 45

YHTEENVETO (FINNISH SUMMARY) .. 46

REFERENCES ... 47

INCLUDED ARTICLES

LIST OF INCLUDED ARTICLES

PI. Etemad, F. F. & Amoli, P. V. 2012. Real-time Botnet command and control
characterization at the host level. Telecommunications (IST), 2012 Sixth
International Symposium on. Tehran, Iran: IEEE, 1005-1009.

PII. Amoli, P. V. & Hämäläinen, T. 2013. A real time unsupervised NIDS for
detecting unknown and encrypted network attacks in high speed network.
Measurements and Networking Proceedings (M&N), 2013 IEEE
International Workshop on. Naples, Italy: IEEE, 149-154.

PIII. Hosseinpour, F., Ramadass, S., Meulenberg, A., Amoli, P. V. &
Moghaddasi, Z. 2013. Distributed Agent Based Model for Intrusion
Detection System Based on Artificial Immune System. International
Journal of Digital Content Technology and its Applications (JDCTA) 7(9),
206-214.

PIV. Hosseinpour, F., Amoli, P. V., Farahnakian, F., Plosila, J. & Hämäläinen, T.
2014. Artificial Immune System Based Intrusion Detection: Innate
Immunity using an Unsupervised Learning Approach. International
Journal of Digital Content Technology and its Applications (JDCTA) 8(5),
1-12.

PV. Amoli, P. V., Hämäläinen, T., David, G., Zolotukhin, M. &
Mirzamohammad, M. (Accepted Nov/2015). Unsupervised Network
Intrusion Detection Systems for Zero-Day Fast-Spreading Attacks and
Botnets. International Journal of Digital Content Technology and its
Applications (JDCTA).

1 INTRODUCTION

This chapter presents the motivation behind the research concerning machine
learning algorithms, which are used for anomaly detection in network security.
Next, the research questions are answered. Finally, the overall structure of the
work and author’s contribution in the included articles is briefly described.

1.1 Research motivation

Nowadays, computer and network revolutionized our daily life. Most of the
personal, organizational and governmental information store and transfer via
computers and networks. Due to the growing number of cyber-attacks,
computer security become more important than ever and considered as the
principal function in any system or organization.

The three advance security layers to minimize the risk of attacks are (Abad
et al. 2003, Komninos, Vergados & Douligeris 2010):

1. Prevention
2. Detection
3. Reaction

Prevention is the first security level which protects system and network from
intruders. Access controls, security policies, security awareness and intrusion
prevention systems (IPS) are the main elements of prevention layer. The main
outcome of prevention layer is to identify and patch security vulnerability of
network and system. Due to the increasing rate of zero-day (new) attacks,
detection layer become the most important security level since most advance
security mechanism in prevention layer may not stop the motivated and high
skill intruders. Intrusion detection system (IDS) has the capability of monitoring
the network and system activities to detect the intrusions and notify the
administrator. Reaction layer contain pre-planned procedure after the intrusion

14

detection such as stopping the intruder, fixing the newly founded vulnerability
and restoring the system and data.

Zero-day attacks can be fast, brutal and complex. Fast attacks aim to fill
the network with enormous amount of traffic to cause latency in the network or
disrupt a service on specific machine (server). Brutality and complexity of
attack can result in data breach and hacking while they deceive the IDS. Due to
the increasing rate of zero day attacks, researchers are investing more on
finding the most suitable methods to increase the detection rate of fast and
sophisticated attacks while traditional techniques such as misuse (signature
based) detection methods are not capable of detecting these types of attacks.

In (Denning 1987) the first model of anomaly detection proposed. In
anomaly-based detection techniques, normal state will be defined and
behaviors which pass the criteria will be flag as abnormal. Using this method
will increase the probability of detecting novel attacks. One of the well-known
anomaly detection methods is probabilistic which rely only on statistics and do
not correlate alarms. On the other hand, scenario-based methods need to
observe specific steps to detect attacks. Due to the dynamic and complex
structure of sophisticated attacks, probabilistic or scenario based NIDS may
produce high number of false alarm. Machine learning can be considered as the
central sub-set of the Artificial Intelligence (AI). Machine learning algorithms
construct a model from example inputs and use it for decision and prediction
making in future. Due to the learning and decision making capability, many
researchers applied machine learning techniques in IDS to improve the
performance of attack detection (Nguyen & Armitage 2008). There are no
known machine learning methods that can be applied in IDS for detecting all
types of attacks. Finding the right input data and applicable algorithms for real
life situation is the main challenge of using machine learning in IDS.

1.2 Research questions

The objective of the research is to study and improve different methods of data
preprocessing and machine learning in network security. To achieve this, the
dissertation presents several case studies. In most of these studies, one or more
machine learning algorithms are customized and employed in order to solve
well posed problems. The main research questions of this study are as follows:

1. How to monitor unbalance behavior of machines’ and high speed
networks’ in real time

2. How to detect fast spreading network intrusion (such as denial of service
attack or scanning) without any prior knowledge

3. How to detect complex attacks (such as Botnet) without any prior
knowledge

4. Is it practical to apply machine learning algorithms in IDS in real time
5. Is it possible to detect intrusions in encrypted communications

15

6. How effective are decentralized monitoring methods for improving the
speed and detection rate of intrusions

1.3 Research approach

To answer the previously mentioned questions, this research uses Constructive
Research Approach (CRA) (Piirainen & Gonzalez 2013). This research aimed to
create an innovative model to a real problem and contribute to the particular
field of science where it has been applied. CRA consists of:

 Planning phase: Discovering and selecting the scientifically relevant cases
in network security

 Analyzing phase: Analyzing and literature review will be done to gain a
comprehensive understanding of the problems and previously proposed
methods on real-time intrusion detection system and unsupervised
machine learning which applied in network security

 Designing phase: Creating a blueprint from the innovative model which is
capable to solve the cases which found in analyzing phase

 Implementation phase: Developing the predefined project
 Testing and documentation phase: Testing the proposed model on well-

known traffic samples and gathering the produced data (results) and
compare the result with the previous proposed solutions

In this research, the problem of fast spreading network intrusions and complex
attacks in normal and encrypted communication has been studied. The
proposed solution is an unsupervised multi-stage network intrusion detection
system which is capable of monitoring high speed networks in real time.

1.4 Structure of the work

The rest of this dissertation is organized as follows. First, the theoretical
background on intrusion detection and machine learning is introduced. Then,
the contributions and results obtained in the research articles and new
unpublished results are presented. Finally, the dissertation is concluded and
outlines the future works and research directions.

Chapter 2 covers deep explanation of potential intrusions that threaten
networks and systems. These intrusions include new types of attacks which are
fast, brutal and complex. Furthermore the history and current state of intrusion
detection system will be explained in detail. Chapter 3 presents deep technical
aspects of data prepossessing and data analyses algorithms (supervised and
unsupervised) which have been used in this research are presented.

16

Chapter 4 outlines the research contribution of the dissertation. It contains
the results presented in the included research articles to discuss the benefits and
performance of using different machine learning algorithms for intrusion
detection. In addition, some new framework and results that have not yet been
published are added to support the research work.

Finally, Chapter 5 concludes the work and provides future research
directions.

1.5 Research contribution

The author’s contribution to the included articles is in the design and
development of the entire framework with co-authors. Figure 1 shows the
relation of included articles, their common topics and their place in overall
scheme. The deviation is based on data source (host or network) for the IDS and
their detection methods (supervised or unsupervised).

Article PI presents a real time model for host based intrusion detection
system (HIDS) to deal with well-known centralized Botnet attacks. Article PII
propose a multi stage unsupervised network intrusion detection system (NIDS)
for detecting fast-spreading and complex network attacks. Article PIII uses
artificial immune system (AIS) to train the IDS. In addition it monitors and
learns the current behavior of network from distributed network sensors for
detecting new types of intrusions. Article PIV uses the first unsupervised
engine which proposed in PII to add the capability of online training for the
central AIS engine which proposed in PIII. Finally, article PV implemented the
both engines which proposed in PII and enhanced the detection rate of
unsupervised engines in PIV. Each article is discussed in detail below.

Article PI presents a real time and active model for detecting centralized
Botnets in host level. The proposed HIDS is capable of inspecting the hypertext
transfer protocol (HTTP) and internet relay chat (IRC) packets and dropping
suspicious packets while it observe patterns of command-and-control (C&C)
communications. The experimental part consists of inspecting HTTP and IRC
packets from a real Botnet traffic. The capability of bot detection by real-time
processing of host-related data solely, distinguishes this model from other
existing approaches. The author is responsible for literature review on Botnets
behavior, proposing the packet inspection and design the overall framework

Article PII presents a multistage unsupervised NIDS to detect intrusions in
high speed network. Due to the infeasibility of checking packets payload in
encrypted or high speed networks the proposed model uses network flow as
the input data for NIDS. The intrusion detection procedure has been divided in
two stages, the first engine is responsible to detect fast spreading network
attacks in real time and the second engine conducts deeper analysis and
correlates the traffic of the previous attackers to find the potential Botnet. The
main novelty of the propose model is to train DBSCAN clustering algorithm by
clean network traffic before the attack to represent the normal behavior of

17

network to the clustering engine. The author carried out deep research on
finding the most effective unsupervised machine algorithms which was used
and implemented in previously proposed NIDS and proposed the overall
framework.

Real-time Botnet command and control characterization at the host
level

PI

HIDS

NIDS

PIII
Distributed Agent Based Model for Intrusion Detection System

Based on Artificial Immune System

Supervised NIDS

A real time unsupervised NIDS for detecting unknown and
encrypted network attacks in high speed network

Unsupervised Network Intrusion Detection Systems for Zero-Day
Fast-Spreading Attacks and Botnets

PII

PIV

PV

Artificial Immune System Based Intrusion Detection: Innate
Immunity using an Unsupervised Learning Approach

Unsupervised NIDS

FIGURE 1 The Common Topics of Different Papers.

Article PIII presents a distributed agent based design of AIS for IDS. The
detectors are distributed in each host in network. The central engine is located
in server and manages the detectors and makes final decision about current
behavior of the network. The detector agents actively updated and
synchronized with detector agents of other hosts through the IDS’s central
engine. The main novelty of the proposed model was to apply distributed
model in AIS based IDS to increase the speed and detection rate of intrusions.
Based on the results during the test phase new types of anomaly were detected

18

due to the dynamically increased number of memory cell in each host. The
author’s contribution includes the implementation of the framework.

Article PIV combines the capability of PII and PIII. The novelty of this
work is utilization of AIS and DBSCAN (density-based spatial clustering of
applications with noise) in order to provide online and real-time training for the
adaptive immune system within the central artificial immune system. Different
methods for unsupervised machine learning are investigated and DBSCAN is
selected to be utilized in this architecture. The adaptive immune system also
takes advantage of the distributed structure, which has shown better self-
improvement rate compare to centralized mode and provides primary and
secondary immune response for unknown anomalies and zero-day attacks. The
author contributed to the idea of using unsupervised machine learning
algorithms with AIS to add the online capability to the central engine and
implement the overall framework.

Article PV implement the proposed model in PII and enhanced the
detection rate in PIV. The model detects network intrusion without any prior
knowledge via two separate engines. The first engine detects fast-spreading
DoS, probes and DDoS attacks (e.g. POD, SMURF, Mail-bomb, SSH-process-
table, UDP Storm, port scanning, network scanning) in real time to stop the
paralysis of both network and victims. The second engine finds the eventual
internal Botnet (Bots or Botmaster), while the monitored network filled by
DDoS attacks traffic implement the overall framework. One of the main novelty
of the propose model is using a dynamic and self-adaptable threshold to detect
unexpected behavior in the network to decrease the computation time of the
clustering process during the normal state of the network. Standardizing data
input via a logarithm (log) and monitoring the different size of subnets through
the threshold increase the performance of the NIDS. To evaluate the proposed
model, the NIDS tests with two publicly available and well-known datasets to
ensure the detection process. The author implements the overall framework.

2 INTRUSION DETECTION SYSTEM

This chapter presents the fundamental concept of intrusion and intrusion
detection system. First, different types of intrusions and their signatures
(symptoms) will be explained. Next, different architecture of intrusion detection
systems (IDS) and their specificities properties will be discussed.

2.1 Intrusions

Intrusion is a formal term for describing the malicious act of compromising a
network or system. Accessing or manipulating data should be authorized by
sets of rules which defined in confidentiality, integrity and availability (CIA
triad) policies of the data. Attackers aim to bypass layers of computer security
(which presented in section 1.1) to breach the confidentiality, integrity and
availability of data or services (Hernández-Pereira et al. 2009, Kumar, Kumar &
Sachdeva 2010).

Based on the literature, successful intrusions aim to pass through the main
four stages as listed below (Asaka, Taguchi & Goto 1999, Kruegel, Vigna &
Robertson 2005):

 Probing stage:
Considered as the first stage of intrusion, which intruders scan the victims’
systems or network to collect information related to their potential
vulnerabilities. (Also known as scanning, surveillance or search stage)

 Exploitation stage:
In case of finding vulnerability in probing stage, the intruder tries to gain
the control of victim’s machine for further activities. (Also known as
activity stage)

 Action stage:
By gaining the control of victim’s machine in activity stage, intruder can
access and manipulate victim’s data and install malware to attack other

20

systems in the network. Malware or malicious software is a program to
penetrate computers without the user’s permission or notification.
(Also known as mark stage)

 Masquerading stage:
Finally, the intruder tries to removes or hides the traces of the attack.

Based on the stages which described above, Intrusions can be divided into four
categories (Lippmann et al. 2000):

 Probe:
As mentioned above this type of attack looks for live IP addresses (valid
IP), open ports, victims’ operating systems (OS) and other useful
information to find the potential vulnerabilities in each host. IPsweep
(network scanning), Portsweep (machine scanning), Nmap, Mscan, SAINT
(Security Administrator’s Integrated Network) and satan are the common
probe attacks (Ghorbani, Lu & Tavallaee 2009). Network Mapper known
as Nmap (Lyon 2009) is a well-known network scanning program for
security purposes which have been used to extract data about hosts and
their services for creating a map of the targeted network. Other recent
offensive methods of scanning for large networks have been proposed
(Durumeric, Wustrow & Halderman 2013) to maximize the scanning
performance which may paralyze the network and targeted hosts due to
the high number of network flows.

 Remote to Local (R2L):
In R2L attack, intruder attempts to obtain a local account in the network
through the founded vulnerability in probing stage. Social engineering,
man in the middle, password guessing are the well-know and common
R2L attacks. Password guessing which mainly performed by SSH brute
force is an old type of attack which still strongly occurs (Cid 2015) to the
web server by trying all possible combination of characters to find the
correct keys (passwords).

 Denial of Service(DoS):
DoS is a network level attack which aims to disrupt the usability of a
service or network. Attacker uses a compromised machine to sends high
amount of malicious traffic to specific machine/s for paralyzing their
services and network. Engaging DoS attack via high number of
compromised machines is referred as Distributed Denial of Service
(DDoS). Today, many internet users do not install or update proper
security software (such as: firewall and antivirus). Professional attackers
use automated tools to find vulnerable machine and install malware to
compromise them. The compromised machines are referred as Robots or
Bots. Botnet is a collection of compromised computers (Bots) which are
remotely controlled by the intruder (BotMaster) under a common
Command-and-Control (C&C) infrastructure. Botnets are used to perform
malicious activity in wider scale such as DDoS attacks and spamming.
SYN flooding, Ping of Death (PoD), HTTP flood, XOR DDoS Botnet, Smurf

21

attack, Mail-Bomb are the well-known DoS and DDoS attacks. SYN flood
is an old and well know DoS attack which intruder sends high number
SYN requests to the victim in an attempt of consuming high resource from
the victim to make it unresponsive to legitimate requests. High skilled
intruders are able to deceive and bypass firewalls and antiviruses and
victimize the most advance and up-to-date operating system such as Red
Hat Enterprise Linux 7 (Brouer 2014). For instance in September 2015,
distributed SYN flood had been detected with bandwidth range from few
to 170 gigabyte per second (Gbps) victimizing gaming sectors and
educational institutes in Asia. The attacker used SSH Brute force attack to
gain privilege to several Linux servers in Asia to construct his own
botnets. Afterward with the compromised Linux servers, he launched
crippling DDoS attacks of over 150 Gbps (Khandelwal 2015). PoD is
another well-known DoS attack which the intruder attacks machines
through sending malicious ping requests. This issue was fixed in many
operating systems by 1998 however with the recent usage of Internet
Protocol version 6 (IPv6) different version of Microsoft operating system
were vulnerable to it (Jackson 2013). HTTP flood is a new DOS/DDoS
attack which occurred for the first time in 2009. It victimize web servers by
sending high number of legitimate sessions of HTTP GET or POST
requests to make the web server unresponsive (Cid 2014).

