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Abstract. Systems which simulate human visual attention are suited to
quickly find regions of interest in images and are an interesting prepro-
cessing method for a variety of applications. However, the scale-invariant
computation of features in several feature dimensions is still too time con-
suming to be applied to video streams at frame rate which is necessary
for many practical applications. As a consequence, current implementa-
tions of attention systems often make compromises between the accuracy
and speed of computing a focus of attention in order to reduce the com-
putation time. In this paper, we present a method for achieving fast,
real-time capable system performance with high accuracy. The method
involves smart feature computation techniques based on integral images.
An experimental validation of the speed gain of our attention system VO-
CUS is provided, too. The real-time capability of the optimized VOCUS
system has already been demonstrated in robotic applications.

1 Introduction

Computational attention systems have gained a lot of interest during the last
years [14, 7, 10, 2]. Similar to the human visual system, they detect regions of
interest in images: by “directing attention” to these regions, they restrict further
processing to sub-regions of the image. Such guiding mechanisms are urgently
needed, since the amount of information available in an image is so large that
even the most performant computer cannot carry out exhaustive search on the
data. This is eloquently explained in the work by Tsotsos [12, 13]: He proves
that unbounded visual search (no target is given or it cannot be used to optimize
search) is NP-complete1.

Computational attention systems compute different features like intensity,
color, and orientations in parallel to detect feature dependent saliencies. The
saliency of a region is high when it has both a strong contrast to the environment
and a high uniqueness, that means, the region differs considerably from the rest

1 Problems that are NP-complete belong to the hardest ones in computer science. No
polynomial algorithm is known for this class of problems and they are expected to
require exponential time in the worst case [5].



of the image. Imagine one red and many blue balls on grass; the red ball has
a higher saliency than the blue ones, because the uniqueness value is higher.
Finally, the feature dependent saliencies are fused in a single saliency map which
highlights regions of interest.

Compared to common interest region detectors like SIFT features [8] or Har-
ris corners [9], these biologically motivated attention systems have several ad-
vantages. First, they are not restricted to a single feature dimension like for
example corner or line features but consider several dimensions in parallel. This
makes them more general and applicable to different environments. The weight-
ing by uniqueness provides an intelligent way to fuse the feature dimensions by
highlighting features which are most discriminative to the surrounding. Another
advantage is that attention systems detect a limited amount of features in an
image, usually between 5 and 20. This is in contrast to for example corner de-
tectors which find thousands of features in texture-rich images. In applications
like structure from motion detection and visual SLAM (Simultaneous Localiza-
tion and Mapping) it is important to restrict processing to a limited amount
of features to meet real-time constraints. Finally, the discriminativity of the
attentional features is an important advantage for feature matching: whereas
similar corners in texture-rich environments often can not be distinguished, the
attention system picks especially those regions which are unique and thus better
suited for matching.

Although very useful for the detection of regions of interest, current attention
systems applied to video streams usually do not fulfill real-time constraints. The
reason are time consuming feature computations on several scales and feature
dimensions. Especially for applications on mobile robots, real-time performance
is essential. Furthermore, when used as a pre-processing method for object recog-
nition, it is consequently essential to be faster than the recognizer. Especially
for very fast classifiers, this can be a challenging task.

However, there have been some approaches to speed up attention systems.
Some groups utilized the parallel structure of the models: in [6], several CPU’s
share the computation of the feature maps and in [10], a dedicated hardware
parallelizes the computations. On the other hand, the dependence on a special
hardware makes a system less flexible. Especially for research purposes, it is
important that a system can be implemented easily, adapted flexibly, and dis-
tributed to different platforms without additional hardware costs. A more flexible
software solution to speed up the computations is realized in one of the best-
known attention systems available: the Neuromorphic Vision Toolkit (NVT) of
the group around Itti [7]. The computationally most expensive part, the feature
computations, is realized with an approximation which trades off speed versus
accuracy: instead of applying linear filters to each pyramid level, center-surround
features are computed as differences between different pyramid levels (cf. sec. 3).
In earlier versions of our attention system VOCUS, we assigned priority to ac-
curacy, accepting a slower computation time [2], but for current applications in
robotics we needed real-time performance.



In this paper, we present a method for obtaining a fast, real-time capable
attention system with high accuracy. This is done by performing smart fea-
ture computation techniques based on integral images. This technique, origi-
nally coming from the graphics community [1], has entered the computer vision
area only recently [15]. Surprisingly, it has until now not yet entered the field
of computational attention. The feature computations based on integral images
are easily implementable and yield the same results as a filter-based approach
as long as rectangular filters are considered. By applying these techniques to
VOCUS, the speed of the system increases by a factor of 10. With a processing
time of several milliseconds, VOCUS is capable of real-time performance. This
was demonstrated in a visual SLAM scenario for mobile robotics [4].

