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ABSTRACT 

Vahdani Amoli, Payam 
Unsupervised Network Intrusion Detection Systems for Zero-Day Fast-
Spreading Network Attacks and Botnets 
Jyväskylä: University of Jyväskylä, 2015, 54 p. (+included articles) 
(Jyväskylä Studies in Computing 
ISSN 1456-5390; 231) 
ISBN 978-951-39-6451-1 (nid.) 
ISBN 978-951-39-6452-8 (PDF) 
Finnish summary 
Diss. 

Today, the occurrence of zero-day and complex attacks in high-speed networks 
is increasingly common due to the high number vulnerabilities in the cyber 
world. As a result, intrusions become more sophisticated and fast to 
detrimental the networks and hosts. Due to these reasons real-time monitoring, 
processing and intrusion detection are now among the key features of NIDS. 
Traditional types of intrusion detection systems such as signature base IDS are 
not able detect intrusions with new and complex strategies. Now days, 
automatic traffic analysis and anomaly intrusion detection became more 
efficient in field of network security however they suffer from high number of 
false alarms. Among all type of anomaly detection methods unsupervised 
machine-learning techniques are commonly applied in NIDS to detect unknown 
and complex attacks in the network without any prior knowledge. This 
dissertation manly focuses on analyzing network traffic to find abnormal 
behavior in real time. The proposed framework consists of network traffic 
preprocessing, anomaly detection and clustering methods. The proposed 
framework is capable of generating meaningful reports related to the detection 
of real intrusions in well-known datasets. Unsupervised learning methods are 
capable of adapting their required features to the dynamically behavior of the 
network. Due to unfeasibility of payloads checking in high-speed network the 
proposed framework monitors network flows instead. Network flow contains 
the behavior of the network in higher extensive vision and shows the 
explicitness of the network data, which results in faster and higher detection 
rate of network attacks. This research shows that by using proper data 
preprocessing and unsupervised data analyzing methods it is possible to detect 
fast and complex zero days (new) attack in real time. The practical experiments 
are presented in the included articles. 

Keywords: machine learning, clustering (unsupervised), network security, 
anomaly detection, intrusion detection 
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1 INTRODUCTION 

This chapter presents the motivation behind the research concerning machine 
learning algorithms, which are used for anomaly detection in network security. 
Next, the research questions are answered. Finally, the overall structure of the 
work and author’s contribution in the included articles is briefly described. 

1.1 Research motivation 

Nowadays, computer and network revolutionized our daily life. Most of the 
personal, organizational and governmental information store and transfer via 
computers and networks. Due to the growing number of cyber-attacks, 
computer security become more important than ever and considered as the 
principal function in any system or organization. 

The three advance security layers to minimize the risk of attacks are (Abad 
et al. 2003, Komninos, Vergados & Douligeris 2010): 

1. Prevention
2. Detection
3. Reaction

Prevention is the first security level which protects system and network from 
intruders. Access controls, security policies, security awareness and intrusion 
prevention systems (IPS) are the main elements of prevention layer. The main 
outcome of prevention layer is to identify and patch security vulnerability of 
network and system. Due to the increasing rate of zero-day (new) attacks, 
detection layer become the most important security level since most advance 
security mechanism in prevention layer may not stop the motivated and high 
skill intruders. Intrusion detection system (IDS) has the capability of monitoring 
the network and system activities to detect the intrusions and notify the 
administrator. Reaction layer contain pre-planned procedure after the intrusion 
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detection such as stopping the intruder, fixing the newly founded vulnerability 
and restoring the system and data. 

Zero-day attacks can be fast, brutal and complex. Fast attacks aim to fill 
the network with enormous amount of traffic to cause latency in the network or 
disrupt a service on specific machine (server). Brutality and complexity of 
attack can result in data breach and hacking while they deceive the IDS. Due to 
the increasing rate of zero day attacks, researchers are investing more on 
finding the most suitable methods to increase the detection rate of fast and 
sophisticated attacks while traditional techniques such as misuse (signature 
based) detection methods are not capable of detecting these types of attacks.  

In (Denning 1987) the first model of anomaly detection proposed. In 
anomaly-based detection techniques, normal state will be defined and 
behaviors which pass the criteria will be flag as abnormal. Using this method 
will increase the probability of detecting novel attacks. One of the well-known 
anomaly detection methods is probabilistic which rely only on statistics and do 
not correlate alarms. On the other hand, scenario-based methods need to 
observe specific steps to detect attacks. Due to the dynamic and complex 
structure of sophisticated attacks, probabilistic or scenario based NIDS may 
produce high number of false alarm. Machine learning can be considered as the 
central sub-set of the Artificial Intelligence (AI). Machine learning algorithms 
construct a model from example inputs and use it for decision and prediction 
making in future. Due to the learning and decision making capability, many 
researchers applied machine learning techniques in IDS to improve the 
performance of attack detection (Nguyen & Armitage 2008). There are no 
known machine learning methods that can be applied in IDS for detecting all 
types of attacks. Finding the right input data and applicable algorithms for real 
life situation is the main challenge of using machine learning in IDS. 

1.2 Research questions 

The objective of the research is to study and improve different methods of data 
preprocessing and machine learning in network security. To achieve this, the 
dissertation presents several case studies. In most of these studies, one or more 
machine learning algorithms are customized and employed in order to solve 
well posed problems. The main research questions of this study are as follows: 

1. How to monitor unbalance behavior of machines’ and high speed 
networks’ in real time 

2. How to detect fast spreading network intrusion (such as denial of service 
attack or scanning) without any prior knowledge 

3. How to detect complex attacks (such as Botnet) without any prior 
knowledge 

4. Is it practical to apply machine learning algorithms in IDS in real time 
5. Is it possible to detect intrusions in encrypted communications  
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6. How effective are decentralized monitoring methods for improving the 
speed and detection rate of intrusions 

1.3 Research approach 

To answer the previously mentioned questions, this research uses Constructive 
Research Approach (CRA) (Piirainen & Gonzalez 2013). This research aimed to 
create an innovative model to a real problem and contribute to the particular 
field of science where it has been applied. CRA consists of: 

 Planning phase: Discovering and selecting the scientifically relevant cases 
in network security 

 Analyzing phase: Analyzing and literature review will be done to gain a 
comprehensive understanding of the problems and previously proposed 
methods on real-time intrusion detection system and unsupervised 
machine learning which applied in network security 

 Designing phase: Creating a blueprint from the innovative model which is 
capable to solve the cases which found in analyzing phase  

 Implementation phase: Developing the predefined project  
 Testing and documentation phase: Testing the proposed model on well-

known traffic samples and gathering the produced data (results) and 
compare the result with the previous proposed solutions 

In this research, the problem of fast spreading network intrusions and complex 
attacks in normal and encrypted communication has been studied. The 
proposed solution is an unsupervised multi-stage network intrusion detection 
system which is capable of monitoring high speed networks in real time. 

1.4  Structure of the work 

The rest of this dissertation is organized as follows. First, the theoretical 
background on intrusion detection and machine learning is introduced. Then, 
the contributions and results obtained in the research articles and new 
unpublished results are presented. Finally, the dissertation is concluded and 
outlines the future works and research directions. 

Chapter 2 covers deep explanation of potential intrusions that threaten 
networks and systems. These intrusions include new types of attacks which are 
fast, brutal and complex. Furthermore the history and current state of intrusion 
detection system will be explained in detail. Chapter 3 presents deep technical 
aspects of data prepossessing and data analyses algorithms (supervised and 
unsupervised) which have been used in this research are presented. 
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Chapter 4 outlines the research contribution of the dissertation. It contains 
the results presented in the included research articles to discuss the benefits and 
performance of using different machine learning algorithms for intrusion 
detection. In addition, some new framework and results that have not yet been 
published are added to support the research work. 

Finally, Chapter 5 concludes the work and provides future research 
directions. 

1.5 Research contribution 

The author’s contribution to the included articles is in the design and 
development of the entire framework with co-authors. Figure 1 shows the 
relation of included articles, their common topics and their place in overall 
scheme. The deviation is based on data source (host or network) for the IDS and 
their detection methods (supervised or unsupervised).   

Article PI presents a real time model for host based intrusion detection 
system (HIDS) to deal with well-known centralized Botnet attacks. Article PII 
propose a multi stage unsupervised network intrusion detection system (NIDS) 
for detecting fast-spreading and complex network attacks. Article PIII uses 
artificial immune system (AIS) to train the IDS. In addition it monitors and 
learns the current behavior of network from distributed network sensors for 
detecting new types of intrusions. Article PIV uses the first unsupervised 
engine which proposed in PII to add the capability of online training for the 
central AIS engine which proposed in PIII. Finally, article PV implemented the 
both engines which proposed in PII and enhanced the detection rate of 
unsupervised engines in PIV. Each article is discussed in detail below.  

Article PI presents a real time and active model for detecting centralized 
Botnets in host level. The proposed HIDS is capable of inspecting the hypertext 
transfer protocol (HTTP) and internet relay chat (IRC) packets and dropping 
suspicious packets while it observe patterns of command-and-control (C&C) 
communications. The experimental part consists of inspecting HTTP and IRC 
packets from a real Botnet traffic. The capability of bot detection by real-time 
processing of host-related data solely, distinguishes this model from other 
existing approaches. The author is responsible for literature review on Botnets 
behavior, proposing the packet inspection and design the overall framework 

Article PII presents a multistage unsupervised NIDS to detect intrusions in 
high speed network. Due to the infeasibility of checking packets payload in 
encrypted or high speed networks the proposed model uses network flow as 
the input data for NIDS. The intrusion detection procedure has been divided in 
two stages, the first engine is responsible to detect fast spreading network 
attacks in real time and the second engine conducts deeper analysis and 
correlates the traffic of the previous attackers to find the potential Botnet. The 
main novelty of the propose model is to train DBSCAN clustering algorithm by 
clean network traffic before the attack to represent the normal behavior of 
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network to the clustering engine. The author carried out deep research on 
finding the most effective unsupervised machine algorithms which was used 
and implemented in previously proposed NIDS and proposed the overall 
framework. 

Real-time Botnet command and control characterization at the host 
level

PI

HIDS

NIDS

PIII
Distributed Agent Based Model for Intrusion Detection System 

Based on Artificial Immune System

Supervised NIDS

A real time unsupervised NIDS for detecting unknown and 
encrypted network attacks in high speed network

Unsupervised Network Intrusion Detection Systems for Zero-Day 
Fast-Spreading Attacks and Botnets

PII

PIV

PV

Artificial  Immune  System  Based  Intrusion  Detection:  Innate  
Immunity  using  an  Unsupervised  Learning  Approach

Unsupervised NIDS

 

FIGURE 1 The Common Topics of Different Papers. 

Article PIII presents a distributed agent based design of AIS for IDS. The 
detectors are distributed in each host in network. The central engine is located 
in server and manages the detectors and makes final decision about current 
behavior of the network. The detector agents actively updated and 
synchronized with detector agents of other hosts through the IDS’s central 
engine. The main novelty of the proposed model was to apply distributed 
model in AIS based IDS to increase the speed and detection rate of intrusions. 
Based on the results during the test phase new types of anomaly were detected 
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due to the dynamically increased number of memory cell in each host. The 
author’s contribution includes the implementation of the framework. 

Article PIV combines the capability of PII and PIII. The novelty of this 
work is utilization of AIS and DBSCAN (density-based spatial clustering of 
applications with noise) in order to provide online and real-time training for the 
adaptive immune system within the central artificial immune system. Different 
methods for unsupervised machine learning are investigated and DBSCAN is 
selected to be utilized in this architecture. The adaptive immune system also 
takes advantage of the distributed structure, which has shown better self-
improvement rate compare to centralized mode and provides primary and 
secondary immune response for unknown anomalies and zero-day attacks. The 
author contributed to the idea of using unsupervised machine learning 
algorithms with AIS to add the online capability to the central engine and 
implement the overall framework. 