 User to Root (U2R):
U2R and R2L are in same class of attacks however in U2R the intruder has
local access and tries to access and manipulate the policy file in the OS to
gain administrator privilege. Buffer overflow, Sql-attack and perl are the
common U2R attacks.

Besides the traditional categorizing of intrusions which discussed above many
new types of sophisticated attacks have been discovering in the recent decade.
One of the big and well-known classes of intrusion is advanced persistent threat
(APT). It consists of stealthy though continuous hacking processes which
operated by high skilled hackers. The main difference between APT and
traditional threats is the stealthy and data-focused nature of it. Based on
statistics the main victims of APT are business and political organizations. The
term "advanced" refers to applying sophisticated malware to take advantages
from the existing vulnerabilities of victim. The term "persistent" refers to the
external continuously monitoring method to collect confidential data from the
victim. At the end "threat" refers to the process involved by high skilled hacker
to organize the attack (Tankard 2011, Cole 2012).
 Stuxnet is one of the well-known examples of an APT which was highly
sophisticated and targeted specific infrastructure (such as Iran’s nuclear
facilities) via numerous zero day vulnerabilities and spread via several
propagation methods (Virvilis & Gritzalis 2013).

Recent evidence which mentioned above shows that conventional
security measures like firewalls, anti-virus and signature based IDS are not

22

enough, since sophisticated intrusions can deceive or bypass them. Due to this
reason deeper and more automated analysis of data is the baseline for network
and machine monitoring (Tankard 2011).

2.2 Intrusion detection system

Intrusion detection system (IDS) is a tool or device which monitors the behavior
of network or systems to detect abnormal activity. IDS notifies administrator
regarding the observed suspicious activities and in some case IDS is capable of
blocking the abnormal traffics or activities (Patcha & Park 2007). Figure 2 shows
the overall classification of IDS.

IDS can be categorized based on the input data (Xin, Dickerson &
Dickerson 2003, Engen 2010). The IDS which monitors and inspects the
behavior of the whole network is NIDS (network-based intrusion detection
system). Current NIDS solutions monitor bytes, packets' payload or network
flows to detect intrusions. According to (Claise 2008) “A flow is defined as a set
of IP packets passing an observation point in the network during a certain time
interval. All packets belonging to a particular flow have a set of common
properties”. Each network flow contains information about IP addresses and
port numbers of source and destination, number of packets, protocol, duration,
average size of packets and other useful information which can be retrieved
from packets header.

Whereas, the IDS which derives information from single host is HIDS
(host-based intrusion detection system). HIDS monitors and inspect the system
activities such as: incoming connection attempts, network traffic, login
information and resource usage (CPU, Memory, Storage and etc.).

In general there are two main detection methods for IDS: Signature-based
and anomaly-based. Signature-based IDS monitor the behavior of machine or
network and compare it with the characteristics of known attacks. Signature-
based IDS have high detection rates for well-known attacks; however, as
mentioned before they even fail to detect known intrusions with small
variations to their signatures. Providing attack signatures consumes money and
time, and with the increasing rate of zero-day attacks, using signature-based
IDS is not a safe solution.

In anomaly-based detection techniques, normal state of system or network
will be defined. If behavior of system or network passes the criteria, the IDS will
be suspicious and flag it as abnormal. Using this method will increase the
probability of detecting novel attacks; however, it makes lots of detection errors
because of the difficulty of defining the normal state. Having fewer false alarms
and an increased detection rate of zero-day and complex attacks, especially in
imbalanced network traffic, has become an important challenge in the design of
detection techniques for IDS (Sperotto et al. 2010, Engen 2010).

23

IDS Detection Method

Data Source

Structure

Reaction

Usage Frequency

Offline

Online

Passive

Active

Signiture-Based

Anomaly-Based

Centralized

Distributed

Host-Based

Network-Based

FIGURE 2 Classification of Intrusions Detection System (IDS).

From the reaction perspective, IDS can be categorized in two groups: passive
and active. Passive IDS stores and log the detail detected intrusion and send it
to the administrator however active IDS take immediate action on the intrusion
to stop it. In real life, active IDS are the efficient solution since they stop the
intrusion immediately and mitigate the damage of intrusion to the system and
network, however, false alarm may create problem for legitimate actions
(Engen 2010).

Finally, the last way to classify IDS is based of usage frequency: offline IDS
or online IDS. Offline IDS analyses pre-logged data to find intrusion however

24

they are not efficient solution for fast and brutal attacks. In the other hand
online (real-time) IDS are capable of detecting intrusions immediately and make
it possible for administrator to mitigate the damage in intrusions.

3 MACHINE LEARNING

This chapter discusses the overall structure of data preprocessing, data
analyzing and performance evaluation. It is important to note that many
algorithms can be used in data preprocessing or analyzing, however, the
chapter mostly focuses and explains the algorithms which applied in the articles
included in this dissertation. First, the preprocessing procedures such as data
selection, feature extraction and selection will be outlined. Next, machine
learning methods such as classification and clustering are presented. At the
end, performance evaluation techniques are described.

3.1 Data gathering and preprocessing

In general data mining algorithms which use machine learning methods have
inductive bias. As a result, the characteristics of the data being mined will
directly affect the performance of machine learning methods (Freitas & Timmis
2007). Preprocessing the logged or live data (raw data) aims to remove
irrelevant (redundant) and duplicated information to prepare the preprocessed
input data for the analyzing phase since the raw data may contain chaotic,
missing and irrelevant data. The other two objectives in preprocessing data are
data extraction which masked by another of data (such as noise) and dimention
reduction. Preprocessing data (Fayyad, Piatetsky-Shapiro & Smyth 1996, Hand,
Mannila & Smyth 2001) contains several steps. Each step performs specific
actions to extract the useful information form the available data for the
analyzing phase. The main five main stages of data preprocessing are listed and
explained below.

3.1.1 Data selection and feature extraction

Depend on the application area, the most available and relevant source of data
will be selected. In feature extraction phase, sets of derived values (features)

26

will be extracted from the raw data. Feature extraction reduce the
representation of data to increase the performance of data processing since
analyzing the full size raw data is time consuming and decrease the accuracy of
output. For instance, to analyze network traffic for network-based intrusion
detection, the application should gather the data from routers and extract
information such as number of transferred bytes, packets, networks flows, IP
addresses, protocol, port numbers and other useful features of network traffic
for intrusion detection (Guyon & Elisseeff 2003, Liu & Yu 2005, Novakov et al.
2013). Many researchers are suggesting using network flows for intrusion
detection purposes (Lakhina, Crovella & Diot 2004, Peng, Leckie &
Ramamohanarao 2004, Mark, Crovella & Diot 2004, Tedesco & Aickelin 2006).
Monitoring network flows enhances the detection rate of complex attacks and
decreases false alarms. As network attacks may occur in several stages or via a
lengthy communication, inspecting the packet’s payload or counting the
number of transferred bytes may not provide sufficient information for their
detection. Sampling network traffic is one of the main solutions to reduce the
resource requirement and computation time of analyzing the packet’s payload;
however, it increases the probability of losing anomalous data (data related to
intrusions) and pushes the NIDS to produce a high level of false-negative
alarms. The extracted features such as network flows improve the detection rate
since they contain the behavior of the network and the nodes in higher
extensive vision. As the data volume of network flows is only 0.1 per cent
compared to the packet payload, real-time detection is practical and
implementing the NIDS in a high-speed network will be feasible (Sperotto et al.
2010). In addition intrusions in encrypted communication raise a false-negative
alarm in payload-based NIDS as a result of the inaccessibility of the packets’
payload; however, monitoring and inspecting encrypted communication in the
form of network flows provides useful information to the NIDS (Koch &
Rodosek 2010, Augustin & Balaz 2011).

3.1.2 Standardization

Extracted features from the raw data can be divided into two main categories:
discrete and continuous. Discrete data can be finite number of values which are
discrete and there is no grey area in between, such as protocol types of
communication. However continuous data can take any value and there is no
restricted predefined restricted separate values such as the duration of network
flows between two machines.

Continuous data can be different in scales. Unfair comparison of features
during data analyses phase can result in false learning (and decisions making).
Data standardization techniques try to define a standard scale for all features
(with different scales) to effect equality during analyses phase.

Data standardization is the process of removing variant scale of different
data features. Data with off the scale magnitude may dominate other feature
during data analyses. Natural logarithm (Log) and z-score are the well-known
data standardization methods (Chiu et al. 2015).Logarithmic transformation of

27

data is suitable where the data covers a wide range of values. Among all of the
standardization methods, Log transformation is one of the best methods to
reduce the impact of outliers since it squeezes the bigger values and stretches
smaller values. Figure 3 show the standardization result of network traffic
sample. As shown the abnormal behavior started from 11th second of network
traffic however the high traffic during 21st second masks all of the abnormal
behaviors. Figure 3 (A) shows the normal view of traffic sample. Figure 3 (B)
shows the data which standardized through z-score method, however due to
the high amount of traffic in 21st second most of the abnormal behaviors have
been masked. The log transformation which has been shown in Figure 3 (C) was
particularly effective in standardizing positively skewed distributions
(Leydesdorff & Bensman 2006).

(A)

(B)

(C)

Time
Network

Flows

1 1

2 3

3 5

4 9

5 10

6 15

7 19

8 20

9 25

10 29

11 1000

12 1001

13 1005

14 1009

15 1010

16 1020

17 1025

18 1059

19 1065

20 1070

21 18000000

22 90000

18000000

FIGURE 3 Data Standardization.

28

3.1.3 Feature selection

The number of extracted features from the raw data can be huge. Redundant
and irrelevant features should be removed without losing important
information, since they may result in the high computational burden and
memory usage during data analyses. Feature selection can result in dimensional
reduction since it has been used for simplifying model interpretability, reduce
training times and enhance generalization by reducing over fitting.(James et al.
2014)

3.1.3.1 Subspace clustering

Utilizing high dimensional data in machine learning algorithms increase the
performance of prediction and anomaly detection since the algorithm can
model and learn behavioral changes of each specific feature. This has motivated
researchers to development techniques for finding a low-dimensional
representation of a high-dimensional data. As mentioned before feature
selection removes irrelevant and redundant features by analyzing the entire
dataset.

Three Dimensional Data

X

Y

Z

Two Dimensional Data
(C)

Z

Y

Two Dimensional Data
(B)

Z

X

Two Dimensional Data
(A)

Y

X

FIGURE 4 Subspace Clustring.

29

Subspace clustering is a feature selection method which localize the search for
relevant dimensions allowing them to find Clusters that exist in multiple
and overlapping subspaces (Vidal 2010). Subspace clustering has been applied
in machine learning clustering-based methods (Boult & Brown 1991, Goh &
Vidal 2007, Elhamifar & Vidal 2009, Elhamifar & Vidal 2010). Figure 4 shows
how a three dimensional data will be divided into 3 two dimensional data
through subspace clustering algorithm.

3.1.3.2 Genetic Algorithm

Genetic algorithm (GA) inspired by Darwin's theory of evolution. The process
starts with a set of population. Samples of population will be taken and used to
form a new population. The aim is to produce a better population. The new
produced population will be selected, prioritized and reproduce based on their
fitness. As show in Figure 5 this procedure will continue and repeated till some
conditions (for example number of populations or improvement of the best
solution) meet the criteria. GA tends to an optimal solution by using crossover
and mutation processes similar to evolution.

Generating Random
Popoluation

Evaluated Fitness

New Population

Test

Using New
Population

Selection

Crossover

Mutation

Accept

FIGURE 5 Outline of Genetic Algorithm (GA).

Crossover combines more than one population (parent) to produce a new
population (children). As a result the child may be better than any of the
parents since there is a probability of taking the best characteristics from them.
There are many well know methods to apply crossover such as: One-point
crossover, two-point crossover, Uniform crossover (Molina, Belanche & Nebot
2002, Zhang & Chang 2009) which shown in Equation 2-4.

30

One-point Crossover:
Parent-A 01011100 + Parent-B 11001001 = Children 01011001 (2)

Two-point Crossover:
Parent-A 01011100 + Parent-B 11001001 = Children 01001000 (3)

Uniform Crossover:
Parent-A 01011100 + Parent-B 11001001 = Children 11001000 (4)

Mutation is used to maintain genetic diversity from one generation of a
population (parents) to the next (children). In mutation, the new population
may change entirely from their parents. Mutation alters one or more values
from parents to obtain better solutions (children).

Mutation:
Parent 01110010 Children 01100110 (5)

3.2 Data analyses

Analysis of data is a process of inspecting, modeling and extracting information
from preprocessed data. Data analysis has multiple approaches and techniques
to extract and discovering useful information for the prediction and anomaly
detection. Machine learning algorithms have been used broadly in field of data
analyses (Liao & Vemuri 2002, Ramadas, Ostermann & Tjaden 2003, Kruegel et
al. 2003, Estevez-Tapiador, Garcia-Teodoro & Diaz-Verdejo 2003, Li 2004).
Machine learning techniques establish an explicit or implicit model for
categorize the input data and they are capable of changing their execution
strategy while it acquires new data (the self-learning capability) (Garcia-
Teodoro et al. 2009).

In general there are three types of machine-learning technique:
supervised, semi-supervised and unsupervised. In supervised machine learning
techniques, the engine needs to be trained properly by a labeled dataset in order
to create models for future prediction or decision-making; however, the
attainment of labeled data needs to be carried out by experts, which is both
costly and time-consuming(Kotsiantis, Zaharakis & Pintelas 2007).

Semi-supervised machine-learning techniques need to be trained by small
amounts of labeled data and large amounts of unlabeled data to build the
model of normal and abnormal data(Chapelle, Scholkopf & Zien 2006).
Unsupervised machine learning techniques discover and formulate the invisible
model of unlabeled data without any prior knowledge(Kotsiantis & Pintelas
2004).

31

3.2.1 Supervised Machine Learning Algorithems

Supervised machine learning algorithms referred to the methods which predict
based on pre-observed evidence in the training dataset. The training dataset

includes data and the response examples. Supervised learning algorithms analyze
the training dataset and generate an inferred function, which can be used for
mapping new samples. Observing more data result in improvement of the
prediction performance. The main challenge in each application area is to
choose the best algorithm which can correctly determine the class labels for
unseen samples. Figure 6 shows the overall procedures of testing and training
phase in supervised machine learning.

Known Data Known Responses

New Data

Model

Predicted Respond

Training Phase:

Testing Phase:

FIGURE 6 Testing and Training Phase in Supervised Machine Learning.

Supervised machine learning algorithms can be categorized as classification
and anomaly detection. In classification, each training instance is already
classified into one of the predefined categories. During the training phase the
aim is to discover the relationship between the instance and it’s category
without any observation of the test data. The discovered rules should be useful
to predict the class of each unknown instances in the test data. Classification
algorithms usually apply to nominal response values (Kesavaraj & Sukumaran
2013). In anomaly detection the goal is to identify data points that are abnormal.
Since the potential variations are high and the training instances are few it's not

32

feasible to train the system. Anomaly detection methods will train by normal
activities and then identify significantly differences during testing phase
(Chandola, Banerjee & Kumar 2009).

Classification and anomaly detection methods have been applied in
broad domains of application such as network traffic monitoring (Li &
Kianmehr 2012, Huang & Huang 2013), credit analysis (Hsu & Hung 2009), and
biomedical modeling (Retnakaran & Pizzi 2005).

3.2.1.1 Artificial immune system

AIS has been defined (De Castro & Timmis 2002) as “Adaptive systems inspired
by theoretical immunology and observed immune functions, principles and
models, which are applied to problem solving”.

Among different types of algorithm which have been inspired by the
biological systems such as evolutionary algorithms, swarm intelligence and
neural networks, AIS algorithms are bio-inspired from the human immune
system. Each common technique in AIS is inspired by specific immunological
theories such as: clonal selection, immune networks and negative selection.