We start by introducing our visual attention system VOCUS (sec. 2). Next
follows the main part of the paper: we describe the integral images and how
they are integrated into VOCUS to speed up the processing (sec. 3). In sec. 4
we present the results, and, finally, sec. 5 concludes the paper.

2 The Visual Attention System VOCUS

The visual attention system VOCUS (Visual Object detection with a CompUta-
tional attention System) which used in this work is motivated from the human
visual system and detects salient regions in images [2, 3]. VOCUS differs from
most other attention systems by the ability to consider target knowledge (top-
down information) to enable goal-directed search. It consists of a bottom-up
and a top-down part; global saliency is determined from both cues (cf. Fig. 1).
However, the optimizations proposed in this paper work on the bottom-up part
and are therefore applicable to most current attention systems.

The structure of VOCUS’ bottom-up part is based on one of the standard
attention systems, the Neuromorphic Vision Toolkit (NVT) by Itti et al. [7]
with some optimizations [2]. It detects salient image regions by computing image
contrasts and uniqueness of a feature. For each of the features intensity, color,
and orientation, we first compute an image pyramid with 5 layers. From the
coarsest three levels of the pyramids, scale maps are computed. These represent
saliencies on different scales for different feature types (like red, horizontal, etc.).
The scale maps are fused into feature maps representing different feature types
and these again are combined to conspicuity maps, one for each feature. Finally,
the conspicuity maps are fused to a single saliency map, with the degree of
brightness proportional to the degree of saliency. Some of the computed maps
are displayed in Fig. 2.

The intensity and the color scale maps are created by center-surround mech-

anisms. These are inspired by the ganglion cells in the visual receptive fields
of the human visual system, which respond to intensity contrasts between a
center region and its surround. The cells are divided into two types: on-center
cells respond excitatorily to light at the center and inhibitorily to light at the
surround, whereas off-center cells respond inhibitorily to light at the center and
excitatorily to light at the surround [11]. Accordingly, we determine two feature



Fig. 1. The visual attention system VOCUS

types for intensity: the on-center difference responding strongly to bright regions
on a dark background, and the off-center difference responding strongly to dark
regions on a bright background. For two modes i ε {(on), (off)}, three levels s, and
two surround sizes σ, this yields 12 intensity scale maps I ′′i,s,σ. Similarly, we
compute 24 color scale maps C ′′

γ,s,σ, with γ denoting the colors red, green, blue,
and yellow. The 12 orientation scale maps O′′

θ,s, with θ ε {0 ◦, 45 ◦, 90 ◦, 135 ◦}, are
determined with Gabor filters (details on the feature computations in [2, 3]).

The center-surround mechanisms are the most important part in this paper.
They are most time consuming and therefore we apply the integral images here
to achieve a speed-up. The details are explained in the next section.

Next, the scale maps are summed up for each feature type using across-

scale addition: first, all maps are resized to scale s2 whereby resizing scale si to



(a) (b) I (c) C (d) O (e) S

Fig. 2. Original image (a), conspicuity maps for intensity (b), color (c), and orienta-
tion (d), and the saliency map Sbu (e)

scale si−1 is done by bilinear interpolation. After resizing, the maps are added
up pixel by pixel. This yields 2 intensity maps I ′i, 4 orientation maps O′

θ and
4 color maps C ′

γ . Next, we use a weighted sum to create 3 conspicuity maps
I =

∑
i W(I ′i), C =

∑
γ W(C ′

γ), and O =
∑

θ W(O′

θ). These are finally fused to
get the saliency map Sbu = W(I) + W(O) + W(C).

The weighting function W which is used to fuse the feature and conspicuity
maps is called uniqueness weight and is maybe the most important part of com-
putational attention systems: it emphasizes “important” maps, i.e. those with
few peaks, enabling the detection of pop-outs. W, applied to a feature map X, is
defined as W(X) = X/

√
m, where m is the number of local maxima that exceed

a threshold. As a result of the weighting, the most salient region in the table
soccer image in Fig. 2 is the ball, because it sticks out in the intensity channel.

In top-down mode, the system aims to detect a target, i.e., input to the
system is the image and some target information, provided as a feature vector v.
This vector is learned from a region which is provided manually or automatically.
In search mode, the system multiplies the feature and conspicuity maps with the
weights of v. The resulting maps are summed up, yielding the top-down saliency

map Std. Finally, Sbu and Std are combined by: S = (1− t) ∗Sbu + t ∗Std, where
t determines the contributions of bottom-up and top-down (details in [2]).