Article PV implement the proposed model in PII and enhanced the 
detection rate in PIV. The model detects network intrusion without any prior 
knowledge via two separate engines. The first engine detects fast-spreading 
DoS, probes and DDoS attacks (e.g. POD, SMURF, Mail-bomb, SSH-process-
table, UDP Storm, port scanning, network scanning) in real time to stop the 
paralysis of both network and victims. The second engine finds the eventual 
internal Botnet (Bots or Botmaster), while the monitored network filled by 
DDoS attacks traffic implement the overall framework. One of the main novelty 
of the propose model is using a dynamic and self-adaptable threshold to detect 
unexpected behavior in the network to decrease the computation time of the 
clustering process during the normal state of the network. Standardizing data 
input via a logarithm (log) and monitoring the different size of subnets through 
the threshold increase the performance of the NIDS. To evaluate the proposed 
model, the NIDS tests with two publicly available and well-known datasets to 
ensure the detection process. The author implements the overall framework. 



2 INTRUSION DETECTION SYSTEM 

This chapter presents the fundamental concept of intrusion and intrusion 
detection system. First, different types of intrusions and their signatures 
(symptoms) will be explained. Next, different architecture of intrusion detection 
systems (IDS) and their specificities properties will be discussed.   

2.1 Intrusions 

Intrusion is a formal term for describing the malicious act of compromising a 
network or system. Accessing or manipulating data should be authorized by 
sets of rules which defined in confidentiality, integrity and availability (CIA 
triad) policies of the data. Attackers aim to bypass layers of computer security 
(which presented in section 1.1) to breach the confidentiality, integrity and 
availability of data or services (Hernández-Pereira et al. 2009, Kumar, Kumar & 
Sachdeva 2010). 

Based on the literature, successful intrusions aim to pass through the main 
four stages as listed below (Asaka, Taguchi & Goto 1999, Kruegel, Vigna & 
Robertson 2005): 

 Probing stage:  
Considered as the first stage of intrusion, which intruders scan the victims’ 
systems or network to collect information related to their potential 
vulnerabilities. (Also known as scanning, surveillance or search stage) 

 Exploitation stage: 
In case of finding vulnerability in probing stage, the intruder tries to gain 
the control of victim’s machine for further activities. (Also known as 
activity stage) 

 Action stage: 
By gaining the control of victim’s machine in activity stage, intruder can 
access and manipulate victim’s data and install malware to attack other 
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systems in the network. Malware or malicious software is a program to 
penetrate computers without   the user’s   permission   or   notification. 
(Also known as mark stage) 

 Masquerading stage: 
Finally, the intruder tries to removes or hides the traces of the attack. 

Based on the stages which described above, Intrusions can be divided into four 
categories (Lippmann et al. 2000):  

 Probe: 
As mentioned above this type of attack looks for live IP addresses (valid 
IP), open ports, victims’ operating systems (OS) and other useful 
information to find the potential vulnerabilities in each host. IPsweep 
(network scanning), Portsweep (machine scanning), Nmap, Mscan, SAINT 
(Security Administrator’s Integrated Network) and satan are the common 
probe attacks (Ghorbani, Lu & Tavallaee 2009). Network Mapper known 
as Nmap (Lyon 2009) is a well-known network scanning program for 
security purposes which have been used to extract data about hosts and 
their services for creating a map of the targeted network. Other recent 
offensive methods of scanning for large networks have been proposed 
(Durumeric, Wustrow & Halderman 2013) to maximize the scanning 
performance which may paralyze the network and targeted hosts due to 
the high number of network flows. 

 Remote to Local (R2L): 
In R2L attack, intruder attempts to obtain a local account in the network 
through the founded vulnerability in probing stage. Social engineering, 
man in the middle, password guessing are the well-know and common 
R2L attacks. Password guessing which mainly performed by SSH brute 
force is an old type of attack which still strongly occurs (Cid 2015) to the 
web server by trying all possible combination of characters to find the 
correct keys (passwords). 

 Denial of Service(DoS): 
DoS is a network level attack which aims to disrupt the usability of a 
service or network. Attacker uses a compromised machine to sends high 
amount of malicious traffic to specific machine/s for paralyzing their 
services and network. Engaging DoS attack via high number of 
compromised machines is referred as Distributed Denial of Service 
(DDoS). Today, many internet users do not install or update proper 
security software (such as: firewall and antivirus). Professional attackers 
use automated tools to find vulnerable machine and install malware to 
compromise them. The compromised machines are referred as Robots or 
Bots. Botnet is a collection of compromised computers (Bots) which are 
remotely controlled by the intruder (BotMaster) under a common 
Command-and-Control (C&C) infrastructure. Botnets are used to perform 
malicious activity in wider scale such as DDoS attacks and spamming.  
SYN flooding, Ping of Death (PoD), HTTP flood, XOR DDoS Botnet, Smurf 
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attack, Mail-Bomb are the well-known DoS and DDoS attacks. SYN flood 
is an old and well know DoS attack which intruder sends high number 
SYN requests to the victim in an attempt of consuming high resource from 
the victim to make it unresponsive to legitimate requests. High skilled 
intruders are able to deceive and bypass firewalls and antiviruses and 
victimize the most advance and up-to-date operating system such as Red 
Hat Enterprise Linux 7 (Brouer 2014). For instance in September 2015, 
distributed SYN flood had been detected with bandwidth range from few 
to 170 gigabyte per second (Gbps) victimizing gaming sectors and 
educational institutes in Asia. The attacker used SSH Brute force attack to 
gain privilege to several Linux servers in Asia to construct his own 
botnets. Afterward with the compromised Linux servers, he launched 
crippling DDoS attacks of over 150 Gbps (Khandelwal 2015). PoD is 
another well-known DoS attack which the intruder attacks machines 
through sending malicious ping requests. This issue was fixed in many 
operating systems by 1998 however with the recent usage of Internet 
Protocol version 6 (IPv6) different version of Microsoft operating system 
were vulnerable to it (Jackson 2013). HTTP flood is a new DOS/DDoS 
attack which occurred for the first time in 2009. It victimize web servers by 
sending high number of legitimate sessions of HTTP GET or POST 
requests to make the web server unresponsive (Cid 2014). 

 User to Root (U2R): 
U2R and R2L are in same class of attacks however in U2R the intruder has 
local access and tries to access and manipulate the policy file in the OS to 
gain administrator privilege. Buffer overflow, Sql-attack and perl are the 
common U2R attacks. 

Besides the traditional categorizing of intrusions which discussed above many 
new types of sophisticated attacks have been discovering in the recent decade. 
One of the big and well-known classes of intrusion is advanced persistent threat 
(APT). It consists of stealthy though continuous hacking processes which 
operated by high skilled hackers. The main difference between APT and 
traditional threats is the stealthy and data-focused nature of it. Based on 
statistics the main victims of APT are business and political organizations. The 
term "advanced" refers to applying sophisticated malware to take advantages 
from the existing vulnerabilities of victim. The term "persistent" refers to the 
external continuously monitoring method to collect confidential data from the 
victim. At the end "threat" refers to the process involved by high skilled hacker 
to organize the attack (Tankard 2011, Cole 2012). 
 Stuxnet is one of the well-known examples of an APT which was highly 
sophisticated and targeted specific infrastructure (such as Iran’s nuclear 
facilities) via numerous zero day vulnerabilities and spread via several 
propagation methods (Virvilis & Gritzalis 2013). 

Recent evidence which mentioned above shows that conventional 
security measures like firewalls, anti-virus and signature based IDS are not 
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enough, since sophisticated intrusions can deceive or bypass them.  Due to this 
reason deeper and more automated analysis of data is the baseline for network 
and machine monitoring (Tankard 2011). 

2.2 Intrusion detection system 

Intrusion detection system (IDS) is a tool or device which monitors the behavior 
of network or systems to detect abnormal activity. IDS notifies administrator 
regarding the observed suspicious activities and in some case IDS is capable of 
blocking the abnormal traffics or activities (Patcha & Park 2007). Figure 2 shows 
the overall classification of IDS. 

IDS can be categorized based on the input data (Xin, Dickerson & 
Dickerson 2003, Engen 2010). The IDS which monitors and inspects the 
behavior of the whole network is NIDS (network-based intrusion detection 
system). Current NIDS solutions monitor bytes, packets' payload or network 
flows to detect intrusions. According to (Claise 2008) “A flow is defined as a set 
of IP packets passing an observation point in the network during a certain time 
interval. All packets belonging to a particular flow have a set of common 
properties”. Each network flow contains information about IP addresses and 
port numbers of source and destination, number of packets, protocol, duration, 
average size of packets and other useful information which can be retrieved 
from packets header.  

Whereas, the IDS which derives information from single host is HIDS 
(host-based intrusion detection system). HIDS monitors and inspect the system 
activities such as: incoming connection attempts, network traffic, login 
information and resource usage (CPU, Memory, Storage and etc.).   

In general there are two main detection methods for IDS: Signature-based 
and anomaly-based. Signature-based IDS monitor the behavior of machine or 
network and compare it with the characteristics of known attacks. Signature-
based IDS have high detection rates for well-known attacks; however, as 
mentioned before they even fail to detect known intrusions with small 
variations to their signatures. Providing attack signatures consumes money and 
time, and with the increasing rate of zero-day attacks, using signature-based 
IDS is not a safe solution.  

In anomaly-based detection techniques, normal state of system or network 
will be defined. If behavior of system or network passes the criteria, the IDS will 
be suspicious and flag it as abnormal. Using this method will increase the 
probability of detecting novel attacks; however, it makes lots of detection errors 
because of the difficulty of defining the normal state. Having fewer false alarms 
and an increased detection rate of zero-day and complex attacks, especially in 
imbalanced network traffic, has become an important challenge in the design of 
detection techniques for IDS (Sperotto et al. 2010, Engen 2010). 
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FIGURE 2 Classification of Intrusions Detection System (IDS). 

From the reaction perspective, IDS can be categorized in two groups: passive 
and active. Passive IDS stores and log the detail detected intrusion and send it 
to the administrator however active IDS take immediate action on the intrusion 
to stop it. In real life, active IDS are the efficient solution since they stop the 
intrusion immediately and mitigate the damage of intrusion to the system and 
network, however, false alarm may create problem for legitimate actions 
(Engen 2010).  

Finally, the last way to classify IDS is based of usage frequency: offline IDS 
or online IDS. Offline IDS analyses pre-logged data to find intrusion however 
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they are not efficient solution for fast and brutal attacks. In the other hand 
online (real-time) IDS are capable of detecting intrusions immediately and make 
it possible for administrator to mitigate the damage in intrusions. 

 
 



3 MACHINE LEARNING 

This chapter discusses the overall structure of data preprocessing, data 
analyzing and performance evaluation. It is important to note that many 
algorithms can be used in data preprocessing or analyzing, however, the 
chapter mostly focuses and explains the algorithms which applied in the articles 
included in this dissertation. First, the preprocessing procedures such as data 
selection, feature extraction and selection will be outlined. Next, machine 
learning methods such as classification and clustering are presented. At the 
end, performance evaluation techniques are described. 

3.1 Data gathering and preprocessing 

In general data mining algorithms which use machine learning methods have 
inductive bias. As a result, the characteristics of the data being mined will 
directly affect the performance of machine learning methods (Freitas & Timmis 
2007). Preprocessing the logged or live data (raw data) aims to remove 
irrelevant (redundant) and duplicated information to prepare the preprocessed 
input data for the analyzing phase since the raw data may contain chaotic, 
missing and irrelevant data. The other two objectives in preprocessing data are 
data extraction which masked by another of data (such as noise) and dimention 
reduction. Preprocessing data (Fayyad, Piatetsky-Shapiro & Smyth 1996, Hand, 
Mannila & Smyth 2001) contains several steps. Each step performs specific 
actions to extract the useful information form the available data for the 
analyzing phase. The main five main stages of data preprocessing are listed and 
explained below. 