The idea of clonal selection focus on the Darwinian attributes of the theory
where the selection and reproduction of antibodies is prioritized based on the
affinity rate of produced antigen and antibody. Clonal selection algorithms
have been applied in optimization and pattern recognition domains.(De Castro
& Von Zuben 2002)

Beside the respond to the antigen which produced by external invaders,
lymphocytes may attack to the materials which produced by internal host own
cells. A full immune response may damage the host’s organism. Negative
selection algorithm inspired the positive and negative selection processes that
occur during the maturation of T cells in the thymus. Negative selections
identify and delete actions which may attack self-tissues. These algorithms have
been applied in classification and pattern recognition domains where the
algorithm can learn from the labeled dataset (Forrest et al. 1994, Esponda 2005).
The following algorithm shows the basic pseud code of negative selection in
AIS (Dal et al. 2008):

Input: a set of normal (self) and abnormal (non-self) data instances
REPEAT
 Randomly generate immature detector
 IF match with self
 THEN Discard
 ELSE IF match with non-self
 Measure the affinity between detector and non-self

 IF affinity between the detector and non-self passes threshold
 Add to finial detector set
UNTIL stopping criterion
Output: a set of mature detector

Negative selection algorithms can be used to detect abnormal behavior inside of
network or host (Hofmeyr & Forrest 2000). Human immune system (HIS) is
able responds quickly to perversely seen antigen since it can remember their
specific antibody. Creating memory cells via genetic algorithm have been

33

applied in negative selection methods in AIS to form a secondary immune
response without human involvement.(Dal et al. 2008)

3.2.2 Unsupervised Machine Learning Algorithems

Unsupervised machine learning algorithms try to find hidden structure of
unlabeled data. Clustering algorithms is one of the main approaches in
unsupervised machine-learning techniques; it detects noises or abnormal
behavior via categorizing patterns (data) into group/s (cluster) according to
their resemblance (Nguyen & Armitage 2008, Bhuyan, Bhattacharyya & Kalita
2012).

The two main category of clustering algorithms are cluster association and
centroid distance. In cluster association techniques such as DBSCAN, the
clustered data will be considered as normal and the data point outside of
clusters will be mark as abnormal (noise). Centroid distance based clustering
techniques such as K-means, evaluate points based on their distance to their
cluster centroid cluster coordinate hence small distance will be considered as
normal and high distance as abnormal. In this section the two well-known
relevant clustering algorithms (DBSCAN and K-means) for anomaly detection
in network security are introduced.

3.2.2.1 DBSCAN

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is a
powerful and well known unsupervised cluster association technique (Ester et
al. 1996) which has been used in anomaly detection (Casas, Mazel & Owezarski
2012). It requires two parameters: maximum radius of the neighborhood (d)
and minimum number of samples required to form a cluster (minSpl).

It starts with a random starting point, if the starting point contains
sufficiently neighborhood a cluster will be created, otherwise, the point will
labeled as noise, however, the noise point might later be found in density
reachable with a different point and hence be made part of a cluster. All points
that are found within the acceptable reachable neighborhood will be added to
cluster. This process will continue until all the density connected points are
found. Then, the algorithm will check a new unvisited point and apply all of the
steps which may lead to discover a new cluster or label the point as noise.
Figure 7 shows the steps which will be taken by DBSCAN algorithm for
anomaly detection purposes.

34

Anomaly detection

(F)

d

No untouched
points left

(E)

Clustering continues

(D)

Clustering starts from
random sample

(B)

d

Clustering continues
on reachable points

(C)

Original data

(A)

FIGURE 7 DBSCAN Clustering for Anomaly Detection.

DBSCAN algorithm appears to have a high detection rate of network intrusions
without any prior knowledge as a result of the ability to cluster data in any size
and arbitrary shape. In addition it will cluster the data without requiring
knowing the number of clusters. (Erman, Arlitt & Mahanti 2006, Ghourabi,
Abbes & Bouhoula 2010)

3.2.2.2 K-means

K-means is a well-known and widely used unsupervised centroid distance
based clustering algorithm for anomaly detection. The given dataset will group
into k clusters, in which each cluster has a cluster center (centroid). To increase
the accuracy of data analyses, the algorithm tries to find optimal coordinates for
centroid points which minimize their sum of distance to the clustered data
points. In general k-means algorithm can be divided into these steps (Jain &
Dubes 1988):

1. Randomly select the number of clusters (centroid) as k
2. Assign the original data to the nearest centroid for creating the clusters
3. Assign new coordinates for centroids based on the previously clustered

data
4. Repeated step 2 and 3 until there is no changes in the coordinate of

centroid points

35

Figure 8 shows the how k-mean clustering can be applied in anomaly detection
(Münz, Li & Carle 2007). First, the original data groups in to k cluster. Then
after finding the optimal centroid the data point with high distance will be
flagged as abnormal.

Original data

(A)

Initialing centroids

(B)

Creating clusters

(C)

Updating centroids

(D)

Updating clusters

(E)

Finalizing centroids &
clusters for

anomaly detection
(F)

d
d

FIGURE 8 K-means Clustring for Anomaly Decetion.

3.3 Performance evaluation

Anomaly detection methods aim to find and mark abnormal behavior which
derived from normal profiles (Patcha & Park 2007). In general there are three
main metrics to evaluate an algorithm in anomaly detection area:

1. Prediction accuracy which refers to the ability of correctly modeling the
data and predicting the class of new (unseen) data

2. Ability to make correct predictions in noisy, unbalance and missing data
3. The computation burden of data gathering and analyzing

36

In anomaly detection context "positive" class usually refers to anomalies data,
whereas "negative" will be considered as normal instances. Table 1 shows the
basic prediction conditions in anomaly detection area.

TABLE 1 Prediction Conditiones.

 Predicted Class

Normal Class Anomaly Class

True Class Normal Class True Negative False Positive

Anomaly Class False Negative True Positive

Based on these terms the following performance metrics can be extracted:

 True Positive Rate (TPR) is the correctly classification ratio of the detected
anomalous data to the total number of anomalous data

 True Negative Rate (TNR) is the correctly classification ratio of the
detected normal data to the total number of normal data

 False Positive Rate (FPR) is the misclassified ratio of the detected normal
data as anomalous to the total number normal data

 False Negative Rate (FNR) is the misclassified ratio of the detected
anomalous data as normal to the total number anomalous data

 Accuracy is the ratio of total correctly classified data (true negative and
true positive) to the total number of samples

 Recall is the ratio of correctly detected anomalies (true positive) to the total
number of anomalies

 Precision is the ratio of correctly detected anomalies to the total number of
predicted anomalies (true positive and false positive)

In general high false alarms (false positives or false negatives) can conclude the
usability of anomaly detection algorithm.

3.3.1 Estimantion methodology

Estimation methodology is used to predict how the proposed application
works. The proposed model should be tested on different data samples to
extract the performance evaluation metrics and compared it with previously
proposed model. Obviously the data which have been used for training the
algorithm should not be used to estimate the performance of the model since it
will result in not-realistic and over-optimistic performance prediction. Due to
this reason different rules have been proposed to evaluate the machine learning
algorithms.

K-fold is one of the well-known estimation methods which divide the total
data sample to K equal size data subsets (Ramaswamy et al. 2001, Li, Zhang &
Ogihara 2004). Each time one of the subsets will be used as the testing dataset
and the rest (k-1) will be used as training samples. This process will be repeated
for K times to use the entire K folds as the testing dataset for once. Finally, the k

37

cross validation estimates is averaged. Reducing the bias associated with the
random sampling of the training samples is the main advantage of this method
since for each time; the algorithm will be tested via separate portion of the data.

4 RESULTS

This chapter presents the research contribution and results which obtained in
this dissertation. First the real time HIDS for botnet detection is presented.
Next, the results and performance of supervised and unsupervised machine
learning algorithms which applied in centralized and distributed NIDS are
discussed. At the end, new unpublished method for finding anomalous outliers
will be presented.

4.1 Real time HIDS for botnet detection

Article PI proposed a real-time approach which not only detects Botnet traffic
on the host, but also can filter it from outgoing traffic in order to suppress the
Botnet. The proposed approach works by detecting Botnet communication
patterns which belongs to a centralized C&C structure in HTTP and IRC
protocols. The capability of bot detection by real-time processing of host-related
data solely, distinguishes this model from other existing approaches. We have
implemented our detection approach within a packet filtering firewall for
Windows XP machines (firewall drivers) to control the inbound and outbound
connections. During testing phase against IRC bots such as Rx bot, results
showed that suspicious IRC packets have been filtered out. Figure 9 shows the
architecture overview of the proposed approach.

39

FIGURE 9 Architecture Overview of HIDS [PI].

4.2 Machine learning algorithms applied on NIDS

Human immune system (HIS) has decentralized architecture, which orchestrate
its messages to the number of different types of cell to respond to the detected
threats and repair the damaged tissue. Previously many researcher applied AIS
on centralized machine which results in massive process in central engine (Dal
et al. 2008, Dressler & Akan 2010). Article PIII introduced a new distributed,
agent based AIS for intrusion detection. The main novelty of the proposed
model is to distribute detectors in each host while the central engine manages
the detectors to finalize decision about current abnormal behavior based on
previous history. The main advantage of using AIS in distributed IDS is to
benefited unique features of AIS such as self-learning, self-adaptation and self-
improvement since detector agents in each host is actively updated and
synchronized with detector agents of other hosts in the network through the
central engine of IDS. Using memory cells in each host decrease the intrusion
detection time for previously seen attacks since it contains the characteristics of
the know attacks. However to add the capability of self-improvement in AIS,
memory cells of newly detected anomalies by each host will be generated and
sent to all hosts to synchronize them. The results after simulation show that
numbers of memory cell detectors are dynamically increased and the
framework is able to learn and detects new types of anomalies.

Previously, real time NIDS such as (Amini, Jalili & Shahriari 2006) used
supervised machine learning algorithms to train their engine however the

40

acquisition of labeled data from security experts, or finding an attack-free data
set are costly. In addition unsupervised NIDS such as (Casas, Mazel &
Owezarski 2012) have high computation and it is not feasible to monitor the
network online whereas real-time monitoring, processing and intrusion
detection are now among the key features of NIDS. The proposed model in
article PII which further developed in the article PV presents a new, real-time
unsupervised NIDS, which detects zero-day attacks without any prior
knowledge. Figure 10 shows the overall architecture of the implemented model.

Alarm

Admin
Attack DetailsBotMaster IP

Threshold Determiner

Clustering Engine 1

Network Traffic History

Clustering Engine 2

Second Engine First Engine

IP Addresses
of Attackers

Routers

Network Traffic History

Live Network Traffic (Network Flows)

Network Traffic (Network Flows)

FIGURE 10 Architecture of the NIDS [PV].

The implemented model used a dynamic and self-adaptable threshold to detect
unexpected behavior in the network to decrease the computation time of the
clustering process during the normal state of the network. Standardizing data
input via a logarithm (log) and monitoring the different size of subnets through
the threshold increase the performance of the NIDS. In addition, dividing the
process of intrusion detection by multistage engines decreases the computation
time, which leads to having real-time intrusion detection for fast-spreading
network attacks. Since, in the first engine, the DBSCAN trains itself with the
previous clean network traffic; we reached a 100 per cent detection rate with
3.61 per cent of false alarms during our experiment. As a result of an increasing
rate of DDOS attacks via the botnet, we implemented the second engine to trace
the traffic of bots in order to detect the botmaster in centralized models under
different protocols (HTTP and IRC). To evaluate the proposed model, we used
two publicly available and well-known data sets to ensure the detection

41

process. Due to the unsupervised nature of the proposed model it will adapt to
the structure of the data without training or previous knowledge. Since the data
analyses of data will be done without any prior examples or attack signatures it
may also detect zero-day (new) attacks.

Article PIV presented a novel architecture for an intrusion detection
system based on the artificial immune system. As shown in Figure 11 the innate
immunity will be done online via unsupervised machine learning methods.

Packet
Pre-Processing

Network Traffic

Mirror Port
Network Traffic

Internet

Network

Network Traffic

Traffic
History

Network Change
Measurement Formula

Unsupervised Learning
Algorithm

Firewall

Training
Agent

Detector
Set

Dispatcher
Agent

Analyzer
Agent

Memory
Cell

Detector

Detector
Agent

Memory
Cell

Detector

Detector
Agent

Memory
Cell

Detector

Detector
Agent

Host
1

Host
2

Host N

Clustering Engine

AIS Engine

FIGURE 11 Proposed System Architecture [PIV].

In this multi-layered framework, the clustering engine labels the network traffic
as self and non-self without any prior knowledge and previous training or
knowledge about network flow profiles, thus acting as the first line of defense
in AIS-based IDS to provide online innate immunity. The dynamic threshold
has been used to facilitate the detection of abnormal network behaviors in the
crusting engine. The output of clustering is used to feed the training data for the
adaptive immune system as online and real-time training data. The primary
detectors will be distributed to hosts in the network and provide primary
immune response for the AIS based IDS. Based on the results the distributed
structure for IDS is more efficient than the centralized mode. Suspected
intrusions reported from hosts are analyzed and an optimized memory cell

42

detector is generated through a genetic algorithm process. Memory cells are
attack specific detectors, which provide a secondary immune response. Detector
life cycle rules update and eliminate weak or inefficient detectors to enhance the
performance of detection. The main novelty of this framework is utilization of
unsupervised machine learning methods in order to provide online and real-
time training for the adaptive immune system within the artificial immune
system without prior knowledge.

4.2.1 New unpublished results

One of the future works proposed in article PV was to group users into
different behavioral class. Real network contains traffic from different classes of
users such as: normal users, busy users and servers. In general the number of
busy users and servers is smaller than thus they may not form a cluster in
DBSCAN. Since the proposed model in article PV considers all of the network
behavior (in the clean traffic windows) as normal it will increase the acceptable
distance for DBSCAN by high value of to include all of the points inside the
nearest cluster. Clustering data with high value of acceptable distance increase
false negative rate (FNR) in certain cases. To overcome this issue we will
propose a new method which compares the previous behavior of outliers to
distinguish normal high traffic users from intrusions.

 Similar to the proposed model in article PV whenever the volume of
network flows passes the threshold, the NIDS uses the DBSCAN to cluster the
number of in-bounded and out-bounded network flows for each machine to
find the attacker/s. During the training phase, the NIDS clusters the clean
network traffic transmitted before the threshold raised the alarm in order to
obtain the most accurate distance during the detection phase. Technically the
normal users will form into clusters while the density of busy users or servers
may not reach the required level. Nevertheless, since training phase uses the
clean network traffic the proposed model will consider outliers as busy
machines with normal profiles.

Afterwards, to find the anomalous outliers which caused the high volume
of network traffic, the detection engine clusters the suspicious network traffic
window. The outliers IP addresses from detection phase will be compared to
their previous profile. If the distance of current behaviors and previously seen
behavior does not exceed the acceptable distance , the detection engine will
mark it as normal high traffic machine. However if the new behavior of outlier
IP exceed the distance it will consider the behavior of that machine as
abnormal. It important to note that if the outlier IP addresses do not have any
profile from the training phase, the detection engine will mark it as abnormal.

To evaluate the new proposed model on detecting fast spreading attacks,
we have used the same traffic sample as in article PV. Beside the DARPA traffic
sample, we have tested our model on SSH Brute Force from ISCX. Since today
most of the servers with SSH protocol limits number of user attempt, we have
change the SSH Brute Force attack in ISCX to a distributed model which various
number of bots participate in it. Figure 12 show the network’s behavior during

43

the attack. As shown in Figure 12 (A) the ratio of outbound flows to the
threshold is below one since the number of attackers is high however in Figure
12 (B) the threshold for inbounded traffic raise alarm since all of the traffic goes
to the limited number of machines.

(A)

(B)

FIGURE 12 Netwokrs Behavoiur During Distributed SSH Brute Force Attack.

Figure 13 shows the self-training phase during distributed SSH Brute Force
attack. As mentioned before the NIDS marks IP address of machines which
were located inside the clusters as normal. However the IP address of outliers
will be profiled as busy users or servers. As shown in figure 14 during the
comparison phase all of the outliers will be compared to their previous history.
If the distance does not exceed the threshold, NIDS will mark them as normal
users (with high traffic). Otherwise if the machine exceeds its traffic abnormally
the NIDS will mark it as the abnormal machine. Figure 15 shows the final
decision of NIDS.