3 Fast Feature Computation using Integral Images

The most time consuming part in VOCUS are the feature computations, since
filters of different sizes are applied to several layers of the image pyramids. As
mentioned earlier, Itti et al. [7] use an approximation to achieve faster feature
computations: instead of applying linear filters to each pyramid level, center-
surround features are computed as differences between pyramid levels: the center
is a pixel at scale c ∈ {2, 3, 4} and the surround is the corresponding pixel at
scale s = c+ δ, with δ ∈ {3, 4}. As a result, c is usually not exactly in the center
of the surrounding region s, but is one of the pixels in a squared region. This
leads to transition effects at the borders of the squares as illustrated in Fig. 3),
left.



(a) Intensity map of NVT (b) Intensity map of VOCUS

Fig. 3. Two intensity maps of a breakfast table scene, computed by the NVT [7] (left)
and by our system VOCUS (right). The square-textured structure in the left image
resulting from taking the difference between two scales can be seen clearly, the right
image shows a more accurate solution.

In VOCUS, we attached more importance to the accuracy of the feature
computations, therefore we computed the features with rectangular filters which
considered the exact surrounding region. The result is shown in Fig. 3), right.
Even more accurate were circular filters but since we found no major difference
in quality, we used the simpler rectangular version. Although more accurate,
the filter computations slowed down the system considerably, since the time
complexity depends on the filter size which was up to 15 × 15 pixels. In the
following, we describe how a fast computation, independent on the filter size,
can be achieved without losing any accuracy in comparison to the common linear
filter approach.

The fast feature computations are achieved with integral images [15], also
known as summed area tables [1]. The advantage of an integral image is that
when it is once created, the sum and mean of the pixel values of an area of
arbitrary size can be computed in constant time. An integral image I is an
intermediate representation for the image and contains the sum of gray scale
pixel values of image N with height y and width x, i.e.,

I(x, y) =

x∑

x′=0

y∑

y′=0

N(x′, y′). (1)

A visualization is depicted in Fig. 4, left. The integral image is computed recur-
sively by the formula:

I(x, y) = I(x, y − 1) + I(x − 1, y) + N(x, y) − I(x − 1, y − 1) (2)

with I(−1, y) = I(x,−1) = I(−1,−1) = 0. The computation requires only one
scan over the input data. This intermediate representation I(x, y) allows the
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Fig. 4. Left: The integral image contains at I(x, y) the sum of the pixel values in the
shaded region. Right: the computation of the average value in the shaded region is
based on four operations on the four depicted rectangles according to eq. 3.

computation of a rectangle feature value at (x, y) with height h and width w
using four references (see Fig. 4 (right)):

F (x, y, h, w) = I(x + w, y + h) − I(x, y + h) (3)

−I(x + w, y) + I(x, y).

In VOCUS, we apply integral images for the features intensity and color,
since here we can replace the rectangular center-surround computations with-
out losing any information. It is also possible to use them for the orientation
feature, but since these are realized by Gabor filters, rectangular features would
only achieve approximate results. We leave an evaluation of the quality of this
approximation and the decision whether the loss is acceptable to future work.
Here we concentrate on changes which do not change the system behaviour.

We compute respectively one integral image for the scales 2 – 4 of the intensity
and color image pyramids. This was a solution which enabled to keep the main
structure of the system. In a future redesign of the system, we consider to replace
the image pyramids by integral images, since the feature computation across
scales can also be performed on a single integral image.

The central element of the feature computation in VOCUS is the center-
surround difference algorithm. It computes the difference between a pixel value
and its surrounding area of a certain radius r. The on-off difference highlights
bright pixels on dark background whereas the off-on difference highlights dark
pixels on bright background.

Before optimizing, the surrounding area σ was directly computed as the mean
of the pixel values by summing up the values and dividing by the number of
pixels. The time-consuming part, the summing up, is replaced now by inte-
gral images: the surrounding area σ can be computed for an arbitrary radius r
straightforward by only slightly modifying eq. 3:

σ(x, y) = I(x + r, y + r) + I(x − r, y − r) − (4)

I(x + r, y − r) − I(x − r, y + r) − N(x, y).