3.1.1 Data selection and feature extraction 

Depend on the application area, the most available and relevant source of data 
will be selected. In feature extraction phase, sets of derived values (features) 
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will be extracted from the raw data. Feature extraction reduce the 
representation of data to increase the performance of data processing since 
analyzing the full size raw data is time consuming and decrease the accuracy of 
output. For instance, to analyze network traffic for network-based intrusion 
detection, the application should gather the data from routers and extract 
information such as number of transferred bytes, packets, networks flows, IP 
addresses, protocol, port numbers and other useful features of network traffic 
for intrusion detection (Guyon & Elisseeff 2003, Liu & Yu 2005, Novakov et al. 
2013). Many researchers are suggesting using network flows for intrusion 
detection purposes (Lakhina, Crovella & Diot 2004, Peng, Leckie & 
Ramamohanarao 2004, Mark, Crovella & Diot 2004, Tedesco & Aickelin 2006). 
Monitoring network flows enhances the detection rate of complex attacks and 
decreases false alarms. As network attacks may occur in several stages or via a 
lengthy communication, inspecting the packet’s payload or counting the 
number of transferred bytes may not provide sufficient information for their 
detection. Sampling network traffic is one of the main solutions to reduce the 
resource requirement and computation time of analyzing the packet’s payload; 
however, it increases the probability of losing anomalous data (data related to 
intrusions) and pushes the NIDS to produce a high level of false-negative 
alarms. The extracted features such as network flows improve the detection rate 
since they contain the behavior of the network and the nodes in higher 
extensive vision. As the data volume of network flows is only 0.1 per cent 
compared to the packet payload, real-time detection is practical and 
implementing the NIDS in a high-speed network will be feasible (Sperotto et al. 
2010). In addition intrusions in encrypted communication raise a false-negative 
alarm in payload-based NIDS as a result of the inaccessibility of the packets’ 
payload; however, monitoring and inspecting encrypted communication in the 
form of network flows provides useful information to the NIDS (Koch & 
Rodosek 2010, Augustin & Balaz 2011). 

3.1.2 Standardization 

Extracted features from the raw data can be divided into two main categories: 
discrete and continuous. Discrete data can be finite number of values which are 
discrete and there is no grey area in between, such as protocol types of 
communication. However continuous data can take any value and there is no 
restricted predefined restricted separate values such as the duration of network 
flows between two machines. 

Continuous data can be different in scales. Unfair comparison of features 
during data analyses phase can result in false learning (and decisions making).  
Data standardization techniques try to define a standard scale for all features 
(with different scales) to effect equality during analyses phase.  

Data standardization is the process of removing variant scale of different 
data features. Data with off the scale magnitude may dominate other feature 
during data analyses. Natural logarithm (Log) and z-score are the well-known 
data standardization methods (Chiu et al. 2015).Logarithmic transformation of 
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data is suitable where the data covers a wide range of values. Among all of the 
standardization methods, Log transformation is one of the best methods to 
reduce the impact of outliers since it squeezes the bigger values and stretches 
smaller values. Figure 3 show the standardization result of network traffic 
sample. As shown the abnormal behavior started from 11th second of network 
traffic however the high traffic during 21st second masks all of the abnormal 
behaviors. Figure 3 (A) shows the normal view of traffic sample. Figure 3 (B) 
shows the data which standardized through z-score method, however due to 
the high amount of traffic in 21st second most of the abnormal behaviors have 
been masked. The log transformation which has been shown in Figure 3 (C) was 
particularly effective in standardizing positively skewed distributions 
(Leydesdorff & Bensman 2006). 
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FIGURE 3 Data Standardization. 
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3.1.3 Feature selection 

The number of extracted features from the raw data can be huge. Redundant 
and irrelevant features should be removed without losing important 
information, since they may result in the high computational burden and 
memory usage during data analyses. Feature selection can result in dimensional 
reduction since it has been used for simplifying model interpretability, reduce 
training times and enhance generalization by reducing over fitting.(James et al. 
2014) 

3.1.3.1 Subspace clustering 

Utilizing high dimensional data in machine learning algorithms increase the 
performance of prediction and anomaly detection since the algorithm can 
model and learn behavioral changes of each specific feature. This has motivated 
researchers to development techniques for finding a low-dimensional 
representation of a high-dimensional data. As mentioned before feature 
selection removes irrelevant and redundant features by analyzing the entire 
dataset.  
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FIGURE 4 Subspace Clustring. 
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Subspace clustering is a feature selection method which localize the search  for  
relevant  dimensions  allowing  them  to  find  Clusters  that  exist  in  multiple 
and overlapping  subspaces (Vidal 2010). Subspace clustering has been applied 
in machine learning clustering-based methods (Boult & Brown 1991, Goh & 
Vidal 2007, Elhamifar & Vidal 2009, Elhamifar & Vidal 2010). Figure 4 shows 
how a three dimensional data will be divided into 3 two dimensional data 
through subspace clustering algorithm.   

3.1.3.2 Genetic Algorithm 

Genetic algorithm (GA) inspired by Darwin's theory of evolution. The process 
starts with a set of population. Samples of population will be taken and used to 
form a new population. The aim is to produce a better population. The new 
produced population will be selected, prioritized and reproduce based on their 
fitness. As show in Figure 5 this procedure will continue and repeated till some 
conditions (for example number of populations or improvement of the best 
solution) meet the criteria. GA tends to an optimal solution by using crossover 
and mutation processes similar to evolution.  

Generating Random 
Popoluation

Evaluated Fitness

New Population 

Test

Using New 
Population

Selection

Crossover

Mutation

Accept

 

FIGURE 5 Outline of Genetic Algorithm (GA). 

Crossover combines more than one population (parent) to produce a new 
population (children). As a result the child may be better than any of the 
parents since there is a probability of taking the best characteristics from them. 
There are many well know methods to apply crossover such as: One-point 
crossover, two-point crossover, Uniform crossover (Molina, Belanche & Nebot 
2002, Zhang & Chang 2009) which shown in Equation 2-4. 
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One-point Crossover: 
Parent-A 01011100 + Parent-B 11001001 = Children 01011001                 (2) 

Two-point Crossover: 
Parent-A 01011100 + Parent-B 11001001 = Children 01001000                 (3) 

Uniform Crossover: 
Parent-A 01011100 + Parent-B 11001001 = Children 11001000                 (4) 

Mutation is used to maintain genetic diversity from one generation of a 
population (parents) to the next (children). In mutation, the new population 
may change entirely from their parents. Mutation alters one or more values 
from parents to obtain better solutions (children).  

Mutation: 
Parent 01110010  Children 01100110                                                        (5) 

3.2 Data analyses  

Analysis of data is a process of inspecting, modeling and extracting information 
from preprocessed data. Data analysis has multiple approaches and techniques 
to extract and discovering useful information for the prediction and anomaly 
detection. Machine learning algorithms have been used broadly in field of data 
analyses (Liao & Vemuri 2002, Ramadas, Ostermann & Tjaden 2003, Kruegel et 
al. 2003, Estevez-Tapiador, Garcia-Teodoro & Diaz-Verdejo 2003, Li 2004). 
Machine learning techniques establish an explicit or implicit model for 
categorize the input data and they are capable of changing their execution 
strategy while it acquires new data (the self-learning capability) (Garcia-
Teodoro et al. 2009).  

In general there are three types of machine-learning technique: 
supervised, semi-supervised and unsupervised. In supervised machine learning 
techniques, the engine needs to be trained properly by a labeled dataset in order 
to create models for future prediction or decision-making; however, the 
attainment of labeled data needs to be carried out by experts, which is both 
costly and time-consuming(Kotsiantis, Zaharakis & Pintelas 2007).  

Semi-supervised machine-learning techniques need to be trained by small 
amounts of labeled data and large amounts of unlabeled data to build the 
model of normal and abnormal data(Chapelle, Scholkopf & Zien 2006). 
Unsupervised machine learning techniques discover and formulate the invisible 
model of unlabeled data without any prior knowledge(Kotsiantis & Pintelas 
2004).  



31 
 

 

3.2.1 Supervised Machine Learning Algorithems 

Supervised machine learning algorithms referred to the methods which predict 
based on pre-observed evidence in the training dataset. The training dataset 

includes data and the response examples. Supervised learning algorithms analyze 
the training dataset and generate an inferred function, which can be used for 
mapping new samples. Observing more data result in improvement of the 
prediction performance. The main challenge in each application area is to 
choose the best algorithm which can correctly determine the class labels for 
unseen samples. Figure 6 shows the overall procedures of testing and training 
phase in supervised machine learning.  

Known Data Known Responses

New Data

Model

Predicted Respond

Training Phase:

Testing Phase:

 

FIGURE 6 Testing and Training Phase in Supervised Machine Learning. 

Supervised machine learning algorithms can be categorized as classification 
and anomaly detection. In classification, each training instance is already 
classified into one of the predefined categories. During the training phase the 
aim is to discover the relationship between the instance and it’s category 
without any observation of the test data. The discovered rules should be useful 
to predict the class of each unknown instances in the test data. Classification 
algorithms usually apply to nominal response values (Kesavaraj & Sukumaran 
2013). In anomaly detection the goal is to identify data points that are abnormal. 
Since the potential variations are high and the training instances are few it's not 
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feasible to train the system. Anomaly detection methods will train by normal 
activities and then identify significantly differences during testing phase 
(Chandola, Banerjee & Kumar 2009).  

Classification and anomaly detection methods have been applied in 
broad domains of application such as network traffic monitoring (Li & 
Kianmehr 2012, Huang & Huang 2013), credit analysis (Hsu & Hung 2009), and 
biomedical modeling (Retnakaran & Pizzi 2005). 

3.2.1.1 Artificial immune system 

AIS has been defined (De Castro & Timmis 2002) as “Adaptive systems inspired 
by theoretical immunology and observed immune functions, principles and 
models, which are applied to problem solving”. 

Among different types of algorithm which have been inspired by the 
biological systems such as evolutionary algorithms, swarm intelligence and 
neural networks, AIS algorithms are bio-inspired from the human immune 
system. Each common technique in AIS is inspired by specific immunological 
theories such as: clonal selection, immune networks and negative selection. 

The idea of clonal selection focus on the Darwinian attributes of the theory 
where the selection and reproduction of antibodies is prioritized based on the 
affinity rate of produced antigen and antibody. Clonal selection algorithms 
have been applied in optimization and pattern recognition domains.(De Castro 
& Von Zuben 2002) 

Beside the respond to the antigen which produced by external invaders, 
lymphocytes may attack to the materials which produced by internal host own 
cells. A full immune response may damage the host’s organism. Negative 
selection algorithm inspired the positive and negative selection processes that 
occur during the maturation of T cells in the thymus. Negative selections 
identify and delete actions which may attack self-tissues. These algorithms have 
been applied in classification and pattern recognition domains where the 
algorithm can learn from the labeled dataset (Forrest et al. 1994, Esponda 2005). 
The following algorithm shows the basic pseud code of negative selection in 
AIS (Dal et al. 2008): 

Input: a set of normal (self) and abnormal (non-self) data instances 
REPEAT 
   Randomly generate immature detector 
   IF match with self 
      THEN Discard 
   ELSE IF match with non-self 
      Measure the affinity between detector and non-self 

 IF affinity between the detector and non-self passes threshold 
         Add to finial detector set 
UNTIL stopping criterion 
Output: a set of mature detector 

Negative selection algorithms can be used to detect abnormal behavior inside of 
network or host (Hofmeyr & Forrest 2000). Human immune system (HIS) is 
able responds quickly to perversely seen antigen since it can remember their 
specific antibody. Creating memory cells via genetic algorithm have been 
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applied in negative selection methods in AIS to form a secondary immune 
response without human involvement.(Dal et al. 2008) 

3.2.2 Unsupervised Machine Learning Algorithems 

Unsupervised machine learning algorithms try to find hidden structure of 
unlabeled data. Clustering algorithms is one of the main approaches in 
unsupervised machine-learning techniques; it detects noises or abnormal 
behavior via categorizing patterns (data) into group/s (cluster) according to 
their resemblance (Nguyen & Armitage 2008, Bhuyan, Bhattacharyya & Kalita 
2012).  