FIGURE 13 Self-Training Phase During Distributed SSH Brute Force Attack.

44

FIGURE 14 Comparison Phase During Distributed SSH Brute Force Attack.

FIGURE 15 Detection Phase During Distributed SSH Brute Force Attack.

Table 2 shows the comparison of average performances of the new proposed
model and article PV. To evaluate the performance of “different behavioral
classes” feature in the new proposed model we have added traffic from busy
users and servers during the occurrence of intrusion. Since the proposed model
compares the behavior outliers to their previous history the overall
performance was higher than the previous proposed model in article PV.

TABLE 2 Performance Evaluation.

 New proposed model Proposed model in article PV

False positive rate 3.51% 4.53%

True negative rate 96.49 95.47%

Accuracy 98.35% 96.23%

Recall 100% 95.37%

Precision 97.83% 91.21%

5 CONCLUSION

Today, the occurrence of zero-day and complex attacks in high-speed networks
is increasingly common due to the high number vulnerabilities in the cyber
world. As a result, intrusions become more sophisticated and fast to
detrimental the networks and hosts. Due to these reasons real-time monitoring,
processing and intrusion detection are now among the key features of NIDS.
Traditional types of intrusion detection systems such as signature base IDS are
not able detect intrusions with new and complex strategies. Now days,
automatic traffic analysis and anomaly intrusion detection became more
efficient in field of network security however they suffer from high number of
false alarms. In this dissertation, to tackle the above described problems several
approaches have been applied. Due to unfeasibility of payloads checking in
high-speed network, the proposed framework monitors network flows instead.
Network flows contains the behavior of the network in higher extensive vision
and shows the explicitness of the network data which results in faster and
higher detection rate of network attacks.

Among all type of anomaly detection methods unsupervised machine-
learning techniques are commonly applied in NIDS to detect unknown and
complex attacks in the network without any prior knowledge. Unsupervised
learning method suffers from two main drawbacks: high number of false alarm
since it make the decision without any prior knowledge and high
computational burden since it need to find the similarities and relation among
all of the input data. To overcome computational burden we have applied
automatic and adaptive threshold to minimize the required input data. In
addition, to improve the accuracy of the clustering algorithm we have used the
clean network traffic to train the engine. In this dissertation we also analyzed
and compared the performance of centralized and decentralized AIS based
NIDS. Due to the distribution of process and parallel learning capability in
decentralized NIDS we achieved to have better detection rate in our proposed
model. At the end we have added the capability of unsupervised learning for
distributed AIS based NIDS to achieve online learning without any prior
knowledge.

46

YHTEENVETO (FINNISH SUMMARY)

Tämän päivän nopeissa tiedonsiirtoverkoissa monimutkaisten ja nollapäivä-
hyökkäysten yleisyys kasvaa kybermaailman haavoittuvuuksien suuren mää-
rän vuoksi. Tämän seurauksena järjestelmiin tunkeutumiset muuttuvat hienos-
tuneemmiksi ja nopeasti vahingollisiksi verkoille ja niiden laitteille. Täten reaa-
liaikainen monitorointi, prosessointi sekä tunkeilijan havainnointi ovat nykyään
pääominaisuuksia verkkopohjaisissa tunkeilijan havaitsemisjärjestelmissä. Pe-
rinteiset tunkeilijan havaitsemisjärjestelmä, kuten allekirjoituspohjaiset tunkeili-
jan havaitsemisjärjestelmät, eivät kykene havaitsemaan uusia ja monimutkaisia
strategioita omaavia tunkeutumisia. Tällä hetkellä verkkoturvallisuudessa au-
tomaattinen tietoliikenteen analysointi ja poikkeavien tunkeutumisten havain-
nointi ovat kehittyneet tehokkaammiksi, mutta ne kärsivät väärien hälytysten
suuresta määrästä. Verkkopohjaisissa tunkeilijan havaitsemisjärjestelmissä käy-
tetyt yleisimmät poikkeavuuksien havaintomenetelmät, joilla pyritään havait-
semaan tuntemattomia ja monimutkaisia hyökkäyksiä, ovat ei-ohjattuja kone-
oppimistekniikoita.

Tämä väitöskirja keskittyy pääosion verkkoliikenteen analysointiin poikkeavan
liikenteen löytämiseksi reaaliajassa. Ehdotettu viitekehys koostuu verkkoliiken-
teen esikäsittelystä, poikkeamien havainnoimisesta sekä klusterointimenetel-
mistä. Esitetty viitekehys pystyy muodostamaan merkityksekkäitä raportteja
etsittäessä todellisia haavoittuvuuksia tunnetusta datajoukosta. Ei-ohjatut op-
pimismenetelmät pystyvät mukauttamaan vaaditut ominaisuutensa verkon
dynaamiseen käyttäytymiseen. Nopeissa tiedonsiirtoverkoissa pakettikohtainen
tarkastaminen ei ole soveltuvaa, joten ehdotettu menetelmä havainnoi sen si-
jaan verkon pakettivirtoja. Pakettivirta sisältää verkon käyttäytymisen laajem-
massa näkymässä ja näyttää selkeästi verkon datan, mikä johtaa verkkohyök-
käysten nopeampaan ja luotettavampaan havaitsemiseen. Tämä tutkimus osoit-
taa että käyttämällä sopivaa datan esikäsittelyä sekä ei-ohjattuja datan ana-
lysointimenetelmiä on mahdollista havaita reaaliajassa nopeita ja monimutkai-
sia nollapäivänhyökkäyksiä.

47

REFERENCES

Abad, C., Taylor, J., Sengul, C., Yurcik, W., Zhou, Y. & Rowe, K. 2003. Log
correlation for intrusion detection: A proof of concept. Computer Security
Applications Conference. Computer Security Applications Conference,
2003. Proceedings. 19th Annual. IEEE, 255-264.

Amini, M., Jalili, R. & Shahriari, H. R. 2006. RT-UNNID: A practical solution to
real-time network-based intrusion detection using unsupervised neural
networks. Computers & Security 25(6), 459-468.

Asaka, M., Taguchi, A. & Goto, S. 1999. The implementation of ida: An
intrusion detection agent system. Proceedings of the 11th FIRST
Conference.

Augustin, M. & Balaz, A. 2011. Intrusion detection with early recognition of
encrypted application. Intelligent Engineering Systems (INES), 2011 15th
IEEE International Conference on. Poprad, Slovakia: IEEE, 245-247.

Balasubramaniyan, J. S., Garcia-Fernandez, J. O., Isacoff, D., Spafford, E. &
Zamboni, D. 1998. An architecture for intrusion detection using
autonomous agents. Computer Security Applications Conference, 1998.
Proceedings. 14th Annual. IEEE, 13-24.

Bhuyan, M. H., Bhattacharyya, D. K. & Kalita, J. K. 2012. An effective
unsupervised network anomaly detection method. Proceedings of the
International Conference on Advances in Computing, Communications and
Informatics. ACM, 533-539.

Boult, T. E. & Brown, L. G. 1991. Factorization-based segmentation of motions.
Visual Motion, 1991., Proceedings of the IEEE Workshop on. Princeton, NJ,
USA: IEEE, 179-186.

Brouer, J. 2014. Mitigate TCP SYN Flood Attacks with Red Hat Enterprise Linux
7 Beta. Available in: http://rhelblog.redhat.com/2014/04/11/mitigate-tcp-
syn-flood-attacks-with-red-hat-enterprise-linux-7-beta/.
Accessed: 20.Sep.2015.

Casas, P., Mazel, J. & Owezarski, P. 2012. Unsupervised network intrusion
detection systems: Detecting the unknown without knowledge. Computer
Communications 35(7), 772-783.

Chandola, V., Banerjee, A. & Kumar, V. 2009. Anomaly detection: A survey.
ACM computing surveys (CSUR) 41(3),15, 1-58.

48

Chapelle, O., Scholkopf, B. & Zien, A. 2006. Semi-Supervised Learning. The MIT
Press.

Chiu, Y. T., Liu, S. T., Huang, H. C. & Hong, K. F. 2015. Discovering Potential
Victims Within Enterprise Network via Link Analysis Method. Current
Approaches in Applied Artificial Intelligence , 326-335.

Cid, D. 2015. WordPress Brute Force Attacks – 2015 Threat Landscape.
Available in: https://blog.sucuri.net/2015/09/wordpress-brute-force-
attacks-2015-threat-landscape.html. Accessed: 01.Oct.2015.

Cid, D. 2014. Layer 7 DDOS – Blocking HTTP Flood Attacks. Available in:
https://blog.sucuri.net/2014/02/layer-7-ddos-blocking-http-flood-
attacks.html. Accessed: 10.Aug.2015.

Claise, B. 2008. Specification of the IP flow information export (IPFIX) protocol
for the exchange of IP traffic flow information. Available in:
http://tools.ietf.org/html/rfc5101. Accessed: 01.Sep.2015.

Cole, E. 2012. Advanced persistent threat: understanding the danger and how
to protect your organization. Newnes.

Dal, D., Abraham, S., Abraham, A., Sanyal, S. & Sanglikar, M. 2008. Evolution
Induced Secondary Immunity: An Artificial Immune System Based
Intrusion Detection System. Computer Information Systems and Industrial
Management Applications, 2008. CISIM '08. 7th. Ostrava, Czech Republic:
IEEE, 65-70.

De Castro, L. N. & Timmis, J. 2002. Artificial immune systems: a new
computational intelligence approach. Springer Science & Business Media.

De Castro, L. N. & Von Zuben, F. J. 2002. Learning and optimization using the
clonal selection principle. Evolutionary Computation, IEEE Transactions on
6(3), 239-251.

Denning, D. E. 1987. An Intrusion-Detection Model. Software Engineering, IEEE
Transactions on 13(2), 222-232.

Dressler, F. & Akan, O. B. 2010. A survey on bio-inspired networking.
Computer Networks 54(6), 881-900.

Durumeric, Z., Wustrow, E. & Halderman, J. A. 2013. ZMap: Fast Internet-wide
Scanning and Its Security Applications. Proceedings of the 22nd USENIX
Security Symposium. , 605-620.

49

Elhamifar, E. & Vidal, R. 2010. Clustering disjoint subspaces via sparse
representation. Acoustics Speech and Signal Processing (ICASSP), 2010
IEEE International Conference on. Dallas, TX, USA: IEEE, 1926-1929.

Elhamifar, E. & Vidal, R. 2009. Sparse subspace clustering. Computer Vision
and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on. Miami, FL,
USA: IEEE, 2790-2797.

Engen, V. 2010. Machine learning for network based intrusion detection: an
investigation into discrepancies in findings with the KDD cup '99 data set
and multi-objective evolution of neural network classifier ensembles from
imbalanced data. Bournemouth University.

Erman, J., Arlitt, M. & Mahanti, A. 2006. Traffic classification using clustering
algorithms. Proceedings of the 2006 SIGCOMM workshop on Mining
network data. ACM, 281-286.

Esponda, F. 2005. Negative representations of information. University of New
Mexico.

Ester, M., Kriegel, H. P., Sander, J. & Xu, X. 1996. A density-based algorithm for
discovering clusters in large spatial databases with noise. Knowledge
Discovery and Data Mining (KDD-96). Proceedings of the Second
International Conference on. Portland, USA: AAAI Press, 226-231.

Estevez-Tapiador, J. M., Garcia-Teodoro, P. & Diaz-Verdejo, J. E. 2003.
Stochastic protocol modeling for anomaly based network intrusion
detection. Information Assurance, 2003. IWIAS 2003. Proceedings. First
IEEE International Workshop on. IEEE, 3-12.

Fayyad, U. M., Piatetsky-Shapiro, G. & Smyth, P. 1996. Knowledge Discovery
and Data Mining: Towards a Unifying Framework. KDD 96, 82-88.

Forrest, S., Perelson, A. S., Allen, L. & Cherukuri, R. 1994. Self-nonself
discrimination in a computer. Research in Security and Privacy, 1994.
Proceedings., 1994 IEEE Computer Society Symposium on. Oakland, CA:
IEEE, 202-212.

Freitas, A. A. & Timmis, J. 2007. Revisiting the Foundations of Artificial
Immune Systems for Data Mining. Evolutionary Computation, IEEE
Transactions on 11(4), 521-540.

Garcia-Teodoro, P., Diaz-Verdejo, J., Maciá-Fernández, G. & Vázquez, E. 2009.
Anomaly-based network intrusion detection: Techniques, systems and
challenges. Computers & Security 28(1), 18-28.

50

Ghorbani, A. A., Lu, W. & Tavallaee, M. 2009. Network Intrusion Detection and
Prevention: Concepts and Techniques. (1st edition) Springer Publishing
Company, Incorporated.

Ghourabi, A., Abbes, T. & Bouhoula, A. 2010. Data analyzer based on data
mining for Honeypot Router. Computer Systems and Applications
(AICCSA), 2010 IEEE/ACS International Conference on. Hammamet,
Tunisia: IEEE, 1-6.

Goh, A. & Vidal, R. 2007. Segmenting Motions of Different Types by
Unsupervised Manifold Clustering. Computer Vision and Pattern
Recognition, 2007. CVPR '07. IEEE Conference on. Minneapolis, MN, USA:
IEEE, 1-6.

Guyon, I. & Elisseeff, A. 2003. An introduction to variable and feature selection.
The Journal of Machine Learning Research 3, 1157-1182.

Hand, D. J., Mannila, H. & Smyth, P. 2001. Principles of data mining. MIT Press,
Adaptive computation and machine learning .

Hernández-Pereira, E., Suárez-Romero, J. A., Fontenla-Romero, O. & Alonso-
Betanzos, A. 2009. Conversion methods for symbolic features: A
comparison applied to an intrusion detection problem. Expert Systems with
Applications 36(7), 10612-10617.

Hofmeyr, S. A. & Forrest, S. 2000. Architecture for an artificial immune system.
Evolutionary computation 8(4), 443-473.

Hsu, C. F. & Hung, H. F. 2009. Classification Methods of Credit Rating - A
Comparative Analysis on SVM, MDA and RST. Computational Intelligence
and Software Engineering, 2009. CiSE 2009. International Conference on.
Wuhan, China: IEEE, 1-4.

Huang, S. Y. & Huang, Y. N. 2013. Network traffic anomaly detection based on
growing hierarchical SOM. Dependable Systems and Networks (DSN), 2013
43rd Annual IEEE/IFIP International Conference on. Budapest, Hungary:
IEEE, 1-2.

Jackson, W. 2013. Microsoft issues fix for resurrected Ping of Death. Available
in: https://gcn.com/Blogs/CyberEye/2013/08/Microsoft-patch-ping-of-
death-IPv6.aspx. Accessed: 05.Sep.2012.

Jain, A. K. & Dubes, R. C. 1988. Algorithms for clustering data. Upper Saddle
River, NJ, USA: Prentice-Hall, Inc.

51

James, G., Witten, D., Hastie, T. & Tibshirani, R. 2014. An Introduction to
Statistical Learning: With Applications in R.

Kesavaraj, G. & Sukumaran, S. 2013. A study on classification techniques in
data mining. Computing, Communications and Networking Technologies
(ICCCNT), 2013 Fourth International Conference on. Tiruchengode: IEEE,
1-7.

Koch, R. & Rodosek, G. D. 2010. Command Evaluation in Encrypted Remote
Sessions. Network and System Security (NSS), 2010 4th International
Conference on. IEEE, 299-305.

Komninos, N., Vergados, D. & Douligeris, C. 2010. Security for ad hoc
networks. Handbook of Information and Communication Security. , 421-
432.

Kotsiantis, S. & Pintelas, P. 2004. Recent advances in clustering: A brief survey.
WSEAS Transactions on Information Science and Applications 1(1), 73-81.

Kotsiantis, S. B., Zaharakis, I. & Pintelas, P. 2007. Supervised machine learning:
A review of classification techniques. Emerging Artificial Intelligence
Applications in Computer Engineering , 3-24.

Kruegel, C., Mutz, D., Robertson, W. & Valeur, F. 2003. Bayesian event
classification for intrusion detection. Computer Security Applications
Conference, 2003. Proceedings. 19th Annual. IEEE, 14-23.

Kruegel, C., Vigna, G. & Robertson, W. 2005. A multi-model approach to the
detection of web-based attacks. Computer Networks 48 (5), 717-738.