This is basically the same equation as eq. 3, the only differences are that the
reference pixel (x, y) is now in the center of the region and the value of the center
pixel N(x, y) is subtracted. The on-off difference is then just the difference of
the current pixel and the mean pixel value in the surround:

on-off-difference(x, y) = N(x, y) − σ(x, y)

s
(5)

where s = (2r+1)2−1 is the number of pixels inside the surround. The off-on
difference can be computed analogous. Both, on-off as well as off-on differences,
are used to compute the intensity feature maps. For the color maps, only the
on-off difference is needed, because the opponent color is represented by an own
color map (green vs. red and yellow vs. blue) (details in [2]).

4 Results

In this section, we describe the optimization process and the time savings we
achieved. Before starting with the optimizations, the center-surround difference
was computed by rectangular filters, that means the surround was computed
directly as the sum of the pixels in the surrounding region. This yielded accurate
results as displayed in Fig. 3, but was too slow for real-time performance (cf. first
row of Table 1). First, we analyzed the runtime behaviour of our attention system
VOCUS with a profiler on three different image sizes (200× 150, 400× 300, and
800×600). It turned out that by far the most time was spent within pixel access
functions. This had two reasons: first, the pixel access function was too slow and
second, the function was called extremely often: several million times for the
400 × 300 image.

We decided to optimize the runtime of VOCUS in two steps. In the first
step, we applied standard optimization methods, e.g. to speed up the pixel access
function. In the second step, we introduced integral images as explained in sec. 3
to reduce the number of pixel accesses. This is the main part of the paper. This
separation enables to exactly determine which speed-up factor results from the
integral images and which from other optimizations.

In the first optimization step, we started by speeding up the pixel access func-
tion. VOCUS uses the open source computer vision library OpenCV, which allows
fast image processing algorithms. However, the pixel access functions cvGet2D

and cvSet2D are computationally expensive. As suggested in the OpenCV docu-
mentation, we changed the way of accessing the pixel values by directly access-
ing the raw data array. Furthermore, we made use of precomputing variables in
loops, and the separation of filter kernels, which means that a 2D convolution is
replaced by two 1D convolutions. As can be seen in the second row of table 1,
the first optimization step yields a runtime speed up of factor 5.

After standard optimizations, it becomes usually more and more difficult to
achieve a significant time speed up. An analysis with the profiler revealed that
the function to compute the center-surround differences, which are used for the



Image size 200× 150 400× 300 800× 600

Before optimizing 0.650 2.720 11.220

Standard optimizations 0.120 0.510 2.070

Optimized with integral images 0.010 0.050 0.190

Table 1. Performance of our attention system VOCUS (times in seconds), computed on
a 2.8 GHz PC. The first optimization step (2nd row) uses standard optimizations, e.g., a
faster pixel access method. The second optimization step (3rd row) differs from the first
optimization step only by replacing the filter-based center-surround computation by
computations based on integral images.

computation of the intensity and color maps, took still 85% of the total runtime.
At this point, we replaced the center-surround computations by integral images
as described in sec. 3. These optimizations resulted in an additional time speed
up of factor 10 compared to the optimized code with normal filters (cf. Table 1).
The function to compute the center-surround differences, in which most of the
pixel accesses took place, was reduced to 18 % of the total runtime.

After these optimizations, VOCUS is real-time capable and useful for prac-
tical applications in computer vision and robotics. We have demonstrated this
in [4], where VOCUS was used on a mobile robot in the context of visual SLAM
(Simultaneous Localization and Mapping).

5 Conclusion

Computational visual attention systems determine salient image regions usu-
ally by applying linear filters to different scales and feature dimension of an
input image. The computational effort of these techniques is usually too high
to meet real-time constraints; standard optimization techniques can yield a fair
but limited improvement. In this article, we have presented a method for further
improving the general performance of a computational visual attention system
by a typical factor of 10. The method uses integral images for the feature com-
putations and reduces the number of necessary pixel accesses significantly, since
it enables the computation of arbitrarily sized feature values in constant time.
In contrast to other optimizations which approximate the feature values, our
method is accurate and provides the same results as the filter-based methods.
The computation of regions of interest can now be performed in real time for
reasonable initial image resolutions (half VGA) and thus allow their use in a
variety of applications. Attention can now be used for feature tracking or for
preselecting landmark features for visual SLAM.

So far, the optimization has been applied only to the color and intensity
feature dimensions. We plan to use integral images for the computation of the
orientation feature, too. Since the currently used Gabor filters are more accu-
rate than the rectangular features necessary for the integral images, the loss
of accuracy has to be traded off against the speed-up. Another possibility for



improvement is to make the image pyramids obsolete and perform all required
computations on a single integral image per feature dimension. Scale-invariant
feature computations could then be achieved by applying differently sized rect-
angular features to the integral images. The expected improvements will allow
frame rate computations at even higher initial image resolutions.
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