The two main category of clustering algorithms are cluster association and 
centroid distance. In cluster association techniques such as DBSCAN, the 
clustered data will be considered as normal and the data point outside of 
clusters will be mark as abnormal (noise). Centroid distance based clustering 
techniques such as K-means, evaluate points based on their distance to their 
cluster centroid cluster coordinate hence small distance will be considered as 
normal and high distance as abnormal. In this section the two well-known 
relevant clustering algorithms (DBSCAN and K-means) for anomaly detection 
in network security are introduced.  

3.2.2.1 DBSCAN 

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is a 
powerful and well known unsupervised cluster association technique (Ester et 
al. 1996) which has been used in anomaly detection (Casas, Mazel & Owezarski 
2012). It requires two parameters:  maximum radius of the neighborhood (d) 
and minimum number of samples required to form a cluster (minSpl).  

It starts with a random starting point, if the starting point contains 
sufficiently neighborhood a cluster will be created, otherwise, the point will 
labeled as noise, however, the noise point might later be found in density 
reachable with a different point and hence be made part of a cluster. All points 
that are found within the acceptable reachable neighborhood will be added to 
cluster. This process will continue until all the density connected points are 
found. Then, the algorithm will check a new unvisited point and apply all of the 
steps which may lead to discover a new cluster or label the point as noise. 
Figure 7 shows the steps which will be taken by DBSCAN algorithm for 
anomaly detection purposes. 
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FIGURE 7 DBSCAN Clustering for Anomaly Detection. 

DBSCAN algorithm appears to have a high detection rate of network intrusions 
without any prior knowledge as a result of the ability to cluster data in any size 
and arbitrary shape. In addition it will cluster the data without requiring 
knowing the number of clusters. (Erman, Arlitt & Mahanti 2006, Ghourabi, 
Abbes & Bouhoula 2010) 

3.2.2.2 K-means  

K-means is a well-known and widely used unsupervised centroid distance 
based clustering algorithm for anomaly detection. The given dataset will group 
into k clusters, in which each cluster has a cluster center (centroid). To increase 
the accuracy of data analyses, the algorithm tries to find optimal coordinates for 
centroid points which minimize their sum of distance to the clustered data 
points. In general k-means algorithm can be divided into these steps (Jain & 
Dubes 1988):  

1. Randomly select the number of clusters (centroid) as k 
2. Assign the original data to the nearest centroid for creating the clusters 
3. Assign new coordinates for centroids based on the previously clustered 

data 
4. Repeated step 2 and 3 until there is no changes in the coordinate of 

centroid points 
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Figure 8 shows the how k-mean clustering can be applied in anomaly detection 
(Münz, Li & Carle 2007). First, the original data groups in to k cluster. Then 
after finding the optimal centroid the data point with high distance will be 
flagged as abnormal. 
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FIGURE 8 K-means Clustring for Anomaly Decetion. 

3.3 Performance evaluation 

Anomaly detection methods aim to find and mark abnormal behavior which 
derived from normal profiles (Patcha & Park 2007). In general there are three 
main metrics to evaluate an algorithm in anomaly detection area: 

1. Prediction accuracy which refers to the ability of correctly modeling the 
data and predicting the class of new (unseen) data 

2. Ability to make correct predictions in noisy, unbalance and missing data 
3. The computation burden of data gathering and analyzing 
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In anomaly detection context "positive" class usually refers to anomalies data, 
whereas "negative" will be considered as normal instances. Table 1 shows the 
basic prediction conditions in anomaly detection area.  

TABLE 1 Prediction Conditiones. 

 Predicted Class 

Normal Class Anomaly Class 

True Class Normal Class True Negative False Positive 

Anomaly Class False Negative True Positive 

Based on these terms the following performance metrics can be extracted: 

 True Positive Rate (TPR) is the correctly classification ratio of the detected 
anomalous data to the total number of anomalous data 

 True Negative Rate (TNR) is the correctly classification ratio of the 
detected normal data to the total number of normal data  

 False Positive Rate (FPR) is the misclassified ratio of the detected normal 
data as anomalous to the total number normal data 

 False Negative Rate (FNR) is the misclassified ratio of the detected 
anomalous data as normal to the total number anomalous data  

 Accuracy is the ratio of total correctly classified data (true negative and 
true positive) to the total number of samples 

 Recall is the ratio of correctly detected anomalies (true positive) to the total 
number of anomalies  

 Precision is the ratio of correctly detected anomalies to the total number of 
predicted anomalies (true positive and false positive)  

In general high false alarms (false positives or false negatives) can conclude the 
usability of anomaly detection algorithm. 

3.3.1 Estimantion methodology 

Estimation methodology is used to predict how the proposed application 
works. The proposed model should be tested on different data samples to 
extract the performance evaluation metrics and compared it with previously 
proposed model. Obviously the data which have been used for training the 
algorithm should not be used to estimate the performance of the model since it 
will result in not-realistic and over-optimistic performance prediction. Due to 
this reason different rules have been proposed to evaluate the machine learning 
algorithms.   

K-fold is one of the well-known estimation methods which divide the total 
data sample to K equal size data subsets (Ramaswamy et al. 2001, Li, Zhang & 
Ogihara 2004). Each time one of the subsets will be used as the testing dataset 
and the rest (k-1) will be used as training samples. This process will be repeated 
for K times to use the entire K folds as the testing dataset for once. Finally, the k 
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cross validation estimates is averaged. Reducing the bias associated with the 
random sampling of the training samples is the main advantage of this method 
since for each time; the algorithm will be tested via separate portion of the data. 

 



4 RESULTS 

This chapter presents the research contribution and results which obtained in 
this dissertation. First the real time HIDS for botnet detection is presented. 
Next, the results and performance of supervised and unsupervised machine 
learning algorithms which applied in centralized and distributed NIDS are 
discussed. At the end, new unpublished method for finding anomalous outliers 
will be presented. 

4.1 Real time HIDS for botnet detection 

Article PI proposed a real-time approach which not only detects Botnet traffic 
on the host, but also can filter it from outgoing traffic in order to suppress the 
Botnet. The proposed approach works by detecting Botnet communication 
patterns which belongs to a centralized C&C structure in HTTP and IRC 
protocols. The capability of bot detection by real-time processing of host-related 
data solely, distinguishes this model from other existing approaches. We have 
implemented our detection approach within a packet filtering firewall for 
Windows XP machines (firewall drivers) to control the inbound and outbound 
connections. During testing phase against IRC bots such as Rx bot, results 
showed that suspicious IRC packets have been filtered out. Figure 9 shows the 
architecture overview of the proposed approach. 



39 
 

 

 

FIGURE 9 Architecture Overview of HIDS [PI]. 

4.2 Machine learning algorithms applied on NIDS 

Human immune system (HIS) has decentralized architecture, which orchestrate 
its messages to the number of different types of cell to respond to the detected 
threats and repair the damaged tissue. Previously many researcher applied AIS 
on centralized machine which results in massive process in central engine (Dal 
et al. 2008, Dressler & Akan 2010). Article PIII introduced a new distributed, 
agent based AIS for intrusion detection. The main novelty of the proposed 
model is to distribute detectors in each host while the central engine manages 
the detectors to finalize decision about current abnormal behavior based on 
previous history. The main advantage of using AIS in distributed IDS is to 
benefited unique features of AIS such as self-learning, self-adaptation and self-
improvement since detector agents in each host is actively updated and 
synchronized with detector agents of other hosts in the network through the 
central engine of IDS. Using memory cells in each host decrease the intrusion 
detection time for previously seen attacks since it contains the characteristics of 
the know attacks. However to add the capability of self-improvement in AIS, 
memory cells of newly detected anomalies by each host will be generated and 
sent to all hosts to synchronize them. The results after simulation show that 
numbers of memory cell detectors are dynamically increased and the 
framework is able to learn and detects new types of anomalies. 

Previously, real time NIDS such as (Amini, Jalili & Shahriari 2006) used 
supervised machine learning algorithms to train their engine however the 
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acquisition of labeled data from security experts, or finding an attack-free data 
set are costly. In addition unsupervised NIDS such as (Casas, Mazel & 
Owezarski 2012) have high computation and it is not feasible to monitor the 
network online whereas real-time monitoring, processing and intrusion 
detection are now among the key features of NIDS. The proposed model in 
article PII which further developed in the article PV presents a new, real-time 
unsupervised NIDS, which detects zero-day attacks without any prior 
knowledge. Figure 10 shows the overall architecture of the implemented model.  
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FIGURE 10 Architecture of the NIDS [PV]. 

The implemented model used a dynamic and self-adaptable threshold to detect 
unexpected behavior in the network to decrease the computation time of the 
clustering process during the normal state of the network. Standardizing data 
input via a logarithm (log) and monitoring the different size of subnets through 
the threshold increase the performance of the NIDS. In addition, dividing the 
process of intrusion detection by multistage engines decreases the computation 
time, which leads to having real-time intrusion detection for fast-spreading 
network attacks. Since, in the first engine, the DBSCAN trains itself with the 
previous clean network traffic; we reached a 100 per cent detection rate with 
3.61 per cent of false alarms during our experiment. As a result of an increasing 
rate of DDOS attacks via the botnet, we implemented the second engine to trace 
the traffic of bots in order to detect the botmaster in centralized models under 
different protocols (HTTP and IRC). To evaluate the proposed model, we used 
two publicly available and well-known data sets to ensure the detection 
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process. Due to the unsupervised nature of the proposed model it will adapt to 
the structure of the data without training or previous knowledge. Since the data 
analyses of data will be done without any prior examples or attack signatures it 
may also detect zero-day (new) attacks. 

Article PIV presented a novel architecture for an intrusion detection 
system based on the artificial immune system. As shown in Figure 11 the innate 
immunity will be done online via unsupervised machine learning methods.  
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FIGURE 11 Proposed System Architecture [PIV]. 

In this multi-layered framework, the clustering engine labels the network traffic 
as self and non-self without any prior knowledge and previous training or 
knowledge about network flow profiles, thus acting as the first line of defense 
in AIS-based IDS to provide online innate immunity. The dynamic threshold 
has been used to facilitate the detection of abnormal network behaviors in the 
crusting engine. The output of clustering is used to feed the training data for the 
adaptive immune system as online and real-time training data. The primary 
detectors will be distributed to hosts in the network and provide primary 
immune response for the AIS based IDS. Based on the results the distributed 
structure for IDS is more efficient than the centralized mode. Suspected 
intrusions reported from hosts are analyzed and an optimized memory cell 
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detector is generated through a genetic algorithm process. Memory cells are 
attack specific detectors, which provide a secondary immune response. Detector 
life cycle rules update and eliminate weak or inefficient detectors to enhance the 
performance of detection. The main novelty of this framework is utilization of 
unsupervised machine learning methods in order to provide online and real-
time training for the adaptive immune system within the artificial immune 
system without prior knowledge. 

4.2.1 New unpublished results 

One of the future works proposed in article PV was to group users into 
different behavioral class. Real network contains traffic from different classes of 
users such as: normal users, busy users and servers.  In general the number of 
busy users and servers is smaller than  thus they may not form a cluster in 
DBSCAN. Since the proposed model in article PV considers all of the network 
behavior (in the clean traffic windows) as normal it will increase the acceptable 
distance  for DBSCAN by high value of  to include all of the points inside the 
nearest cluster. Clustering data with high value of acceptable distance increase 
false negative rate (FNR) in certain cases. To overcome this issue we will 
propose a new method which compares the previous behavior of outliers to 
distinguish normal high traffic users from intrusions. 