Kumar, G., Kumar, K. & Sachdeva, M. 2010. The use of artificial intelligence
based techniques for intrusion detection: a review. Artificial Intelligence
Review 34(4), 369-387.

Lakhina, A., Crovella, M. & Diot, C. 2004. Characterization of network-wide
anomalies in traffic flows. Proceedings of the 4th ACM SIGCOMM
conference on Internet measurement. ACM, 201–206.

Leydesdorff, L. & Bensman, S. 2006. Classification and powerlaws: The
logarithmic transformation. Journal of the American Society for
Information Science and Technology 57(11), 1470-1486.

Li, L. & Kianmehr, K. 2012. Internet traffic classification based on associative
classifiers. Cyber Technology in Automation, Control, and Intelligent
Systems (CYBER), 2012 IEEE International Conference on. Bangkok,
Thailand: IEEE, 263-268.

52

Li, T., Zhang, C. & Ogihara, M. 2004. A comparative study of feature selection
and multiclass classification methods for tissue classification based on gene
expression. Bioinformatics 20(15), 2429-2437.

Li, W. 2004. Using genetic algorithm for network intrusion detection.
Proceedings of the United States Department of Energy Cyber Security
Group. , 1-8.

Liao, Y. & Vemuri, V. R. 2002. Use of k-nearest neighbor classifier for intrusion
detection. Computers & Security 21(5), 439-448.

Lippmann, R. P., Fried, D. J., Graf, I., Haines, J. W., Kendall, K. R., McClung, D.,
Weber, D., Webster, S. E., Wyschogrod, D., Cunningham, R. K. & Zissman,
M. A. 2000. Evaluating intrusion detection systems: the 1998 DARPA off-
line intrusion detection evaluation. DARPA Information Survivability
Conference and Exposition, 2000. DISCEX '00. Proceedings. , 12-26.

Liu, H. & Yu, L. 2005. Toward integrating feature selection algorithms for
classification and clustering. Knowledge and Data Engineering, IEEE
Transactions on 17(4), 491-502.

Lyon, G. F. 2009. Nmap Network Scanning: The Official Nmap Project Guide to
Network Discovery and Security Scanning. USA: Insecure.

Mark, A. L., Crovella, M. & Diot, C. 2004. Characterization of Network-Wide
Anomalies in Traffic. Proceedings of the 4th ACM SIGCOMM conference
on Internet measurement. ACM, 201-206.

Molina, L. C., Belanche, L. & Nebot, A. 2002. Feature selection algorithms: a
survey and experimental evaluation. Data Mining, 2002. ICDM 2003.
Proceedings. 2002 IEEE International Conference on. , 306-313.

Münz, G., Li, S. & Carle, G. 2007. Traffic anomaly detection using k-means
clustering. GI/ITG Workshop MMBnet.

Nguyen, T. T. T. & Armitage, G. 2008. A survey of techniques for internet traffic
classification using machine learning. Communications Surveys & Tutorials
10(4), 56-76.

Novakov, S., Lung, C. H., Lambadaris, I. & Seddigh, N. 2013. Studies in
applying PCA and wavelet algorithms for network traffic anomaly
detection. High Performance Switching and Routing (HPSR), 2013 IEEE
14th International Conference on. , 185-190.

53

Patcha, A. & Park, J. 2007. An overview of anomaly detection techniques:
Existing solutions and latest technological trends. Computer networks
51(12), 3448-3470.

Peng, T., Leckie, C. & Ramamohanarao, K. 2004. Proactively Detecting
Distributed Denial of Service Attacks Using Source IP Address Monitoring.
Networking , 771-782.

Piirainen, K. A. & Gonzalez, R. A. 2013. Seeking constructive synergy: design
science and the constructive research approach. Design Science at the
Intersection of Physical and Virtual Design , 59-72.

Ramadas, M., Ostermann, S. & Tjaden, B. 2003. Detecting anomalous network
traffic with self-organizing maps. Recent Advances in Intrusion Detection ,
36-54.

Ramaswamy, S., Tamayo, P., Rifkin, R., Mukherjee, S., Yeang, C. H., Angelo, M.,
Ladd, C., Reich, M., Latulippe, E., Mesirov, J. P., Poggio, T., Gerald, W.,
Loda, M., Lander, E. S. & Golub, T. R. 2001. Multiclass cancer diagnosis
using tumor gene expression signatures. Proceedings of the National
Academy of Sciences. , 15149-15154.

Retnakaran, N. & Pizzi, N. J. 2005. Biomedical pattern classification using an
optimized fuzzy adaptive logic network. Electrical and Computer
Engineering, 2005. Canadian Conference on. Saskatoon, Canada: IEEE, 382-
385.

Sperotto, A., Schaffrath, G., Sadre, R., Morariu, C., Pras, A. & Stiller, B. 2010. An
Overview of IP Flow-Based Intrusion Detection. Communications Surveys
& Tutorials, IEEE 12(3), 343-356.

Tankard, C. 2011. Advanced Persistent threats and how to monitor and deter
them. Network security 8, 16-19.

Tedesco, G. & Aickelin, U. 2006. An Immune Inspired Network Intrusion
Detection System Utilising Correlation Context. AISB '06: adaptation in
artificial and biological systems. Society for the Study of Artificial
Intelligence and the Simulation of Behaviour. Bristol, UK: , 16-17.

Vidal, R. 2010. A tutorial on subspace clustering. (IEEE Signal Processing
Magazine 28(2) edition) IEEE.

Virvilis, N. & Gritzalis, D. 2013. The Big Four - What We Did Wrong in
Advanced Persistent Threat Detection? Availability, Reliability and
Security (ARES), 2013 Eighth International Conference on. IEEE, 248-254.

54

Xin, J., Dickerson, J. E. & Dickerson, J. 2003. Fuzzy feature extraction and
visualization for intrusion detection. Fuzzy Systems, 2003. FUZZ'03. The
12th IEEE International Conference on. IEEE, 1249-1254.

Zhang, Q. & Chang, S. 2009. An Improved Crossover Operator of Genetic
Algorithm. Computational Intelligence and Design, 2009. ISCID '09. Second
International Symposium on. , 82-86.

PI

REAL-TIME BOTNET COMMAND AND CONTROL
CHARACTERIZATION AT THE HOST LEVEL

by

Farhood Farid Etemad and Payam Vahdani Amoli 2012

Telecommunications (IST), 2012 Sixth International Symposium on, pp. 1005-
1009, Tehran, Iran

Reproduced with kind permission by IEEE.

Real-Time Botnet Command and Control

Characterization at the Host Level

Farhood Farid Etemad

Department of Computer engineering

Engineering Faculty

Ferdowsi University of Mashhad

Mashhad, Iran

fa.faridetemad@gmail.com

Payam Vahdani

Dept. of Mathematical Information Technology

Faculty of Information Technology

University of Jyväskylä

Jyvaskyla, Finland

pavahdan@student.jyu.fi

Abstract— A Botnet is a network of compromised machines

which are controlled by a person called botmaster via a typical

Command and Control (C&C) structure. Besides malicious

activity on infected host, bots are employed to deliver attacks

against outside targets including phishing, Distributed Denial of

Service (DDoS) attacks and spamming. Counter measures against

Botnet phenomenon are usually formed based on passive traffic

analysis at network level. This limits encountering Botnets in a

proactive manner. In this paper, we proposed a real-time

approach which not only detects Botnet traffic on the host, but

also can filter it from outgoing traffic in order to suppress the

Botnet. Our approach works by detecting Botnet communication

patterns which belongs to a centralized C&C structure. The

capability of bot detection by real-time processing of host-related

data solely, distinguishes our work from other existing

approaches.

Keywords- Centralized C&C; Botnet; real-time; detection;

Host-Based;

I. INTRODUCTION

Botnet is a large group of compromised machines which
are remotely controlled by a person or group of persons called
botmaster. They are currently the biggest security threat to the
Cyber world [1]. The main difference of Botnet and other kind
of malwares is the presence of a Command and Control (C&C)
mechanism through which botmaster issues commands to the
compromised machines (also called zombie) to employ them
for various kind of attacks [26]. An attacker who also called
BotHerder controls Bots through different protocols and
structures. Based on this, Botnets C&C mechanisms are mainly
categorized into centralized and decentralized. The early
samples of Botnets were using centralized C&C structures with
communication protocols like IRC and HTTP. Recently new
type of bots has been emerged that are using decentralized
structure as the C&C structure e.g. peer to peer communication
protocols, though bots with centralized C&C models are still
active and prevalent[1].

Botnet can cause many problems mainly include launching
Distributed Denial of Service (DDOS) attacks against various
web servers or service providers, sending spam e-mails to other
hosts, hosting malicious phishing sites and using by botmaster
for the purposes of click fraud. Besides centralized attacks
against external targets, Botnets compromise the infected

machine and usually install backdoors and various types of
malware on their host. Current counter measures against Botnet
are mainly focused on monitoring and analysis of passive
network traffic to detect Botnet[30]. Botnet detection
mechanisms monitor passive network traffic captured from
network switches or routers, looking for suspicious behavior or
signature patterns based on the similarities between network
flows. Once a match found, detection mechanism issues a
warning. To suppress the Botnet, command and control server
which counts as a central point of communication between
zombies and botmaster must be tracked and shut down. Current
detection approaches mainly operate at the network level and
formed based on passive network traffic analysis.

 With powerful and advanced capabilities, it is very
difficult for average users to avoid or prevent infection by
Botnet malware. Based on this fact, infection is irresistible and
that makes the role of Botnet detection approaches, which are
operating at the host level more significant. Network based
detection approaches do not resolve infected hosts or even
notify them of infection. Moreover, with network based
techniques it is impossible to trace Botnet executables on the
infected machine and investigate zombies in order to capture
evidence, which is helpful in studying Botnet behavior.
Stopping Botnet by shutting down the command and control
channel can solve the problem temporary but hosts will stay
infected and compromised in the way that they can be
exploited easily in future attacks. Moreover, botmasters usually
use alternative C&C server addresses for their bots to set up a
Botnet again. To improve previous works on the field of Botnet
detection, a real-time detection algorithm is required, which be
able to detect bots on the host to manage the disinfection
process and filter out malicious traffic to suppress the Botnet.

In this paper we proposed a novel host-based approach that
recognizes a host infected by the bot based on analyzing the
host inbound/outbound traffic. We process host network traffic
to infer the existence of bot C&C communication and upon
detection, malicious outgoing traffic can be filtered out
actively. This forms a proactive approach which can stop bots
before delivering their payload or taking part in attacks.

The rest of the text is organized as follows. In section 2, we
review the previous related work. In section 3, the proposed
detection approach and its components is described and finally
conclude in section 4.

1005

II. RELATED WORK

Various works have been done regarding detection of
Botnet. There are mainly two major approaches to detect
Botnet. One approach forms based on locating honeynets in the
network and the other is based on monitoring and analysis of
passive network traffic [30].

Anyhow, honey net detection approaches [24] are more
useful to study Botnet characteristics rather than detection.
Passive network traffic monitoring can be categorized into
signature-based, anomaly-based, DNS-based and mining-based
[27].

Signature based detection approaches look for matching
predefined signatures in the network related data or host related
data. Anomaly based approaches which are the majority of
Botnet detection techniques, look for similar activities among
captured netflows to detect an anomaly which can be the sign
of Botnet existence. DNS based approaches try to detect the
Botnet by analyzing DNS data which exchanged between bot
and Command and Control (C&C) servers [30]. Like anomaly
based approaches, these mechanisms also analyze captured
network traffic passively and cannot detect bot in real-time
manner. Mining-based approaches focus on processing log files
to infer an abnormal behavior which is the sign of Botnet
existence [9].

Majority of previous works regarding Botnet detection and
prevention, are operating at the network level. Only few works
has been done to detect bots at the host level. Zeng et al. [29]
in 2010, proposed a model which combined host-based and
network-based methods together to detect Botnet, independent
of the command and control (C&C) mechanisms used by
Botnet. This approach applied host memory data and network
flows to detect Botnet though, still performed detection
passively.

Strayer et al. [23] propose a detection approach which
examines how characteristics such as bandwidth, packet
timing, and burst duration determine the existence of Botnet
command and control activity. Schiller et al. [22] in 2007
suggested investigating the infected host by scrutinizing event
and firewall logs to determine the payload and functions of the
Bot. They also suggested looking for suspicious start-up
processes so as to identify the location of the malware. Goebel
and Holz [9] proposed Rishi in 2007. Rishi is primarily based
on passive traffic monitoring for odd or suspicious IRC
nicknames, IRC servers, and unusual server ports. They use n-
gram analysis and a scoring system to detect bots that use
uncommon communication channels.

Most researchers have proposed investigating Botnet at the
network scope; anyhow, this neglects the importance and
potential advantages of examining an infected host at the local
scope. Obviously, network-based investigation forms based on
communication protocol information obtained from Bot-
infected machines. This highlights the significance of host-
based investigation and the fact that these two approaches are
in direct relevance.

III. PROPOSED BOTNET DETECTION APPROACH AND

COMPONENTS

Our proposed detection approach is based on real-time
analysis of host’s inbound/outbound traffic to infer existence of
centralized Botnet C&C communication model. Figure 1
illustrates architecture of the proposed detection system which
comprises of two main components: Protocol Classifier and
Communication Pattern Interpreter. The latter component
consists of two components itself: IRC Part and HTTP Part. At
the first step, the whole host outgoing/incoming traffic is
redirected to the Protocol Classifier. This component separates
IRC and HTTP packets from the rest of traffic and forwards it
on to the next component. In Communication Pattern
Interpreter, IRC Part is responsible for detecting IRC malicious
traffic based on IRC bots communication model with C&C
server. HTTP Part is also responsible to recognize HTTP-based
Botnet C&C communication pattern based on Periodic
Repeatability of messages. Output of Communication Pattern
Interpreter is malicious traffic distinguished from normal traffic
which can be filtered by means of a packet filtering firewall on
the host.

Figure 1. Architecture overview of our proposed approach

1006

A. Protocol Classifier

Since our detection approach is formed based on
characterization of bot’s C&C traffic, we need to separate
traffic which is more likely used in C&C communication
protocols at the first place. To manage that, the main function
of Protocol Classifier is to separate IRC and HTTP (which are
currently the most common protocols used in centralized C&C
[28]) packets from the rest of traffic and forward them to
Communication Pattern Interpreter component.

To detect IRC traffic, we can inspect the contents of the
packets to look for some predefined strings which are actually
keywords in IRC protocol (defined in RFC1459). For this
purpose, light payload inspection would be enough to look for
specific IRC strings including NICK for client’s nickname,
PASS for user’s password, USER for the username, JOIN for
joining a channel, PRVIMSG for private messages, OPER for
when a normal user wants to become the channel operator and
MOTD which returns message of the day[21]. This method of
detecting IRC traffic can be accomplished by using intrusion
detection software like SNORT[35]. In some cases botmasters
encrypt the IRC communication traffic to evade detection
mechanisms which is not our aim here.

To recognize HTTP traffic, we also inspect the early bytes
of a packet looking for some patterns and keywords in an http
request message. To detect HTTP traffic, we need to focus on
the concepts of HTTP protocol. HTTP is a protocol which
works on the basis of client-server model. According to this, a
client initiates a connection and sends a HTTP Request
message to an HTTP server (e.g. “get me the file
‘website.html’”). The server then processes the client’s request
and responds to it via an HTTP Response message (e.g. “here is
the file” followed by the file’s contents). After that, the server
closes the connection; make the HTTP a stateless protocol
which does not maintains the connection information between
transactions [33]. In order to characterize HTTP traffic on the
host’s outgoing traffic, we focus on the HTTP method. Three
main HTTP methods are “GET”, “POST” and “HEAD” [33].
Hence, all we need is to look for “GET”, “POST” or “HEAD”
keywords in the contents of the packets. Like IRC traffic
detection, this also can be done by inspecting the first few
bytes of network packets. Upon recognition of HTTP packets,
these flows are also forwarded to the Communication Pattern
Interpreter for further processing.

B. Communication Pattern Interpreter

When communication between zombies and botmaster
through C&C happens, certain patterns can be seen. Previous
works regarding characterizing such patterns, mainly formed
based on analysis of network flow characteristics related to
group of hosts. Unlikely, our approach solely examines a host
inbound/outbound traffic to determine such patterns. This gives
the opportunity of detecting bots in a real-time manner and
filtering the malicious traffic.