 Similar to the proposed model in article PV whenever the volume of 
network flows passes the threshold, the NIDS uses the DBSCAN to cluster the 
number of in-bounded and out-bounded network flows for each machine to 
find the attacker/s. During the training phase, the NIDS clusters the clean 
network traffic transmitted before the threshold raised the alarm in order to 
obtain the most accurate distance during the detection phase. Technically the 
normal users will form into clusters while the density of busy users or servers 
may not reach the required level. Nevertheless, since training phase uses the 
clean network traffic the proposed model will consider outliers as busy 
machines with normal profiles. 

Afterwards, to find the anomalous outliers which caused the high volume 
of network traffic, the detection engine clusters the suspicious network traffic 
window. The outliers IP addresses from detection phase will be compared to 
their previous profile. If the distance of current behaviors and previously seen 
behavior does not exceed the acceptable distance , the detection engine will 
mark it as normal high traffic machine. However if the new behavior of outlier 
IP exceed the distance it will consider the behavior of that machine as 
abnormal. It important to note that if the outlier IP addresses do not have any 
profile from the training phase, the detection engine will mark it as abnormal. 

To evaluate the new proposed model on detecting fast spreading attacks, 
we have used the same traffic sample as in article PV. Beside the DARPA traffic 
sample, we have tested our model on SSH Brute Force from ISCX. Since today 
most of the servers with SSH protocol limits number of user attempt, we have 
change the SSH Brute Force attack in ISCX to a distributed model which various 
number of bots participate in it. Figure 12 show the network’s behavior during 
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the attack. As shown in Figure 12 (A) the ratio of outbound flows to the 
threshold is below one since the number of attackers is high however in Figure 
12 (B) the threshold for inbounded traffic raise alarm since all of the traffic goes 
to the limited number of machines.      

 
(A) 

 
(B) 

FIGURE 12 Netwokrs Behavoiur During Distributed SSH Brute Force Attack. 

Figure 13 shows the self-training phase during distributed SSH Brute Force 
attack. As mentioned before the NIDS marks IP address of machines which 
were located inside the clusters as normal. However the IP address of outliers 
will be profiled as busy users or servers. As shown in figure 14 during the 
comparison phase all of the outliers will be compared to their previous history. 
If the distance does not exceed the threshold, NIDS will mark them as normal 
users (with high traffic). Otherwise if the machine exceeds its traffic abnormally 
the NIDS will mark it as the abnormal machine. Figure 15 shows the final 
decision of NIDS. 

 

FIGURE 13 Self-Training Phase During Distributed SSH Brute Force Attack. 
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FIGURE 14 Comparison Phase During Distributed SSH Brute Force Attack. 

 

FIGURE 15 Detection Phase During Distributed SSH Brute Force Attack. 

Table 2 shows the comparison of average performances of the new proposed 
model and article PV. To evaluate the performance of “different behavioral 
classes” feature in the new proposed model we have added traffic from busy 
users and servers during the occurrence of intrusion. Since the proposed model 
compares the behavior outliers to their previous history the overall 
performance was higher than the previous proposed model in article PV.  

TABLE 2 Performance Evaluation. 

 New proposed model Proposed model in article PV 

False positive rate 3.51% 4.53% 

True negative rate 96.49 95.47% 

Accuracy 98.35% 96.23% 

Recall 100% 95.37% 

Precision 97.83% 91.21% 



5 CONCLUSION 

Today, the occurrence of zero-day and complex attacks in high-speed networks 
is increasingly common due to the high number vulnerabilities in the cyber 
world. As a result, intrusions become more sophisticated and fast to 
detrimental the networks and hosts. Due to these reasons real-time monitoring, 
processing and intrusion detection are now among the key features of NIDS. 
Traditional types of intrusion detection systems such as signature base IDS are 
not able detect intrusions with new and complex strategies. Now days, 
automatic traffic analysis and anomaly intrusion detection became more 
efficient in field of network security however they suffer from high number of 
false alarms. In this dissertation, to tackle the above described problems several 
approaches have been applied. Due to unfeasibility of payloads checking in 
high-speed network, the proposed framework monitors network flows instead. 
Network flows contains the behavior of the network in higher extensive vision 
and shows the explicitness of the network data which results in faster and 
higher detection rate of network attacks. 

Among all type of anomaly detection methods unsupervised machine-
learning techniques are commonly applied in NIDS to detect unknown and 
complex attacks in the network without any prior knowledge. Unsupervised 
learning method suffers from two main drawbacks: high number of false alarm 
since it make the decision without any prior knowledge and high 
computational burden since it need to find the similarities and relation among 
all of the input data. To overcome computational burden we have applied 
automatic and adaptive threshold to minimize the required input data. In 
addition, to improve the accuracy of the clustering algorithm we have used the 
clean network traffic to train the engine. In this dissertation we also analyzed 
and compared the performance of centralized and decentralized AIS based 
NIDS.  Due to the distribution of process and parallel learning capability in 
decentralized NIDS we achieved to have better detection rate in our proposed 
model. At the end we have added the capability of unsupervised learning for 
distributed AIS based NIDS to achieve online learning without any prior 
knowledge.
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YHTEENVETO (FINNISH SUMMARY) 

Tämän päivän nopeissa tiedonsiirtoverkoissa monimutkaisten ja nollapäivä-
hyökkäysten yleisyys kasvaa kybermaailman haavoittuvuuksien suuren mää-
rän vuoksi. Tämän seurauksena järjestelmiin tunkeutumiset muuttuvat hienos-
tuneemmiksi ja nopeasti vahingollisiksi verkoille ja niiden laitteille. Täten reaa-
liaikainen monitorointi, prosessointi sekä tunkeilijan havainnointi ovat nykyään 
pääominaisuuksia verkkopohjaisissa tunkeilijan havaitsemisjärjestelmissä. Pe-
rinteiset tunkeilijan havaitsemisjärjestelmä, kuten allekirjoituspohjaiset tunkeili-
jan havaitsemisjärjestelmät, eivät kykene havaitsemaan uusia ja monimutkaisia 
strategioita omaavia tunkeutumisia. Tällä hetkellä verkkoturvallisuudessa au-
tomaattinen tietoliikenteen analysointi ja poikkeavien tunkeutumisten havain-
nointi ovat kehittyneet tehokkaammiksi, mutta ne kärsivät väärien hälytysten 
suuresta määrästä. Verkkopohjaisissa tunkeilijan havaitsemisjärjestelmissä käy-
tetyt yleisimmät poikkeavuuksien havaintomenetelmät, joilla pyritään havait-
semaan tuntemattomia ja monimutkaisia hyökkäyksiä, ovat ei-ohjattuja kone-
oppimistekniikoita. 
 
Tämä väitöskirja keskittyy pääosion verkkoliikenteen analysointiin poikkeavan 
liikenteen löytämiseksi reaaliajassa. Ehdotettu viitekehys koostuu verkkoliiken-
teen esikäsittelystä, poikkeamien havainnoimisesta sekä klusterointimenetel-
mistä. Esitetty viitekehys pystyy muodostamaan merkityksekkäitä raportteja 
etsittäessä todellisia haavoittuvuuksia tunnetusta datajoukosta. Ei-ohjatut op-
pimismenetelmät pystyvät mukauttamaan vaaditut ominaisuutensa verkon 
dynaamiseen käyttäytymiseen. Nopeissa tiedonsiirtoverkoissa pakettikohtainen 
tarkastaminen ei ole soveltuvaa, joten ehdotettu menetelmä havainnoi sen si-
jaan verkon pakettivirtoja. Pakettivirta sisältää verkon käyttäytymisen laajem-
massa näkymässä ja näyttää selkeästi verkon datan, mikä johtaa verkkohyök-
käysten nopeampaan ja luotettavampaan havaitsemiseen. Tämä tutkimus osoit-
taa että käyttämällä sopivaa datan esikäsittelyä sekä ei-ohjattuja datan ana-
lysointimenetelmiä on mahdollista havaita reaaliajassa nopeita ja monimutkai-
sia nollapäivänhyökkäyksiä. 
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Abstract— A Botnet is a network of compromised machines 

which are controlled by a person called botmaster via a typical 

Command and Control (C&C) structure. Besides malicious 

activity on infected host, bots are employed to deliver attacks 

against outside targets including phishing, Distributed Denial of 

Service (DDoS) attacks and spamming. Counter measures against 

Botnet phenomenon are usually formed based on passive traffic 

analysis at network level. This limits encountering Botnets in a 

proactive manner. In this paper, we proposed a real-time 

approach which not only detects Botnet traffic on the host, but 

also can filter it from outgoing traffic in order to suppress the 

Botnet. Our approach works by detecting Botnet communication 

patterns which belongs to a centralized C&C structure. The 

capability of bot detection by real-time processing of host-related 

data solely, distinguishes our work from other existing 

approaches.      

Keywords- Centralized C&C; Botnet; real-time; detection; 

Host-Based; 

I.  INTRODUCTION  

Botnet is a large group of compromised machines which 
are remotely controlled by a person or group of persons called 
botmaster. They are currently the biggest security threat to the 
Cyber world [1]. The main difference of Botnet and other kind 
of malwares is the presence of a Command and Control (C&C) 
mechanism through which botmaster issues commands to the 
compromised machines ( also called zombie) to employ them 
for various kind of attacks [26]. An attacker who also called 
BotHerder controls Bots through different protocols and 
structures. Based on this, Botnets C&C mechanisms are mainly 
categorized into centralized and decentralized. The early 
samples of Botnets were using centralized C&C structures with 
communication protocols like IRC and HTTP. Recently new 
type of bots has been emerged that are using decentralized 
structure as the C&C structure e.g. peer to peer communication 
protocols, though bots with centralized C&C models are still 
active and prevalent[1]. 

Botnet can cause many problems mainly include launching 
Distributed Denial of Service (DDOS) attacks against various 
web servers or service providers, sending spam e-mails to other 
hosts, hosting malicious phishing sites and using by botmaster 
for the purposes of click fraud. Besides centralized attacks 
against external targets, Botnets compromise the infected 

machine and usually install backdoors and various types of 
malware on their host. Current counter measures against Botnet 
are mainly focused on monitoring and analysis of passive 
network traffic to detect Botnet[30]. Botnet detection 
mechanisms monitor passive network traffic captured from 
network switches or routers, looking for suspicious behavior or 
signature patterns based on the similarities between network 
flows. Once a match found, detection mechanism issues a 
warning. To suppress the Botnet, command and control server 
which counts as a central point of communication between 
zombies and botmaster must be tracked and shut down. Current 
detection approaches mainly operate at the network level and 
formed based on passive network traffic analysis. 

 With powerful and advanced capabilities, it is very 
difficult for average users to avoid or prevent infection by 
Botnet malware. Based on this fact, infection is irresistible and 
that makes the role of Botnet detection approaches, which are 
operating at the host level more significant. Network based 
detection approaches do not resolve infected hosts or even 
notify them of infection. Moreover, with network based 
techniques it is impossible to trace Botnet executables on the 
infected machine and investigate zombies in order to capture 
evidence, which is helpful in studying Botnet behavior. 
Stopping Botnet by shutting down the command and control 
channel can solve the problem temporary but hosts will stay 
infected and compromised in the way that they can be 
exploited easily in future attacks. Moreover, botmasters usually 
use alternative C&C server addresses for their bots to set up a 
Botnet again. To improve previous works on the field of Botnet 
detection, a real-time detection algorithm is required, which be 
able to detect bots on the host to manage the disinfection 
process and filter out malicious traffic to suppress the Botnet.  