Communication Pattern Interpreter constitutes the major
component of our approach and is responsible for detecting
bot’s malicious traffic by identifying Botnet C&C structure. It
comprises of two modules for characterizing IRC and HTTP
malicious traffic which belongs to bot. we first explain

characteristics of a typical IRC and HTTP Command and
Control structure and the way they differ from normal IRC and
HTTP traffic. Then based on these model characteristics, we
explain how IRC Part and HTTP Part operate.

Gu et al. [32] categorize centralized C&C models into two
categories: “Pull” style and “Push” style, based on the way Bot
receives command from botmaster. In a push style C&C
model, bots are waiting to receive commands from botmaster
during a persistent connection. IRC-based C&C is an example
of this type in which bots are waiting in the channel for
botmaster to issue a command. In the pull style C&C,
botmaster set the commands within a file at a C&C server (e.g.
a HTTP server) and bots connect back to read the commands
from this file. So in this style, there is no need for a persistent
active connection between bots and botmaster. HTTP-based
C&C is a distinct example of this style [32].

C. IRC Part

Based on our experiments during traffic analysis of various
IRC bots (e.g. RBot, Agobot, etc), the communication life
cycle of an IRC bot can be divided into two phases, as shown
in Figure 2. Phase 1 indicates the time period before the bot
joining an IRC channel and phase 2 is the time period after the
bot joining a channel. As it can be seen in Figure 2, during
phase 1 it is the bot who issues IRC messages. Though, after
connecting to the IRC server and joining a channel, bot only
receives commands from botmaster, i.e. botmaster is the
initiator rather than the bot. In the case of no botmaster
presents at the channel or no command issues, bot would stay
dormant at the channel. This is a characteristic which is not
seen in normal IRC chat message sequence (except for times
packet errors happen which entails retransmission).
Consequently, if a client sends no IRC message after joining a
channel, it can be a bot.

Figure 2. Two phases of IRC bot communication life cycle

We focus on detection of malicious IRC traffic based on
this communication model. The key is to detect the transition

1007

point between two phases. As it can be seen in Figure 2, two
consecutive commands, issued from botmaster is a key to infer
the transition point. On the infected host, this is interpreted as
the last two consecutive incoming IRC packets, after which
normal command-response model proceeds. These two
consecutive commands may differ in various versions of IRC
bots, although this deviation is slight. Normally, based on our
experiments, in most IRC bots they are “JOIN” and “LOGIN”
commands.

Other experimental factors can be added to IRC Part
module to increase the detection accuracy. Here we introduce a
characteristic based on packets timing and the delay between
issuing commands. Delay time (Td) is defined as a time frame
between the time user or bot connects to server and time it tries
to join a channel. That is to say a time frame between sending
“Nick” command and “Join” command:

Td=T(Nick) – T(Join)

Since bots are automated programs, they join channel
immediately after connecting to the server (they are running
programs) while a real IRC user needs to use command line or
graphical user interface in order to accomplish IRC commands
(i.e. joining a channel). So the delay time for bot would be too
short (less than a second) while for IRC normal user it takes at
least few seconds. Based on several experiments, it has
perceived that a threshold value can be assigned to Td and it is
called “Tdh”. If “Td” exceeds “Tdh” it is the proof of normal
IRC communication:

If Td > Tdh Normal IRC communication

If Td < Tdh Malicious IRC communication

Analyzing Delay Time to detect IRC bots works properly in
most cases at normal conditions, though it can be designed by
bots to mimic human behavior. So we consider it a
supplementary method rather than a standard approach.

D. HTTP Part

Figure 3 depicts a typical HTTP-based C&C
communication pattern. As it can be seen, there is a regular
periodic trend in times which bot connects back to the C&C
server checking for commands. This repeatability for one
specific flow (same source and destination port) does not take
place in normal Http communication [33]. Although in some
cases this periodical pattern is not seen in HTTP bot
communications, it counts as a good characteristic to detect
HTTP malicious traffic [32]. We use this characteristic in
Periodic Repeatability Analyzer to distinguish between HTTP
malicious and normal traffic.

Lee et al. [33] in 2008 defined degree of periodic
repeatability and repeatability standard deviation to describe
relationship between HTTP hosts and HTTP servers. These
two criterions can also be used for detecting HTTP malicious
traffic of a Botnet. The repeatability standard deviation
demonstrates degree of periodic repeatability between HTTP
clients and HTTP servers [33]. Based on periodic characteristic
of HTTP bots in communication with C&C server, it is
concluded that the degree of periodic repeatability of bot

machines is quite lower than normal users. Degree of periodic
repeatability of normal users is calculated highly because the
intervals between pollings in normal users are not regular.

Figure 3. HTTP bot C&C traffic pattern

Finally, it should be mentioned that in Botnets with several
botmasters which bots can connect to them randomly, Periodic
Repeatability criterion may not suffice to detect HTTP-based
C&C structure.

E. Real-Time Filtering

By means of a packet filtering firewall on the host
machines, we can manage filtering malicious traffic after
detection, as long as our detection mechanism works in real-
time manner. Presence of filtering mechanism is optional and
we can simply report the bot existence to the host without
trying to filter out the bot traffic.

We have implemented our detection approach within a
packet filtering firewall for Windows XP machines. After
testing it against various IRC bots including Rx bot, results
showed that suspicious IRC packets have been filtered out.

IV. CONCLUSION

Botnets are new generation of sophisticated malwares
which are more difficult to trace, detect and shut down, in
comparison with other types of malwares. Few works has been
done to actively detect and block Botnets traffic on the infected
hosts. This feature, distinguishes our approach from the
previous works done in the field of Botnet detection. In this
paper, we proposed an approach for online detection of Botnet
traffic on the infected host. To do this, we inspect the host
traffic for signs of Botnet C&C communication patterns.
Although our work here is limited to centralized Botnet C&C
models, a component for detection of peer to peer bots on the
host also can be added to our detection mechanism. Since we
solely use host related traffic, there would be no main
challenge to recognize peer to peer C&C models as well.

1008

REFERENCES

[1] Bailey, M., Cooke, E., Jahanian, F., Xu, Y., Karir, M.,“A Survey of

Botnet Technology and Defenses,” In Proceedings of the Cybersecurity
Applications & Technology Conference For Homeland Security
(CATCH '09), Washington, District of Columbia, USA, March 2009,pp.
299-304.

[2] Barford, P., Yagneswaran, V.,“An Inside Look at Botnets.,” In: Special
Workshop on Malware Detection, Advances in Information Security,
Springer, Heidelberg, 2006.

[3] Binkley, J. R. and Singh, S.,“An Algorithm for Anomaly-Based Botnet
Detection.,” Proceedings of 2nd Workshop on Steps to Reducing
Unwanted Traffic on the Internet (SRUTI'06), July 2006,pp. 43-48.

[4] Cooke E., Jahanian F. and McPherson D., “The zombie roundup:
Understanding, detecting and disrupting Botnets.,” In Proceedings of
UsenixWorkshop on Stepts to Reducing Unwanted Traffic on the
Internet (SRUTI '05), Cambridge, MA, July 2005.

[5] Crimeware: Bots. Web publication (2010, August), Available:
http://www.symantec.com/norton/cybercrime/Bots.jsp

[6] Law, F.Y.W.,Chaw, K.P., Lai, P.K.Y.and TseH.K.S., “A Host Based
Approach to Botnet Investigation?,” Institute for Computer Sciences,
Social Informatics and Telecommunications Engineering, ICDF2C
2009, LNICST 31, 2010, pp. 161-170.

[7] Freiling, F., Holz, T., and Wicherski, G.,“Botnet Tracking: Exploring a
Root- Cause Methodology to Prevent Distributed Denial-of-Service
Attacks.,”In 10thEuropean Symposium on Research in Computer
Security, 2005.

[8] Gianvecchio, S., Xie, M., Wu, Z. and Wang, H ,“Measurement and
classification of huamans and bots in internet chat.,” In Proceedings of
the 17th USENIX Security Symposium (Security’ 08), San Jose, CA,
2008.

[9] Goebel , J. and Holz, T. “Rishi: identify bot contaminated hosts by
IRCnickname evaluation,”HotBots'07 Proceedings of the first
conference on First Workshop on Hot Topics in Understanding Botnets,
USENIX Association Berkeley, CA, USA, 2007,pp. 8-8.

[10] Gu, G., Porras P., Yegneswaran V., Fong M., and Lee
W.,“Bothunter:Detecting Malware Infection Through Ids-Driven Dialog
Correlation,”Proceedings of the 16th USENIX Security Symposium,
Berkeley, CA, USA, 2007, pp. 1-16.

[11] Gu, G., Perdisci, R., Zhang, J., and Lee, W.,“BotMiner: Clustering
analysis ofnetwork traffic for protocol- and structure-independent Botnet
detection,”Proceedings of the 17th USENIX Security Symposium, 2008.

[12] Honeynet Project. (2005). Know your Enemy: Tracking
Botnet,http://www.honeynet.org/papers/Bots

[13] Ianelli N. and A. Hackworth.(2005). Botnet as a Vehicle for Online
Crime, CERT.

[14] Oliva, J., “An Adventure: How to implement a Firewall-Hook Driver?,”
Thecode projects development Reources, 2004.

[15] Karagiannis, T., Papagiannaki, K. and Faloutsos,
M.,“BLINC:multileveltraffic classification in the dark,” In Proceedings
of the Conference onApplications, Technologies, Architectures, and
Protocols for ComputerCommunications, 2005, pp. 229-240.

[16] Karasaridis A. Rexroad B. and Hoein D., “Widescale Botnet Detection
andCharacterization,” Proceedings of Hot Topics in Understanding
Botnet, 2007.

[17] Leder, F., Werner, T. and Martini P.,“Proactive Botnet Countermeasures
– AnOffensive Approach,” Cooperative Cyber Defence Bonn, Germany,
2010.

[18] Livadas, C., Walsh, R., Lapsley, D. and Strayer. W. T.,“Using
machinelearning techniques to identify Botnet traffic,” In Proceedings of
the 2nd IEEELCN Workshop on Network Security, 2006.

[19] Puri R., Bots & Botnet: An Overview. Research on Topics in
InformationSecurity, 2003.

[20] Ramachandran, A. and Feamster, N.,“Understanding the network-
levelbehavior of spammers,” In Proc. ACM SIGCOMM, 2006.

[21] Rayome, J.,“IRC on Your Dime? What You Really Need to Kno
aboutInternet Relay Chat,” CIAC/LLNL, 1998.

[22] Schiller, C., Binkley, J., Evron, G. and Willems, C.,“Botnet – The killer
webapp,” Syngress.179–208, 2007.

[23] Strayer, W. T., Lapsley, D., Walsh, R., and Livadas, C.,“Botnet
detectionbased on network behavior,” In Botnet Detection: Countering
the LargestSecurity Threat, W. Lee, C. Wang, and D. Dagon, Eds., vol.
36 of Advances inInformation Security. Springer, 2008, pp. 1-24.

[24] Vrable, M., Ma, J. , Chen, J. , Moore, D. , Vandekieft, E., Snoeren, A. C.
, Voelker,G.M. and Savage, S.,“Scalability, Fidelity and Containment in
thePotemkin Virtual Honeyfarm,” In Proc. ACM SIGOPS
OperatingSystemReview, vol. 39(5), 2005, pp. 148–162.

[25] Zhang, L., Yu, S., Wu, D., Watters, P., “A Survey on Latest Botnet
Attack and Defense,” IEEE 10th International Conference on Trust,
Security and Privacy in Computing and Communications (TrustCom),
Changsha, China, 2012, pp. 53 - 60.

[26] Xiabo, M. A., Guan, X., Tao, J., Zheng, Q., Guo, Y., Liu, L., Zhao,
S.,“ANovel IRC Botnet Detection Method Based on Packet Size
Sequence,” IEEEInternational Conference on Communication (ICC),
2010,pp.1-5.

[27] Zeidanloo, H. R. and Manaf, A. B. A.,“Botnet Detection by
MonitoringSimilar Communication Patterns,” (IJCSIS) International
Journal of ComputerScience and Information Security, Vol. 7, No. 3,
2010.

[28] Raghava, N.S., Sahgal. D. And Chandna, S., “Classification of Botnet
Detection Based on Botnet Architechture,” International Conference on
Communication Systems and Network Technologies (CSNT, 2012),
IEEE, May, Rajkot, India, 2012, pp.569 - 572.

[29] Zeng, Y. , Hu, X. , Shin, K.G., “Detection of Botnet Using Combined
HostandNetwork-Level Information,” IEEEIIFIP International
Conference onDependable Systems & Networks (DSN), 2010.

[30] Zhu, Z., Lu, G., Chen, Y. , Fu, Z. J., Roberts, P. and Han, K.,
“BotnetResearch Survey,” in Proc. 32nd Annual IEEE International
Conference onComputer Software and Applications (COMPSAC '08),
2008, 2008, pp.967-972.

[31] Zhuge, J., Holz, T., Han, X., Guo, J. and Zou, W., “Characterizing the
ircbasedBotnet phenomenon,” Peking University & University of
MannheimTechnical Report, 2007.

[32] Gu, G., Zhang, J.,And Lee, W., “BotSniffer: Detecting Botnet Command
and Control Channels in Network Traffic”, In Proceedings of the 15th
Annual Network and Distributed System Security Symposium
(NDSS'08), San Diego, CA, February 2008.

[33] Lee, J.S., Jeong, H.C.,Park, J.H., Kim, M., Noh, B.N.,“The Activity
Analysis of Malicious HTTP-based Botnets using Degree of Periodic
Repeatability,” International Conference on Security Technology,
SECTECH '08, Hainan Island, China, 2008, pp. 83 – 86.

[34] Leder, F., Werner, T. And Martini, P., “Proactive Botnet
Countermeasures – An Offensive Approach,” Proc. of 1st CCDCOE
Conference on Cyber Warfare, Tallinn, Estonia, 2009.

[35] Snort IDS web page. http://www.snort.org, March 2006.

1009

PII

A REAL TIME UNSUPERVISED NIDS FOR DETECTING
UNKNOWN AND ENCRYPTED NETWORK ATTACKS IN HIGH

SPEED NETWORK

by

Payam Vahdani Amoli and Timo Hämäläinen 2013

Measurements and Networking Proceedings (M&N), 2013 IEEE
International Workshop on, pp. 149-154, Naples, Italy

Reproduced with kind permission by IEEE.

A Real Time Unsupervised NIDS for Detecting

Unknown and Encrypted Network Attacks in High

Speed Network

Payam Vahdani Amoli

Student Member, IEEE

Department of Mathematical Information Technology

Faculty of Information Technology, Jyväskylä University

Jyväskylä, Finland

pavahdan@student.jyu.fi

Timo Hämäläinen

Department of Mathematical Information Technology

Faculty of Information Technology, Jyväskylä University

Jyväskylä, Finland

timo.t.hamalainen@jyu.fi

Abstract— Previously, Network Intrusion Detection Systems

(NIDS) detected intrusions by comparing the behaviour of the

network to the pre-defined rules or pre-observed network

traffic, which was expensive in terms of both cost and time.

Unsupervised machine learning techniques have overcome

these issues and can detect unknown and complex attacks

within normal or encrypted communication without any prior

knowledge. NIDS monitors bytes, packets and network flow to

detect intrusions. It is nearly impossible to monitor the payload

of all packets in a high-speed network. On the other hand, the

content of packets does not have sufficient information to

detect a complex attack. Since the rate of attacks within

encrypted communication is increasing and the content of

encrypted packets is not accessible to NIDS, it has been

suggested to monitor network flows. As most network

intrusions spread within the network very quickly, in this

paper we will propose a new real-time unsupervised NIDS for

detecting new and complex attacks within normal and

encrypted communications. To achieve having a real-time

NIDS, the proposed model should capture live network traffic

from different sensors and analyse specific metrics such as

number of bytes, packets, network flows, and the time

explicitly and implicitly, of packets and network flows, in the

different resolutions. The NIDS will flag the time slot as an

anomaly if any of those metrics passes the threshold, and it will

send the time slot to the first engine. The first engine clusters

different layers and dimensions of the network’s behaviour and

correlates the outliers to purge the intrusions from normal

traffic. Detecting network attacks, which produce a huge

amount of network traffic (e.g. DOS, DDOS, scanning) was the

aim of proposing the first engine. Analysing statistics of

network flows increases the feasibility of detecting intrusions

within encrypted communications. The aim of proposing the

second engine is to conduct a deeper analysis and correlate the

traffic and behaviour of Bots (current attackers) during DDOS

attacks to find the Bot-Master.