In this paper we proposed a novel host-based approach that 
recognizes a host infected by the bot based on analyzing the 
host inbound/outbound traffic. We process host network traffic 
to infer the existence of bot C&C communication and upon 
detection, malicious outgoing traffic can be filtered out 
actively. This forms a proactive approach which can stop bots 
before delivering their payload or taking part in attacks. 

The rest of the text is organized as follows. In section 2, we 
review the previous related work. In section 3, the proposed 
detection approach and its components is described and finally 
conclude in section 4.  
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II. RELATED WORK 

Various works have been done regarding detection of 
Botnet. There are mainly two major approaches to detect 
Botnet. One approach forms based on locating honeynets in the 
network and the other is based on monitoring and analysis of 
passive network traffic [30]. 

Anyhow, honey net detection approaches [24] are more 
useful to study Botnet characteristics rather than detection.  
Passive network traffic monitoring can be categorized into 
signature-based, anomaly-based, DNS-based and mining-based 
[27]. 

Signature based detection approaches look for matching 
predefined signatures in the network related data or host related 
data. Anomaly based approaches which are the majority of 
Botnet detection techniques, look for similar activities among 
captured netflows to detect an anomaly which can be the sign 
of Botnet existence. DNS based approaches try to detect the 
Botnet by analyzing DNS data which exchanged between bot 
and Command and Control (C&C) servers [30]. Like anomaly 
based approaches, these mechanisms also analyze captured 
network traffic passively and cannot detect bot in real-time 
manner. Mining-based approaches focus on processing log files 
to infer an abnormal behavior which is the sign of Botnet 
existence [9].  

Majority of previous works regarding Botnet detection and 
prevention, are operating at the network level. Only few works 
has been done to detect bots at the host level. Zeng et al. [29] 
in 2010, proposed a model which combined host-based and 
network-based methods together to detect Botnet, independent 
of the command and control (C&C) mechanisms used by 
Botnet. This approach applied host memory data and network 
flows to detect Botnet though, still performed detection 
passively.  

Strayer et al. [23] propose a detection approach which 
examines how characteristics such as bandwidth, packet 
timing, and burst duration determine the existence of Botnet 
command and control activity. Schiller et al. [22] in 2007 
suggested investigating the infected host by scrutinizing event 
and firewall logs to determine the payload and functions of the 
Bot. They also suggested looking for suspicious start-up 
processes so as to identify the location of the malware. Goebel 
and Holz [9] proposed Rishi in 2007. Rishi is primarily based 
on passive traffic monitoring for odd or suspicious IRC 
nicknames, IRC servers, and unusual server ports. They use n-
gram analysis and a scoring system to detect bots that use 
uncommon communication channels. 

Most researchers have proposed investigating Botnet at the 
network scope; anyhow, this neglects the importance and 
potential advantages of examining an infected host at the local 
scope. Obviously, network-based investigation forms based on 
communication protocol information obtained from Bot-
infected machines. This highlights the significance of host-
based investigation and the fact that these two approaches are 
in direct relevance.  

 

III. PROPOSED BOTNET DETECTION APPROACH AND 

COMPONENTS 

Our proposed detection approach is based on real-time 
analysis of host’s inbound/outbound traffic to infer existence of 
centralized Botnet C&C communication model. Figure 1 
illustrates architecture of the proposed detection system which 
comprises of two main components: Protocol Classifier and 
Communication Pattern Interpreter. The latter component 
consists of two components itself: IRC Part and HTTP Part. At 
the first step, the whole host outgoing/incoming traffic is 
redirected to the Protocol Classifier. This component separates 
IRC and HTTP packets from the rest of traffic and forwards it 
on to the next component. In Communication Pattern 
Interpreter, IRC Part is responsible for detecting IRC malicious 
traffic based on IRC bots communication model with C&C 
server. HTTP Part is also responsible to recognize HTTP-based 
Botnet C&C communication pattern based on Periodic 
Repeatability of messages. Output of Communication Pattern 
Interpreter is malicious traffic distinguished from normal traffic 
which can be filtered by means of a packet filtering firewall on 
the host.  

 

Figure 1.    Architecture overview of our proposed approach  
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A. Protocol Classifier 

Since our detection approach is formed based on 
characterization of bot’s C&C traffic, we need to separate 
traffic which is more likely used in C&C communication 
protocols at the first place. To manage that, the main function 
of Protocol Classifier is to separate IRC and HTTP (which are 
currently the most common protocols used in centralized C&C 
[28]) packets from the rest of traffic and forward them to 
Communication Pattern Interpreter component.  

To detect IRC traffic, we can inspect the contents of the 
packets to look for some predefined strings which are actually 
keywords in IRC protocol (defined in RFC1459). For this 
purpose, light payload inspection would be enough to look for 
specific IRC strings including NICK for client’s nickname, 
PASS for user’s password, USER for the username, JOIN for 
joining a channel, PRVIMSG for private messages, OPER for 
when a normal user wants to become the channel operator and 
MOTD which returns message of the day[21]. This method of 
detecting IRC traffic can be accomplished by using intrusion 
detection software like SNORT[35].  In some cases botmasters 
encrypt the IRC communication traffic to evade detection 
mechanisms which is not our aim here.   

To recognize HTTP traffic, we also inspect the early bytes 
of a packet looking for some patterns and keywords in an http 
request message. To detect HTTP traffic, we need to focus on 
the concepts of HTTP protocol. HTTP is a protocol which 
works on the basis of client-server model. According to this, a 
client initiates a connection and sends a HTTP Request 
message to an HTTP server (e.g. “get me the file 
‘website.html’”). The server then processes the client’s request 
and responds to it via an HTTP Response message (e.g. “here is 
the file” followed by the file’s contents). After that, the server 
closes the connection; make the HTTP a stateless protocol 
which does not maintains the connection information between 
transactions [33].  In order to characterize HTTP traffic on the 
host’s outgoing traffic, we focus on the HTTP method. Three 
main HTTP methods are “GET”, “POST” and “HEAD” [33]. 
Hence, all we need is to look for “GET”, “POST” or “HEAD” 
keywords in the contents of the packets. Like IRC traffic 
detection, this also can be done by inspecting the first few 
bytes of network packets. Upon recognition of HTTP packets, 
these flows are also forwarded to the Communication Pattern 
Interpreter for further processing.  

B. Communication Pattern Interpreter 

When communication between zombies and botmaster 
through C&C happens, certain patterns can be seen. Previous 
works regarding characterizing such patterns, mainly formed 
based on analysis of network flow characteristics related to 
group of hosts. Unlikely, our approach solely examines a host 
inbound/outbound traffic to determine such patterns. This gives 
the opportunity of detecting bots in a real-time manner and 
filtering the malicious traffic. 

Communication Pattern Interpreter constitutes the major 
component of our approach and is responsible for detecting 
bot’s malicious traffic by identifying Botnet C&C structure. It 
comprises of two modules for characterizing IRC and HTTP 
malicious traffic which belongs to bot. we first explain 

characteristics of a typical IRC and HTTP Command and 
Control structure and the way they differ from normal IRC and 
HTTP traffic. Then based on these model characteristics, we 
explain how IRC Part and HTTP Part operate.   

Gu et al.  [32] categorize centralized C&C models into two 
categories: “Pull” style and “Push” style, based on the way Bot 
receives command from botmaster. In a push style C&C 
model, bots are waiting to receive commands from botmaster 
during a persistent connection. IRC-based C&C is an example 
of this type in which bots are waiting in the channel for 
botmaster to issue a command. In the pull style C&C, 
botmaster set the commands within a file at a C&C server (e.g. 
a HTTP server) and  bots connect back to read the commands 
from this file. So in this style, there is no need for a persistent 
active connection between bots and botmaster. HTTP-based 
C&C is a distinct example of this style [32].  

C. IRC Part 

Based on our experiments during traffic analysis of various 
IRC bots (e.g. RBot, Agobot, etc), the communication life 
cycle of an IRC bot can be divided into two phases, as shown 
in Figure 2. Phase 1 indicates the time period before the bot 
joining an IRC channel and phase 2 is the time period after the 
bot joining a channel. As it can be seen in Figure 2, during 
phase 1 it is the bot who issues IRC messages. Though, after 
connecting to the IRC server and joining a channel, bot only 
receives commands from botmaster, i.e. botmaster is the 
initiator rather than the bot. In the case of no botmaster 
presents at the channel or no command issues, bot would stay 
dormant at the channel. This is a characteristic which is not 
seen in normal IRC chat message sequence (except for times 
packet errors happen which entails retransmission). 
Consequently, if a client sends no IRC message after joining a 
channel, it can be a bot.  

 

Figure 2.  Two phases of IRC bot communication life cycle 

We focus on detection of malicious IRC traffic based on 
this communication model. The key is to detect the transition 
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point between two phases. As it can be seen in Figure 2, two 
consecutive commands, issued from botmaster is a key to infer 
the transition point. On the infected host, this is interpreted as 
the last two consecutive incoming IRC packets, after which 
normal command-response model proceeds. These two 
consecutive commands may differ in various versions of IRC 
bots, although this deviation is slight. Normally, based on our 
experiments, in most IRC bots they are “JOIN” and “LOGIN” 
commands.  

Other experimental factors can be added to IRC Part 
module to increase the detection accuracy. Here we introduce a 
characteristic based on packets timing and the delay between 
issuing commands. Delay time (Td) is defined as a time frame 
between the time user or bot connects to server and time it tries 
to join a channel. That is to say a time frame between sending 
“Nick” command and “Join” command: 

Td=T(Nick) – T(Join) 

Since bots are automated programs, they join channel 
immediately after connecting to the server (they are running 
programs) while a real IRC user needs to use command line or 
graphical user interface in order to accomplish IRC commands 
(i.e. joining a channel). So the delay time for bot would be too 
short (less than a second) while for IRC normal user it takes at 
least few seconds. Based on several experiments, it has 
perceived that a threshold value can be assigned to Td and it is 
called “Tdh”. If “Td” exceeds “Tdh” it is the proof of normal 
IRC communication: 

If Td > Tdh Normal IRC communication 

If Td < Tdh Malicious IRC communication 

Analyzing Delay Time to detect IRC bots works properly in 
most cases at normal conditions, though it can be designed by 
bots to mimic human behavior. So we consider it a 
supplementary method rather than a standard approach.  

D. HTTP Part 

Figure 3 depicts a typical HTTP-based C&C 
communication pattern. As it can be seen, there is a regular 
periodic trend in times which bot connects back to the C&C 
server checking for commands. This repeatability for one 
specific flow (same source and destination port) does not take 
place in normal Http communication [33]. Although in some 
cases this periodical pattern is not seen in HTTP bot 
communications, it counts as a good characteristic to detect 
HTTP malicious traffic [32]. We use this characteristic in 
Periodic Repeatability Analyzer to distinguish between HTTP 
malicious and normal traffic.  

Lee et al. [33] in 2008 defined degree of periodic 
repeatability and repeatability standard deviation to describe 
relationship between HTTP hosts and HTTP servers. These 
two criterions can also be used for detecting HTTP malicious 
traffic of a Botnet.  The repeatability standard deviation 
demonstrates degree of periodic repeatability between HTTP 
clients and HTTP servers [33]. Based on periodic characteristic 
of HTTP bots in communication with C&C server, it is 
concluded that the degree of periodic repeatability of bot 

machines is quite lower than normal users. Degree of periodic 
repeatability of normal users is calculated highly because the 
intervals between pollings in normal users are not regular. 

 

Figure 3.  HTTP bot C&C traffic pattern 

Finally, it should be mentioned that in Botnets with several 
botmasters which bots can connect to them randomly, Periodic 
Repeatability criterion may not suffice to detect HTTP-based 
C&C structure.   

E. Real-Time Filtering  

By means of a packet filtering firewall on the host 
machines, we can manage filtering malicious traffic after 
detection, as long as our detection mechanism works in real-
time manner. Presence of filtering mechanism is optional and 
we can simply report the bot existence to the host without 
trying to filter out the bot traffic.  

We have implemented our detection approach within a 
packet filtering firewall for Windows XP machines. After 
testing it against various IRC bots including Rx bot, results 
showed that suspicious IRC packets have been filtered out.   

IV. CONCLUSION 

Botnets are new generation of sophisticated malwares 
which are more difficult to trace, detect and shut down, in 
comparison with other types of malwares. Few works has been 
done to actively detect and block Botnets traffic on the infected 
hosts. This feature, distinguishes our approach from the 
previous works done in the field of Botnet detection.  In this 
paper, we proposed an approach for online detection of Botnet 
traffic on the infected host. To do this, we inspect the host 
traffic for signs of Botnet C&C communication patterns. 
Although our work here is limited to centralized Botnet C&C 
models, a component for detection of peer to peer bots on the 
host also can be added to our detection mechanism. Since we 
solely use host related traffic, there would be no main 
challenge to recognize peer to peer C&C models as well. 
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Abstract— Previously, Network Intrusion Detection Systems 

(NIDS) detected intrusions by comparing the behaviour of the 

network to the pre-defined rules or pre-observed network 

traffic, which was expensive in terms of both cost and time.  

Unsupervised machine learning techniques have overcome 

these issues and can detect unknown and complex attacks 

within normal or encrypted communication without any prior 

knowledge. NIDS monitors bytes, packets and network flow to 

detect intrusions. It is nearly impossible to monitor the payload 

of all packets in a high-speed network. On the other hand, the 

content of packets does not have sufficient information to 

detect a complex attack. Since the rate of attacks within 

encrypted communication is increasing and the content of 

encrypted packets is not accessible to NIDS, it has been 

suggested to monitor network flows. As most network 

intrusions spread within the network very quickly, in this 

paper we will propose a new real-time unsupervised NIDS for 

detecting new and complex attacks within normal and 

encrypted communications. To achieve having a real-time 

NIDS, the proposed model should capture live network traffic 

from different sensors and analyse specific metrics such as 

number of bytes, packets, network flows, and the time 

explicitly and implicitly, of packets and network flows, in the 

different resolutions. The NIDS will flag the time slot as an 

anomaly if any of those metrics passes the threshold, and it will 

send the time slot to the first engine. The first engine clusters 

different layers and dimensions of the network’s behaviour and 

correlates the outliers to purge the intrusions from normal 

traffic. Detecting network attacks, which produce a huge 

amount of network traffic (e.g. DOS, DDOS, scanning) was the 

aim of proposing the first engine. Analysing statistics of 

network flows increases the feasibility of detecting intrusions 

within encrypted communications. The aim of proposing the 

second engine is to conduct a deeper analysis and correlate the 

traffic and behaviour of Bots (current attackers) during DDOS 

attacks to find the Bot-Master.  

Index Terms— NIDS, Unsupervised Intelligent Engine, 

Encrypted Network Traffic, Network Flows, Clustering 

I.INTRODUCTION 

Nowadays, because of increasing occurrences of network 

intrusions, NIDS has become an important element within 

networks. Generally NIDS monitors the behaviour of 

networks and detects attacks when an abnormality occurs. 

Network attacks can cause a big latency inside the network 

by producing a huge amount of network traffic; thus, having 

a real-time NIDS is also an important factor.   

Signature-based NIDSs monitor the behaviour of the 

network and compare it with the characteristics of known 

network attacks. The detection rate of known attacks in 

signature-based NIDS is high; however, it cannot detect 

zero-day attacks. Providing attack signatures consumes 

money and time, and with the increasing rate of zero-day 

attacks, using signature-based NIDS is not a safe solution. In 

anomaly-based detection techniques, the system will be 

trained by a sample of network traffic and adapted to the 

state of the network. After the training phase, the system will 

be suspicious of any abnormal behaviour that passes the 

criteria of the training sample. Using this method will 

increase the probability of detecting novel attacks; however, 

it makes lots of detection errors because of the difficulty of 

defining the normal state during training. Having fewer false 

alarms and an increased detection rate of complex attacks, 

especially in imbalanced network traffic, has become an 

important challenge in the design of detection techniques for 

NIDS. [1, 2] 

NIDS monitors the behaviour of networks by analysing 

bytes, packets or network flows. Based on our previous 

experiments and other researchers, monitoring network flows 

enhances the detection rate of complex attacks [1, 3, 4, 5, 6, 

7]. Analysing bytes or packets does not concede sufficient 

information about the current behaviour of machines within 

the network. Network flows store the important facts about 

the behaviour of the network, which is clearer for NIDS to 

analyse. On the other hand, according to [1], network flows 

require 0.1 per cent of storage to be saved compared to data 

in the form of packets. Summarising the network data in the 

form of network flow enhances the speed of processing, 

which results in fast attack detection, and makes NIDS 

feasible to work in real time. For instance, in high-speed 

networks with an average rate of ten gigabytes per second, it 

is impossible for NIDS to check the content of each packet in 

real time. Furthermore, detecting network intrusions in real 

time is an important factor for NIDS, which is why the use of 



 

network flows as the input for NIDS is suggested. According 

to [8]: “A flow is defined as a set of IP packets passing an 

observation point in the network during a certain time 

interval. All packets belonging to a particular flow have a set 

of common properties.”  

According to [9, 10, 11], with the growing number of 

attacks in encrypted communication, it has also become an 

important issue to detect these types of attack while a limited 

amount of information can be extracted from the encrypted 

traffic. Monitoring encrypted communication in the form of  

network flows enables the system to monitor the state and 

transitions of communication to detect attacks such as DOS 

or brute force, in addition to the types of attack that produce 

large network traffic in encrypted communication. 

Currently, detecting complex attacks is one of the issues 

for NIDS. Since probabilistic approaches to NIDS rely only 

on statistics and do not correlate alarms, the rate of false 

alarms increases during complex attacks. On the other hand, 

scenario-based NIDS need to observe specific steps to detect 

attacks, and since complex attacks do not follow constant 

steps it is not suggested to apply it to NIDS [12]. According 

to [13], machine learning techniques have been used in 

anomaly-based NIDS and enhanced the performance of 

attack detection. Self-learning abilities in machine learning 

techniques improve the detection rate of new, complex and 

encrypted intrusions [14, 15].  

Supervised machine learning algorithms need to be 

trained by a labelled data set in order to produce functions for 

distinguishing the normal and abnormal behaviour of the 

network. Semi-supervised machine learning algorithms can 

be trained by an attack-free unlabelled data set to formulate 

the normal behaviour of the network, or by a small labelled 

data set, which requires less effort from security experts. 

Nevertheless, the acquisition of labelled data from security 

experts, or finding an attack-free data set for both supervised 

and semi-supervised techniques are costly. Unsupervised 

machine learning techniques formulate the invisible structure 

of an unlabelled data set without any supervision. Clustering 

algorithms put objects based on their similarities into a group 

or groups, called clusters. Clustering algorithms have been 

used for unsupervised NIDS to classify the behaviour of the 

network and distinguish the abnormal behaviour of the 

network from normal traffic. [16, 17] 

In this paper we propose a new real-time unsupervised 

NIDS, which can work in normal or encrypted 

communications by monitoring the behaviour of network 

flows in two different window sizes and detect attacks by 

correlating outliers from the multiple clusters. The first 

engine has the ability to detect different types of intrusion in 

real-time, such as DOS, DDOS, scanning or any other type 

of network attack that produces a huge amount of network 

traffic. At the same time, the characteristics of encrypted 

network flows will be analysed in order to detect intrusions 

within encrypted traffic. Based on our previous works [18, 

19, 20, 21] and other researchers [22, 23], detecting Botnet 

attacks through checking the network flow only (without 

checking the payload of the packet) takes longer and, 

because of the complex structure of Botnet attacks, the NIDS 

needs more time to observe sufficient information. The 

second engine correlates the traffic of attackers (while the 

victim is under distributed attack) to find the similarities 

inside previous communications to find the eventual Bot-

Master. 

II.RELATED WORKS 

In [24] they observed the behaviours of the network by 

monitoring and analysing the network flows. Using network 

flows as input for the proposed solution reduces the 

computation complexity and requires fewer resources. On the 

other hand, they have improved the detection rate and 

decreased false alarms compared to the previous solutions, 

which analyse packets as the input for NIDS. Several 

solutions applied sampling to decrease the computation time 

for NIDS [1]; however, sampling network traffic based on 

random selection increases the probability of losing 

important data, which leads the NIDS to produce a high 

false-negative error rate.  

Multi-stage engines have been applied to NIDS to 

improve the detection rate of attack within the network [12, 

25]. Analysing the behaviors of the network in several phases 

filters the unrequired data, improves the quality of input for 

NIDS, highlights the suspicious behaviour of the network 

and decreases the computation time for intelligent engines. In 

[25] they proposed multi-stage engines to filter suspicious 

network flows in the first stage and to send them for further 

analyses in the second stage. The proposed solution was not 

applicable for high-speed networks as the window size of the 

first engine was only 60 seconds and it could store and 

analyse 10 network flows at the same time.  

Because of cost and time-consuming solutions for 

creating the attack signature of misuse-based NIDSs or 

traffic sample for anomaly-based NIDSs, several researchers 

applied unsupervised machine learning algorithms to NIDS. 

In [26] they proposed a real-time unsupervised NIDS to 

detect known and unknown network attacks using neural 

networks. They applied several neural networks to improve 

the detection rate of intrusions. In [27] they also proposed an 

unsupervised NIDS, which uses different clustering 

algorithms with a high detection rate.  

Several solutions were proposed in [9] to detect 

intrusions inside encrypted communications. As suggested in 

[9] and proposed in [10, 11], clustering algorithms allow the 

NIDS to distinguish the behaviour of networks based on 

statistics. Analysing network flows provides sufficient 

information to detect intrusion within encrypted 

communications. Clustering network flows is the feasible 

solution, for encrypted communication while the payloads of 

packets is not accessible to the NIDS. 

There is a specific behavioural structure in 

communications between the Bot-Master and Bots in Botnet 

attacks. Based on our previous research [21] and others [22, 

23], Botnet attacks can be detected by finding the similarities 

between Bots and the Bot-Master. For instance, Bots 

regularly ping their Bot-Master to report their current status. 

Analysing and clustering the behaviour of Bots highlights 

those similarities (between other Bots) and also uniqueness 

(compared to other machines in the network). 



III.PROPOSED SOLUTION

One of the main goals in this proposed solution is to 

design a real-time NIDS. To achieve this goal, several packet 

sniffers should be installed inside the network to aggregate 

the traffic and send it to the NIDS.  

Figure 1 shows the overall architecture of the proposed 

NIDS. After traffic aggregation, all of the duplicated packets 

will be filtered and synchronised based on their time stamp. 

Special features from the network’s behaviour (based on 

Table 1) will be sent to the first engine for further analyses; 

in the meantime, the past hour of network traffic is stored in 

the database to increase the accessibility of the second engine 

to the previous actions inside the network, while the system 

needs to trace the Bot-Master during Botnet attacks. As 

explained below, the main reason for proposing the first 

engine is to detect intrusions with a small windows size and 

the second engine for detecting Botnet attacks. 
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Figure 1. High-level structure of the NIDS 

a) First engine: 

Network attacks produce a huge amount of traffic. 
Analysing the volume of three different metrics such as 
bytes, packets and network flows can highlight suspicious 
activity. We have applied network change measurement 
formula, which works based on time-series analyses to 
monitor those features [28]. 

As mentioned in [28] this mechanism can monitor one 

million records per second. It is a fast and reliable solution to 

check the behaviour of the network and it can detect any 

small changes in real time. The proposed mechanism is 

unsupervised (does not need any assumption) and uses less 

memory than previous solutions. If any of the features in 

Table 1 passes the threshold of network change measurement 

formula, the system will flag that specific time slot as an 

anomaly.  