Index Terms— NIDS, Unsupervised Intelligent Engine,

Encrypted Network Traffic, Network Flows, Clustering

I.INTRODUCTION

Nowadays, because of increasing occurrences of network

intrusions, NIDS has become an important element within

networks. Generally NIDS monitors the behaviour of

networks and detects attacks when an abnormality occurs.

Network attacks can cause a big latency inside the network

by producing a huge amount of network traffic; thus, having

a real-time NIDS is also an important factor.

Signature-based NIDSs monitor the behaviour of the

network and compare it with the characteristics of known

network attacks. The detection rate of known attacks in

signature-based NIDS is high; however, it cannot detect

zero-day attacks. Providing attack signatures consumes

money and time, and with the increasing rate of zero-day

attacks, using signature-based NIDS is not a safe solution. In

anomaly-based detection techniques, the system will be

trained by a sample of network traffic and adapted to the

state of the network. After the training phase, the system will

be suspicious of any abnormal behaviour that passes the

criteria of the training sample. Using this method will

increase the probability of detecting novel attacks; however,

it makes lots of detection errors because of the difficulty of

defining the normal state during training. Having fewer false

alarms and an increased detection rate of complex attacks,

especially in imbalanced network traffic, has become an

important challenge in the design of detection techniques for

NIDS. [1, 2]

NIDS monitors the behaviour of networks by analysing

bytes, packets or network flows. Based on our previous

experiments and other researchers, monitoring network flows

enhances the detection rate of complex attacks [1, 3, 4, 5, 6,

7]. Analysing bytes or packets does not concede sufficient

information about the current behaviour of machines within

the network. Network flows store the important facts about

the behaviour of the network, which is clearer for NIDS to

analyse. On the other hand, according to [1], network flows

require 0.1 per cent of storage to be saved compared to data

in the form of packets. Summarising the network data in the

form of network flow enhances the speed of processing,

which results in fast attack detection, and makes NIDS

feasible to work in real time. For instance, in high-speed

networks with an average rate of ten gigabytes per second, it

is impossible for NIDS to check the content of each packet in

real time. Furthermore, detecting network intrusions in real

time is an important factor for NIDS, which is why the use of

network flows as the input for NIDS is suggested. According

to [8]: “A flow is defined as a set of IP packets passing an

observation point in the network during a certain time

interval. All packets belonging to a particular flow have a set

of common properties.”

According to [9, 10, 11], with the growing number of

attacks in encrypted communication, it has also become an

important issue to detect these types of attack while a limited

amount of information can be extracted from the encrypted

traffic. Monitoring encrypted communication in the form of

network flows enables the system to monitor the state and

transitions of communication to detect attacks such as DOS

or brute force, in addition to the types of attack that produce

large network traffic in encrypted communication.

Currently, detecting complex attacks is one of the issues

for NIDS. Since probabilistic approaches to NIDS rely only

on statistics and do not correlate alarms, the rate of false

alarms increases during complex attacks. On the other hand,

scenario-based NIDS need to observe specific steps to detect

attacks, and since complex attacks do not follow constant

steps it is not suggested to apply it to NIDS [12]. According

to [13], machine learning techniques have been used in

anomaly-based NIDS and enhanced the performance of

attack detection. Self-learning abilities in machine learning

techniques improve the detection rate of new, complex and

encrypted intrusions [14, 15].

Supervised machine learning algorithms need to be

trained by a labelled data set in order to produce functions for

distinguishing the normal and abnormal behaviour of the

network. Semi-supervised machine learning algorithms can

be trained by an attack-free unlabelled data set to formulate

the normal behaviour of the network, or by a small labelled

data set, which requires less effort from security experts.

Nevertheless, the acquisition of labelled data from security

experts, or finding an attack-free data set for both supervised

and semi-supervised techniques are costly. Unsupervised

machine learning techniques formulate the invisible structure

of an unlabelled data set without any supervision. Clustering

algorithms put objects based on their similarities into a group

or groups, called clusters. Clustering algorithms have been

used for unsupervised NIDS to classify the behaviour of the

network and distinguish the abnormal behaviour of the

network from normal traffic. [16, 17]

In this paper we propose a new real-time unsupervised

NIDS, which can work in normal or encrypted

communications by monitoring the behaviour of network

flows in two different window sizes and detect attacks by

correlating outliers from the multiple clusters. The first

engine has the ability to detect different types of intrusion in

real-time, such as DOS, DDOS, scanning or any other type

of network attack that produces a huge amount of network

traffic. At the same time, the characteristics of encrypted

network flows will be analysed in order to detect intrusions

within encrypted traffic. Based on our previous works [18,

19, 20, 21] and other researchers [22, 23], detecting Botnet

attacks through checking the network flow only (without

checking the payload of the packet) takes longer and,

because of the complex structure of Botnet attacks, the NIDS

needs more time to observe sufficient information. The

second engine correlates the traffic of attackers (while the

victim is under distributed attack) to find the similarities

inside previous communications to find the eventual Bot-

Master.

II.RELATED WORKS

In [24] they observed the behaviours of the network by

monitoring and analysing the network flows. Using network

flows as input for the proposed solution reduces the

computation complexity and requires fewer resources. On the

other hand, they have improved the detection rate and

decreased false alarms compared to the previous solutions,

which analyse packets as the input for NIDS. Several

solutions applied sampling to decrease the computation time

for NIDS [1]; however, sampling network traffic based on

random selection increases the probability of losing

important data, which leads the NIDS to produce a high

false-negative error rate.

Multi-stage engines have been applied to NIDS to

improve the detection rate of attack within the network [12,

25]. Analysing the behaviors of the network in several phases

filters the unrequired data, improves the quality of input for

NIDS, highlights the suspicious behaviour of the network

and decreases the computation time for intelligent engines. In

[25] they proposed multi-stage engines to filter suspicious

network flows in the first stage and to send them for further

analyses in the second stage. The proposed solution was not

applicable for high-speed networks as the window size of the

first engine was only 60 seconds and it could store and

analyse 10 network flows at the same time.

Because of cost and time-consuming solutions for

creating the attack signature of misuse-based NIDSs or

traffic sample for anomaly-based NIDSs, several researchers

applied unsupervised machine learning algorithms to NIDS.

In [26] they proposed a real-time unsupervised NIDS to

detect known and unknown network attacks using neural

networks. They applied several neural networks to improve

the detection rate of intrusions. In [27] they also proposed an

unsupervised NIDS, which uses different clustering

algorithms with a high detection rate.

Several solutions were proposed in [9] to detect

intrusions inside encrypted communications. As suggested in

[9] and proposed in [10, 11], clustering algorithms allow the

NIDS to distinguish the behaviour of networks based on

statistics. Analysing network flows provides sufficient

information to detect intrusion within encrypted

communications. Clustering network flows is the feasible

solution, for encrypted communication while the payloads of

packets is not accessible to the NIDS.

There is a specific behavioural structure in

communications between the Bot-Master and Bots in Botnet

attacks. Based on our previous research [21] and others [22,

23], Botnet attacks can be detected by finding the similarities

between Bots and the Bot-Master. For instance, Bots

regularly ping their Bot-Master to report their current status.

Analysing and clustering the behaviour of Bots highlights

those similarities (between other Bots) and also uniqueness

(compared to other machines in the network).

III.PROPOSED SOLUTION

One of the main goals in this proposed solution is to

design a real-time NIDS. To achieve this goal, several packet

sniffers should be installed inside the network to aggregate

the traffic and send it to the NIDS.

Figure 1 shows the overall architecture of the proposed

NIDS. After traffic aggregation, all of the duplicated packets

will be filtered and synchronised based on their time stamp.

Special features from the network’s behaviour (based on

Table 1) will be sent to the first engine for further analyses;

in the meantime, the past hour of network traffic is stored in

the database to increase the accessibility of the second engine

to the previous actions inside the network, while the system

needs to trace the Bot-Master during Botnet attacks. As

explained below, the main reason for proposing the first

engine is to detect intrusions with a small windows size and

the second engine for detecting Botnet attacks.

Packets

Sniffer

A

Packets

Sniffer

B

Network Traffic

(From Past Hour)

Packets

Sniffer

Z

Packets

First Engine

Packets

Packets

Network’s Behaviour

(Features in Table 1)

Second Engine

Network Flows of Attackers

(Distributed Attackers)

Filtered and

Time Synchronized

Packets

IP Add & Port #

of Attackers

(During Distributed Attacks)

Admin

Report of BotMasters

Report of Current Live Attacks

Input Preprocessor

(Filtering, Time Synchronization,

Network Flow Creation)

PacketsTraffic

Aggregator

Figure 1. High-level structure of the NIDS

a) First engine:

Network attacks produce a huge amount of traffic.
Analysing the volume of three different metrics such as
bytes, packets and network flows can highlight suspicious
activity. We have applied network change measurement
formula, which works based on time-series analyses to
monitor those features [28].

As mentioned in [28] this mechanism can monitor one

million records per second. It is a fast and reliable solution to

check the behaviour of the network and it can detect any

small changes in real time. The proposed mechanism is

unsupervised (does not need any assumption) and uses less

memory than previous solutions. If any of the features in

Table 1 passes the threshold of network change measurement

formula, the system will flag that specific time slot as an

anomaly.

As shown in Table 1, the network features will be

analysed in four different resolutions: the whole network

traffic and three small subnets (/0, /8, /16 and /24). High-

speed networks have vast amounts of traffic and there is a

significant possibility of losing the signs of network attacks.

According to [27], network changes will be more visible

while the NIDS monitors the network’s behaviour in small

resolution and decreases the probability of fading of attacks

in normal traffic. On the other hand, according to [26], due to

having an increased rate of DOS attacks (or any other type of

network attack) with spoofed IP addresses, the direct use of

IP addresses is not suitable and will increase the rate of false-

negative alarms.

Apart from monitoring and analysing the volume of
bytes, packets and network flows in different resolutions, it is
also suggested to monitor the time implicitly of packets and
network flows in small resolution. In [26] the detection rate
of intrusions was enhanced by 2 per cent, while the system
examines the traffic by time implicitly of the network
element. Since network attacks produce a vast amount of
packets or network flows, the rate of time difference between
each packet (RTDP) and network flow (RTDF) will increase
significantly and monitoring these parameters will improve
the detection rate.

TABLE 1 – MONITORED FEATURES

Resolution Feature

/0, /8, /16, /24 Number of in-bounded byte

/0, /8, /16, /24 Number of out-bounded byte

/0, /8, /16, /24 Number of in-bounded packet

/0, /8, /16, /24 Number of out-bounded packet

/0, /8, /16, /24 Number of in-bounded network flow

/0, /8, /16, /24 Number of out-bounded network flow

/24 Rate of Time Difference between each Packet (RTDP)

/24 Rate of Time Difference between each Flow (RTDF)

While any feature from Table 1 passes the threshold of
network change measurement mechanism, it will flag that
time slot as an anomaly. Then the system will extract more
information from the packets to finalise the structure of the
network flow. As Table 2 shows, several features will be
selected to create the network flow based on the protocol of
the communication (IP, TCP, UDP and ICMP). According to
[29], it is suggested to define the default value of inactive
network flow as 15 seconds and the default value of active
timeout as 30 minutes. Extracting all the information from

packets and converting it into network flows takes resources
(time and process). Extracting information to complete the
structure of the network flow after network change
measurement mechanism decreases the computation process
while the network is not under attack.

While the NIDS detects an anomaly-flagged time slot, it
will cluster the traffic to distinguish normal traffic from
suspicious actions. Clustering algorithms do not require any
prior knowledge and they can work unsupervised. However,
each clustering algorithm has its own strengths and
limitations and it is impossible to find one suitable algorithm
for detecting all types of intrusions within the network. To
overcome this issue we have applied multi-clustering
algorithms to enhance the rate of detection and decrease the
error rate.

During attack, several features of network flows (Table
2) should be clustered. Clustering high-dimensional data is
not suggested since the computation process will be so
complex and takes a long time to process. To resolve this
problem, high-dimensional data can be divided into smaller
dimensions by Sub-Space clustering algorithms. Figure 2
shows an example of Sub-Space clustering, which divides
the three-dimensional data set into 3 two-dimensional data
sets.

TABLE 2 – NETWORK FLOW SPECIFICATION FOR EACH TYPE OF PACKET

Packets

Protocol

Features

IP Source IP Address, Destination IP Address, Time of the

First Packet, Time of the Last Packet, Duration

TCP Source Port Number, Destination Port Number, Number

of Packets, Number of SYN Packet, Number of SYN-

ACK packet, Number of RST Packet, Number of RST-
ACK Packet, Number of FIN-ACK Packet, Average Size

of Packet from Source, Average Size of Packet from

Destination, Biggest Packet Size, Smallest Packet Size,
Time of Last packet from Source, Time of last Packet

From Destination, Average latency of packets from

Source, Average latency of packets from Destination

UDP Source Port Number, Destination Port Number, Number

of Packets, Average Packet Size, Biggest Packet Size,

Smallest Packet Size

ICMP Average Packet Size from Source, Average Packet Size
from Destination, Biggest Packet Size, Smallest Packet

Size, #Eco Request, #Eco Reply

The next stage is to cluster all the two-dimensional data
(from an anomaly-flagged time slot) with DBSCAN
(density-based spatial clustering of applications with noise).
DBSCAN [30] is a powerful density-based clustering
algorithm, which can create clusters in any arbitrary shapes
and sizes. DBSCAN will cluster the events to distinguish the
normal traffic from suspicious actions and it will designate
the outliers.

DBSCAN works with two important parameters:
minimum size of cluster (); and acceptable distance
between each point (). The stated solution in [27] sets ‘ ’ as
5 per cent of the network flows (number of network flows
during the attack) and ‘ ’ as the average distance (Euclidean
distance) between 10 per cent of network flows (randomly
selected) during the attack (from the anomaly-flagged time
slot). As the detection rate in their proposed model is so high
we decided to use the same amount of information; however,
setting the required parameters for DBSCAN (‘ ’, ‘ ’) from

the anomaly-flagged time slot is not suggested. According to
[31], the Mahalanobis distance considers the density of
points for measuring the distance between points, whoever, It
is suggested to use the Mahalanobis distance while the
system needs to set ‘ ’ for the DBSCAN. Using the
Mahalanobis distance for DBSCAN enhances the accuracy
rate of clusters.

Clearly, during an attack, the network is loaded with a
huge amount of objects, which belong to the intrusion
(packets and network flows). Sampling data to set the
parameters of the intelligent engine from the anomaly-
flagged time slot decreases the probability of assigning an
accurate value for those parameters, which leads the system
to generate a high number of false alarms and a decreased
detection rate.

As the proposed model saves the past hour of network
traffic, it is possible to effectuate the sampling process from
the previous time slot (the time slot before the anomaly-
flagged time slot). The NIDS will set ‘ ’ by counting 5 per
cent of network flows and ‘ ’ by calculating the Mahalanobis
distance between 10 per cent of network flows from attack-
free time slot. As the density rate of the network’s behaviour
does not follow any specific rule, it is important to consider
this factor while the system needs to measure distances
between elements within the network traffic.

While the features inside Table 2 are clustered by
DBSCAN, the outliers will be marked as suspicious
elements. The final step is to correlate all of the suspicious
network flows to highlight the similarities and repost it to
administrator to identify the type of attack.

Most of the proposed models (for instance [27]) check
the number of SYN packets and label the intrusion as ‘SYN
flood attack’ whenever the rate of SYN packets becomes
high. However, according to [24] it is more accurate to find
the current abnormal situation of TCP and ICMP connections
using the features in Table 3. Comparison of the features in
Table 3 from previous attack-free time slot and suspicious
time slot will generate more accurate and clearer report to
administrator for identifying the attacks. For instance, while
the number of SYN packets is high and labelled as outlier
during clustering, the system will calculate the rate of AHS
in normal and anomaly-flagged network traffic. Whenever
the differences between AHS rate in normal and anomaly-

Figure 2. Three-dimensional Data Set divided into 3 Two-Dimensional
Data Sets by Sub-Space Clustering Algorithem (A,B,C)

flagged time slot becomes high, the system will suggest high
probability of SYN flood attack to administrator.