As shown in Table 1, the network features will be 

analysed in four different resolutions: the whole network 

traffic and three small subnets (/0, /8, /16 and /24). High-

speed networks have vast amounts of traffic and there is a 

significant possibility of losing the signs of network attacks. 

According to [27], network changes will be more visible 

while the NIDS monitors the network’s behaviour in small 

resolution and decreases the probability of fading of attacks 

in normal traffic. On the other hand, according to [26], due to 

having an increased rate of DOS attacks (or any other type of 

network attack) with spoofed IP addresses, the direct use of 

IP addresses is not suitable and will increase the rate of false-

negative alarms. 

Apart from monitoring and analysing the volume of 
bytes, packets and network flows in different resolutions, it is 
also suggested to monitor the time implicitly of packets and 
network flows in small resolution. In [26] the detection rate 
of intrusions was enhanced by 2 per cent, while the system 
examines the traffic by time implicitly of the network 
element. Since network attacks produce a vast amount of 
packets or network flows, the rate of time difference between 
each packet (RTDP) and network flow (RTDF) will increase 
significantly and monitoring these parameters will improve 
the detection rate.  

TABLE 1 –  MONITORED FEATURES  

Resolution Feature 

/0, /8, /16, /24 Number of in-bounded byte  

/0, /8, /16, /24 Number of out-bounded byte  

/0, /8, /16, /24 Number of in-bounded packet  

/0, /8, /16, /24 Number of out-bounded packet  

/0, /8, /16, /24 Number of in-bounded network flow  

/0, /8, /16, /24 Number of out-bounded network flow  

/24 Rate of Time Difference between each Packet (RTDP)  

 

 

/24 Rate of Time Difference between each Flow (RTDF) 
 

 

 

 

While any feature from Table 1 passes the threshold of 
network change measurement mechanism, it will flag that 
time slot as an anomaly. Then the system will extract more 
information from the packets to finalise the structure of the 
network flow. As Table 2 shows, several features will be 
selected to create the network flow based on the protocol of 
the communication (IP, TCP, UDP and ICMP). According to 
[29], it is suggested to define the default value of inactive 
network flow as 15 seconds and the default value of active 
timeout as 30 minutes. Extracting all the information from 



packets and converting it into network flows takes resources 
(time and process). Extracting information to complete the 
structure of the network flow after network change 
measurement mechanism decreases the computation process 
while the network is not under attack.  

While the NIDS detects an anomaly-flagged time slot, it 
will cluster the traffic to distinguish normal traffic from 
suspicious actions. Clustering algorithms do not require any 
prior knowledge and they can work unsupervised. However, 
each clustering algorithm has its own strengths and 
limitations and it is impossible to find one suitable algorithm 
for detecting all types of intrusions within the network. To 
overcome this issue we have applied multi-clustering 
algorithms to enhance the rate of detection and decrease the 
error rate. 

During attack, several features of network flows (Table 
2) should be clustered. Clustering high-dimensional data is 
not suggested since the computation process will be so 
complex and takes a long time to process. To resolve this 
problem, high-dimensional data can be divided into smaller 
dimensions by Sub-Space clustering algorithms. Figure 2 
shows an example of Sub-Space clustering, which divides 
the three-dimensional data set into 3 two-dimensional data 
sets.  

TABLE 2 – NETWORK FLOW SPECIFICATION FOR EACH TYPE OF PACKET 

Packets 

Protocol 

Features 

IP Source IP Address, Destination IP Address, Time of the 

First Packet, Time of the Last Packet, Duration  

TCP Source Port Number, Destination Port Number, Number 

of Packets, Number of SYN Packet, Number of SYN-

ACK packet, Number of RST Packet, Number of RST-
ACK Packet, Number of FIN-ACK Packet, Average Size 

of Packet from Source, Average Size of Packet from 

Destination, Biggest Packet Size, Smallest Packet Size, 
Time of Last packet from Source, Time of last Packet 

From Destination, Average latency of packets from 

Source,  Average latency of packets from Destination 

UDP Source Port Number, Destination Port Number, Number 

of Packets, Average Packet Size, Biggest Packet Size, 

Smallest Packet Size 

ICMP Average Packet Size from Source, Average Packet Size 
from Destination, Biggest Packet Size, Smallest Packet 

Size, #Eco Request, #Eco Reply 

 

The next stage is to cluster all the two-dimensional data 
(from an anomaly-flagged time slot) with DBSCAN 
(density-based spatial clustering of applications with noise). 
DBSCAN [30] is a powerful density-based clustering 
algorithm, which can create clusters in any arbitrary shapes 
and sizes. DBSCAN will cluster the events to distinguish the 
normal traffic from suspicious actions and it will designate 
the outliers. 

DBSCAN works with two important parameters: 
minimum size of cluster ( ); and acceptable distance 
between each point ( ). The stated solution in [27] sets ‘ ’ as 
5 per cent of the network flows (number of network flows 
during the attack) and ‘ ’ as the average distance (Euclidean 
distance) between 10 per cent of network flows (randomly 
selected) during the attack (from the anomaly-flagged time 
slot). As the detection rate in their proposed model is so high 
we decided to use the same amount of information; however, 
setting the required parameters for DBSCAN (‘ ’, ‘ ’) from 

the anomaly-flagged time slot is not suggested. According to 
[31], the Mahalanobis distance considers the density of 
points for measuring the distance between points, whoever, It 
is suggested to use the Mahalanobis distance while the 
system needs to set ‘ ’ for the DBSCAN. Using the 
Mahalanobis distance for DBSCAN enhances the accuracy 
rate of clusters. 

 

 

 

 

Clearly, during an attack, the network is loaded with a 
huge amount of objects, which belong to the intrusion 
(packets and network flows). Sampling data to set the 
parameters of the intelligent engine from the anomaly-
flagged time slot decreases the probability of assigning an 
accurate value for those parameters, which leads the system 
to generate a high number of false alarms and a decreased 
detection rate.  

As the proposed model saves the past hour of network 
traffic, it is possible to effectuate the sampling process from 
the previous time slot (the time slot before the anomaly-
flagged time slot). The NIDS will set ‘ ’ by counting 5 per 
cent of network flows and ‘ ’ by calculating the Mahalanobis 
distance between 10 per cent of network flows from attack-
free time slot. As the density rate of the network’s behaviour 
does not follow any specific rule, it is important to consider 
this factor while the system needs to measure distances 
between elements within the network traffic.  

While the features inside Table 2 are clustered by 
DBSCAN, the outliers will be marked as suspicious 
elements. The final step is to correlate all of the suspicious 
network flows to highlight the similarities and repost it to 
administrator to identify the type of attack.  

Most of the proposed models (for instance [27]) check 
the number of SYN packets and label the intrusion as ‘SYN 
flood attack’ whenever the rate of SYN packets becomes 
high. However, according to [24] it is more accurate to find 
the current abnormal situation of TCP and ICMP connections 
using the features in Table 3. Comparison of the features in 
Table 3 from previous attack-free time slot and suspicious 
time slot will generate more accurate and clearer report to 
administrator for identifying the attacks. For instance, while 
the number of SYN packets is high and labelled as outlier 
during clustering, the system will calculate the rate of AHS 
in normal and anomaly-flagged network traffic. Whenever 
the differences between AHS rate in normal and anomaly-

Figure 2. Three-dimensional Data Set divided into 3 Two-Dimensional 
Data Sets by Sub-Space Clustering Algorithem (A,B,C) 



 

flagged time slot becomes high, the system will suggest high 
probability of SYN flood attack to administrator. 

TABLE 3 –  MONITORED FEATURES  

Resolution Feature 

/0 

Rate of Accepted Hand Shake (AHS) 

 

 

Rate of Syn-Ack Arrival (SAA) 

 

 

Rate of Non-Ack Arrival (NAA) 
 

 

Rate of Successful Closed Connection (SCC) 
 

 

Rate of ICMP-Echo-Request to all of the Packets (ICP) 

Rate of ICMP-Echo-Reply to all of the Packets (IRP) 

 

Clustering the different features of network flow 
enhances the detection rate of intrusions within encrypted 
communications. For instance, as mentioned in [11], 
encryption does not make any significant changes in the size, 
number and arrival time of packets. Clustering the behaviour 
of the network (encrypted and normal traffic) allows the 
NIDS to detect any significant changes in the network and it 
can correlate evidence to identify the attack type. 

b) Second engine: 

Whenever the first engine identifies DDOS attack, it will 
send the details of the attackers to the second engine. The 
second engine is responsible for clustering the behaviour of 
attackers and finding similarities in the previous 
communication in order to find the potential Bot-Master. 

As proposed in [22, 23], one of the suitable solutions for 
finding the Bot-Master is to aggregate the traffic of Bots and 
correlate their communication before the distributed attack 
(DDOS, spam senders or other distributed types of attack) to 
determine the similarities. The Bot-Master communicates 
with the Bots in a particular way. For instance, the Bot-
Master will define a rule for Bots to send Ping requests to 
notify the Bot-Master about their current status. Clustering 
the previous traffic of current attackers allows the NIDS to 
find the similarities in their communication and increases the 
probability of detecting the Bot-Master.  

Based on our previous research [21] and others [23], one 
of the common methods of the Bot-Master and Bots is to use 
IRC protocol for their communication. In normal 
communication the time differences between IRC requests 
and replies is several seconds, while during a Botnet attack 
Bots reply to the request of the Bot-Master extremely 
quickly. Humans (normal users) need to open interface 
programs to work with IRC, and their response time is great 
while they are communicating with a server (e.g. entering 
simple commands by a normal user through the keyboard 
takes at least 2 or 3 seconds). Instead, the automated 
program, which is installed on Bot, will reply to the request 
of the Bot-Master in milliseconds. Clustering the response 

time of Bots and comparing it with the average length of 
response time in normal traffic will highlight the differences.  

During distributed attacks, whenever the second engine 
finds similarities from the previous communication of Bots 
with any particular machines (Bot-Master), the system will 
generate a report and send it to the administrator.  

IV.CONCLUSIONS AND FUTURE WORKS 

The main goal of the proposed technique is to have real-
time and unsupervised NIDS. We have found the weaknesses 
and limitations of current unsupervised NIDS (for instance 
[27]) and apply new features (calculating the Mahalanobis 
distance for DBSCAN, Botnet detection engine etc.) to 
enhance the detection rate of network intrusions. To decrease 
the computation burden, the system will monitor the volume 
of traffic. In the event of facing significant changes in the 
volume of network traffic (which can be caused by network 
attacks), the network measurement formula will trigger the 
system to start the detection process. Dividing the process of 
detection using multi-stage engines decreases the load of the 
computation process. Clustering network traffic distinguishes 
normal traffic from outliers and detects attacks inside normal 
or encrypted communications. The first engine will detect 
attacks using a small attack-window size, such as DOS, 
DDOS and Scanning. It has been discovered [21, 22, 23] that 
the Bot-Master communicates with Bots in a same way. 
During distributed attacks (such as DDOS) the second engine 
will cluster and merge the previous actions of distributed 
attackers (suspicious Bots) to find the similarities of their 
previous connections to detect the suspicious Bot-Master.  

We will implement our proposed model and test it with 

NSL-KDD [32] and ISCX [33] traffic sample to demonstrate 

the improved rate of intrusion detection on different types of 

network attacks such as DOS, DDOS, Botnet and etc. In the 

meanwhile we will create several networks (and sub 

networks) in a simulated environment, such as NS3 

(Network Simulator 3) and connect it to public network and 

install our proposed model on the gateway. Afterward, we 

will simulate different types of network attacks to check and 

demonstrate the realtimeness of the proposed model. We are 

also undertaking research in order to propose a dynamic self-

tuning mechanism to suggest a more optimal size of ‘ ’ and 

‘ ’ for the DBSCAN clustering algorithm in order to increase 

the rate of intrusion detection.  
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