TABLE 3 – MONITORED FEATURES

Resolution Feature

/0

Rate of Accepted Hand Shake (AHS)

Rate of Syn-Ack Arrival (SAA)

Rate of Non-Ack Arrival (NAA)

Rate of Successful Closed Connection (SCC)

Rate of ICMP-Echo-Request to all of the Packets (ICP)

Rate of ICMP-Echo-Reply to all of the Packets (IRP)

Clustering the different features of network flow
enhances the detection rate of intrusions within encrypted
communications. For instance, as mentioned in [11],
encryption does not make any significant changes in the size,
number and arrival time of packets. Clustering the behaviour
of the network (encrypted and normal traffic) allows the
NIDS to detect any significant changes in the network and it
can correlate evidence to identify the attack type.

b) Second engine:

Whenever the first engine identifies DDOS attack, it will
send the details of the attackers to the second engine. The
second engine is responsible for clustering the behaviour of
attackers and finding similarities in the previous
communication in order to find the potential Bot-Master.

As proposed in [22, 23], one of the suitable solutions for
finding the Bot-Master is to aggregate the traffic of Bots and
correlate their communication before the distributed attack
(DDOS, spam senders or other distributed types of attack) to
determine the similarities. The Bot-Master communicates
with the Bots in a particular way. For instance, the Bot-
Master will define a rule for Bots to send Ping requests to
notify the Bot-Master about their current status. Clustering
the previous traffic of current attackers allows the NIDS to
find the similarities in their communication and increases the
probability of detecting the Bot-Master.

Based on our previous research [21] and others [23], one
of the common methods of the Bot-Master and Bots is to use
IRC protocol for their communication. In normal
communication the time differences between IRC requests
and replies is several seconds, while during a Botnet attack
Bots reply to the request of the Bot-Master extremely
quickly. Humans (normal users) need to open interface
programs to work with IRC, and their response time is great
while they are communicating with a server (e.g. entering
simple commands by a normal user through the keyboard
takes at least 2 or 3 seconds). Instead, the automated
program, which is installed on Bot, will reply to the request
of the Bot-Master in milliseconds. Clustering the response

time of Bots and comparing it with the average length of
response time in normal traffic will highlight the differences.

During distributed attacks, whenever the second engine
finds similarities from the previous communication of Bots
with any particular machines (Bot-Master), the system will
generate a report and send it to the administrator.

IV.CONCLUSIONS AND FUTURE WORKS

The main goal of the proposed technique is to have real-
time and unsupervised NIDS. We have found the weaknesses
and limitations of current unsupervised NIDS (for instance
[27]) and apply new features (calculating the Mahalanobis
distance for DBSCAN, Botnet detection engine etc.) to
enhance the detection rate of network intrusions. To decrease
the computation burden, the system will monitor the volume
of traffic. In the event of facing significant changes in the
volume of network traffic (which can be caused by network
attacks), the network measurement formula will trigger the
system to start the detection process. Dividing the process of
detection using multi-stage engines decreases the load of the
computation process. Clustering network traffic distinguishes
normal traffic from outliers and detects attacks inside normal
or encrypted communications. The first engine will detect
attacks using a small attack-window size, such as DOS,
DDOS and Scanning. It has been discovered [21, 22, 23] that
the Bot-Master communicates with Bots in a same way.
During distributed attacks (such as DDOS) the second engine
will cluster and merge the previous actions of distributed
attackers (suspicious Bots) to find the similarities of their
previous connections to detect the suspicious Bot-Master.

We will implement our proposed model and test it with

NSL-KDD [32] and ISCX [33] traffic sample to demonstrate

the improved rate of intrusion detection on different types of

network attacks such as DOS, DDOS, Botnet and etc. In the

meanwhile we will create several networks (and sub

networks) in a simulated environment, such as NS3

(Network Simulator 3) and connect it to public network and

install our proposed model on the gateway. Afterward, we

will simulate different types of network attacks to check and

demonstrate the realtimeness of the proposed model. We are

also undertaking research in order to propose a dynamic self-

tuning mechanism to suggest a more optimal size of ‘ ’ and

‘ ’ for the DBSCAN clustering algorithm in order to increase

the rate of intrusion detection.

ACKNOWLEDGMENTS

We wish to acknowledge the sponsorships of CIMO

(Centre for International Mobility) in Helsinki, Finland and

COMAS (Doctoral Program in Computing and Mathematical

Sciences) by the University of Jyväskylä, Finland which

have made it possible to undertake this research.

REFERENCES

[1] A. Sperotto, G. Schaffrath, R. Sadre, C. Morariu, A. Pras, B. Stiller,
“An overview of IP flow-based intrusion detection,” Communications
Surveys & Tutorials, IEEE , vol.12, no.3, pp.343-356, Third Quarter
2010

[2] V. Engen, “Machine learning for network based intrusion detection:
an investigation into discrepancies in findings with the KDD cup '99
data set and multi-objective evolution of neural network classifier
ensembles from imbalanced data,” PhD Thesis, Bournemouth
University, 2010

[3] P. Vahdani Amoli, A.R. Ghobadi, G. Taherzadeh, R. Karimi, S.
Maham, “New Detection Technique Using Correlation of Network

Flows For NIDS,” Proceedings of the 2011 International Conference
on Security Management, SAM 2011, Las Vegas, Nevada, USA,
2011

[4] A. Lakhina, M. Crovella, C. Diot, “Characterization of network-wide
anomalies in traffic flows,” Proc. of the 4th ACM SIGCOMM
conference on Internet measurement, pp.201–206, ACM, New York,
2004

[5] G. Tedesco, U. Aickelin, “An Immune Inspired Network Intrusion
Detection System Utilising Correlation Context,” Proceedings of the
Workshop on Artificial Immune Systems and Immune System
Modelling (AISB '06), Bristol, 2006

[6] T. Peng, C. Leckie, K. Ramamohanarao, “Proactively Detecting
Distributed Denial of Service Attacks Using Source IP Address
Monitoring,” Proceedings of the Third International IFIP-TC6
Networking Conference (Networking 2004), pp.771-782, 2004

[7] A.L. Mark, M. Crovella, C. Diot, “Characterization of Network-Wide
Anomalies in Traffic Flows,” IMC '04 Proceedings of the 4th ACM
SIGCOMM conference on Internet measurement, pp.201-206, New
York, NY, USA, 2004

[8] B. Claise, “Specification of the IP Flow Information Export (IPFIX)
Protocol for the Exchange of IP Traffic Flow Information,” RFC 5101
(Proposed Standard), [Online]. Available:
http://www.ietf.org/rfc/rfc5101.txt, Jan. 2012

[9] R. Koch, G.D. Rodosek, "Security System for Encrypted
Environments (S2E2)," RAID 2010, LNCS, vol. 6306, pp.505-507,
Springer, Heidelberg, 2010

[10] R. Koch, G.D. Rodosek , "Command Evaluation in Encrypted Remote
Sessions," Network and System Security (NSS), 2010 4th International
Conference on , vol., no., pp.299-305, 1-3 Sept. 2010

[11] M. Augustin, A. Balaz, "Intrusion detection with early recognition of
encrypted application," Intelligent Engineering Systems (INES), 2011
15th IEEE International Conference on , vol., no., pp.245-247, 23-25
June 2011

[12] F. Alserhani, M. Akhlaq, I.U. Awan, A.J. Cullen, P. Mirchandani,
"MARS: Multi-stage Attack Recognition System," Advanced
Information Networking and Applications (AINA), 2010 24th IEEE
International Conference on , vol., no., pp.753-759, 20-23 April 2010

[13] P. García-Teodoro, J. Díaz-Verdejo, G. Maciá-Fernández, E.
Vázquez, “Anomaly-based network intrusion detection: Techniques,
systems and challenges,” Computers & Security, vol. 28, Issues 1–2,
pp. 18-28, February–March 2009

[14] M.N.M. Sap, A.H. Abdullah, S. Srinoy, S. Chimphle, W. Chimphle,
“Anomaly Intrusion Detection Using Fuzzy Clustering Methods,”
Jurnal Teknologi Maklumat, FSKSM, UTM, Jurnal Teknologi
Maklumat, vol.18, pp.25-32, 2006

[15] T.P. Fries, “A Fuzzy-Genetic Approach to Network Intrusion
Detection,” Proceedings of the 2008 GECCO conference companion
on Genetic and evolutionary computation, Atlanta, GA, USA,
pp.2141-2146, 2008

[16] T.T.T. Nguyen, G. Armitage, "A survey of techniques for internet
traffic classification using machine learning," Communications
Surveys & Tutorials, IEEE , vol.10, no.4, pp.56-76, Fourth Quarter
2008

[17] M. H. Bhuyan, D. K. Bhattacharyya, J. K. Kalita. “An effective
unsupervised network anomaly detection method,” In Proceedings of
the International Conference on Advances in Computing,
Communications and Informatics (ICACCI '12). ACM, pp.533-539,
New York, NY, USA, 2012

[18] H.R. Zeidanloo, Bt Manaf, P. Vahdani Amoli, F. Tabatabaei, M.
Zamani, “Botnet Detection Based on Traffic Monitoring,”
International Conference on Networking and Information Technology
(ICNIT), vol., no., pp.97 – 101, Manila, Philippines, 2010

[19] H.R. Zeidanloo, M.J.Z. Shooshtari, P. Vahdani Amoli, M. Safari, M.
Zamani,“A taxonomy of Botnet detection techniques,”3rd IEEE
International Conference on Computer Science and Information
Technology (ICCSIT), vol.2, no., pp.158 – 162, Chengdu, China ,
2010

[20] H.R. Zeidanloo, F. Tabatabaei, P. Vahdani Amoli, A. Tajpour, “All
about Malwares (Malicious Codes),” Proceedings of the 2010
International Conference on Security Management, SAM 2010,
pp.342-348, Las Vegas Nevada, USA, 2010

[21] F.F. Etemad, P.Vahdani Amoli, “Real-Time Botnet Command and
Control Characterization at the Host Level,” 6th International
Symposium on Telecommunication with emphasis on Information
and Communication Technology (IST’2012), Tehran, Iran, 2012

[22] A. Karasaridis, B. Rexroad, D. Hoeflin, “Wide-scale botnet detection
and characterization,” Proceedings of the first conference on First
Workshop on Hot Topics in Understanding Botnets, pp.7-7,
Cambridge, MA, USA, 2007

[23] H.C. Lin, C.M. Chen, J.Y. Tzeng, "Flow Based Botnet Detection,"
Innovative Computing, Information and Control (ICICIC), 2009
Fourth International Conference on , vol., no., pp.1538-1541, 2009

[24] W. Hong, G. Zhenghu, G. Qing, Wang Baosheng, "Detection
Network Anomalies Based on Packet and Flow Analysis," Seventh
International Conference on Networking, 2008. ICN 2008., vol., no.,
pp.497-502, 2008

[25] Y. Waizumi, H. Tsunoda, M. Tsuji, Y. Nemoto, "A Multi-Stage
Network Anomaly Detection Method for Improving Efficiency and
Accuracy," Journal of Information Security, vol.3 no. 1, pp.18-24,
2012

[26] M. Amini, R. Jalili, H.R. Shahriari, “RT-UNNID: A practical solution
to real-time network-based intrusion detection using unsupervised
neural networks,” Computers and Security, Elsevier Inc, vol.25, Issue
6, pp.459-468, 2006

[27] P. Casas, J. Mazel, P. Owezarski, “Unsupervised Network Intrusion
Detection Systems: Detecting the Unknown without Knowledge,”
Computer Communications, vol.35, Issue 7, pp.772-783, 2012

[28] G. Cormode, S. Muthukrishnan, “What's new: finding significant
differences in network data streams,” IEEE/ACM Transactions on
Networking (TON), vol.13, Issue 6, pp.1219-1232, 2005

[29] Cisco.com, “Cisco IOS NetFlow Configuration Guide, Release 12.4,”
http://www.cisco.com, Sep. 2012

[30] M. Ester, H.P. Kriegel, J. Sander, X. Xu , "A density-based algorithm
for discovering clusters in large spatial databases with noise,"
Proceedings of the Second International Conference on Knowledge
Discovery and Data Mining (KDD-96), AAAI Press. pp.226–23, 1996

[31] P.C. Mahalanobis, "On the generalised distance in statistics,"
Proceedings of the National Institute of Sciences of India 2 (1) :
pp.49–55, 1936

[32] M. Tavallaee, E. Bagheri, Lu Wei, A.A. Ghorbani, "A detailed
analysis of the KDD CUP 99 data set," Computational Intelligence for
Security and Defense Applications, CISDA 2009. IEEE Symposium
on , vol., no., pp.1,6, 8-10 July 2009

[33] A. Shiravi, H. Shiravi, M. Tavallaee, A. A. Ghorbani, Toward
developing a systematic approach to generate benchmark datasets for
intrusion detection, Computers & Security, vol.31, Issue 3, May 2012,
pp.357-374, ISSN 0167-4048, 2012

PIII

DISTRIBUTED AGENT BASED MODEL FOR INTRUSION
DETECTION SYSTEM BASED ON ARTIFICIAL IMMUNE

SYSTEM

by

Farhoud Hosseinpour, Sureswaran Ramadass, Andrew Meulenberg,
Payam Vahdani Amoli and Zahra Moghaddasi 2013

International Journal of Digital Content Technology and

its Applications (JDCTA), Vol. 7, No. 9, pp. 206-214

Reproduced with kind permission by AICIT.

PIV

ARTIFICIAL IMMUNE SYSTEM BASED INTRUSION
DETECTION: INNATE IMMUNITY USING AN

UNSUPERVISED LEARNING APPROACH

by

Farhoud Hosseinpour, Payam Vahdani Amoli,
Fahimeh Farahnakian, Juha Plosila and Timo Hämäläinen 2014

International Journal of Digital Content Technology and

 its Applications (JDCTA), Vol. 8, No. 5, pp. 1-12

Reproduced with kind permission by AICIT.

PV

UNSUPERVISED NETWORK INTRUSION DETECTION
SYSTEMS FOR ZERO-DAY FAST-SPREADING ATTACKS AND

BOTNETS

by

Payam Vahdani Amoli, Timo Hämäläinen, Gil David,
 Mikhail Zolotukhin and Mahsa Mirzamohammad (Accepted Nov/2015)

International Journal of Digital Content Technology and its Applications

(JDCTA)

Reproduced with kind permission by AICIT.

	Unsupervised Network Intrusion Detection Systems for Zero-Day Fast-Spreading Network Attacks and Botnets
	ABSTRACT
	ACKNOWLEDGEMENTS
	GLOSSARY
	LIST OF FIGURES
	LIST OF TABLES
	CONTENTS
	LIST OF INCLUDED ARTICLES
	1 INTRODUCTION
	1.1 Research motivation
	1.2 Research questions
	1.3 Research approach
	1.4 Structure of the work
	1.5 Research contribution

	2 INTRUSION DETECTION SYSTEM
	2.1 Intrusions
	2.2 Intrusion detection system

	3 MACHINE LEARNING
	3.1 Data gathering and preprocessing
	3.2 Data analyses
	3.3 Performance evaluation

	4 RESULTS
	4.1 Real time HIDS for botnet detection
	4.2 Machine learning algorithms applied on NIDS

	5 CONCLUSION
	YHTEENVETO (FINNISH SUMMARY)
	REFERENCES
	INCLUDED ARTICLES
	REAL-TIME BOTNET COMMAND AND CONTROL CHARACTERIZATION AT THE HOST LEVEL
	A REAL TIME UNSUPERVISED NIDS FOR DETECTING UNKNOWN AND ENCRYPTED NETWORK ATTACKS IN HIGH SPEED NETWORK
	DISTRIBUTED AGENT BASED MODEL FOR INTRUSION DETECTION SYSTEM BASED ON ARTIFICIAL IMMUNE SYSTEM
	ARTIFICIAL IMMUNE SYSTEM BASED INTRUSION DETECTION: INNATE IMMUNITY USING AN UNSUPERVISED LEARNING APPROACH
	UNSUPERVISED NETWORK INTRUSION DETECTION SYSTEMS FOR ZERO-DAY FAST-SPREADING ATTACKS AND BOTNETS

